JPH0267763A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0267763A
JPH0267763A JP21978488A JP21978488A JPH0267763A JP H0267763 A JPH0267763 A JP H0267763A JP 21978488 A JP21978488 A JP 21978488A JP 21978488 A JP21978488 A JP 21978488A JP H0267763 A JPH0267763 A JP H0267763A
Authority
JP
Japan
Prior art keywords
oxygen
film
titanium oxynitride
barrier metal
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21978488A
Other languages
Japanese (ja)
Other versions
JP2893686B2 (en
Inventor
▲はま▼嶋 俊樹
Toshiki Hamashima
Shinji Minegishi
慎治 峰岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63219784A priority Critical patent/JP2893686B2/en
Publication of JPH0267763A publication Critical patent/JPH0267763A/en
Application granted granted Critical
Publication of JP2893686B2 publication Critical patent/JP2893686B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To keep a resistivity within a permissible limitrange and to enhance a barrier effect by a method wherein a barrier metal between a silicon semiconductor substrate and an aluminum electrode is formed of titanium oxynitride TiON having a specific content of oxygen. CONSTITUTION:A titanium oxynitride TiON film 9 contains 3 to 7 atomic % of oxygen, and plays a role as a barrier metal. An aluminum alloy film 10 has a titanium film 8 as a substratum which is spread to reduce a contact resistance with respect to the barrier metal film 9; it is connected to a semiconductor region 4 through a contact hole 7. In order to obtain a barrier effect, a content of oxygen of 3 atomic % or higher is required; in order to avoid an increase in the contact resistance and to obtain a resistivity of the film at about 10<-2>OMEGAcm or lower, the content of oxygen is set at 7 atomic % or lower.

Description

【発明の詳細な説明】 以下の順序に従って本発明を説明する。[Detailed description of the invention] The present invention will be described in the following order.

A、+I業トの利用分野 B1発明の概要 C6従来技術 り8発明が解決しようとする問題点 E6問題点を解決するための手段 F9作用 G、実施例[第1図乃至第5図コ H6発明の効果 (A、産業上の利用分野) 本発明は半導体装置、特にシリコン半導体基板と、アル
ミニウムあるいはアルミニウム合金からなる電極との間
にバリアメタルを介在させた半導体装置に関する。
A. Field of application of +I industry B1 Overview of the invention C6 Prior art 8 Problems to be solved by the invention E6 Means for solving the problems F9 Effects G. Examples [Figures 1 to 5 H6 Effects of the Invention (A. Field of Industrial Application) The present invention relates to a semiconductor device, and particularly to a semiconductor device in which a barrier metal is interposed between a silicon semiconductor substrate and an electrode made of aluminum or an aluminum alloy.

(B、発明の概要) 本発明は、上記の半導体装置において、バリアメタルの
抵抗率を徒らに高めることなくバリア効果を高めるため
、 バリアメタルを酸素の含有率が3〜7at%のチタンオ
キシナイトライドTiONにより形成したものである。
(B. Summary of the Invention) In the above semiconductor device, the present invention uses titanium oxide having an oxygen content of 3 to 7 at% to enhance the barrier effect without unnecessarily increasing the resistivity of the barrier metal. It is made of nitride TiON.

(C,従来技術) 現在、電極材料としても最も広く用いられてぃるアルミ
ニウムは、シリコン半導体基板との合金化反応で接合の
破壊及び劣化を招く要因となることが判明1ノだ。そし
て、デバイスの微細化により接合深さが非常に浅くなる
傾向にあるのでその接合破壊、及び劣化を防止する必要
性が生じ、そのためにアルミニウム中に1〜2%程度の
シリコンを含有さき合金化反応を防止しようとすること
が行わわている。しかし、このアルミニウム中のシリコ
ンが、このアルミニウム膜のスパッタによる形成後の4
00〜450℃での熱処理の後における冷却過程で析出
し、その結果、コンタクトホール内にm族元素でρ型不
純物となるアルミニウムを含んだシリコン、即ちP型の
シリコンができ、半導体基板のn型半導体領域との間に
pn接合が出来る先程々の問題をもたらす。そこで、ア
ルミニウム電極と半導体基板との間に両者の合金化を阻
むバリアメタルを介在させる技術が採用されるようにな
り、月刊5effiiconductor World
1987年3月号[・メタライゼーション・超LSIへ
のバリアメタルの通用」90〜94頁にも記載されてい
るようにチタンナイトライドTiNがバリアメタルとし
て有望視されている。
(C, Prior Art) It has been found that aluminum, which is currently most widely used as an electrode material, causes an alloying reaction with a silicon semiconductor substrate to cause bond breakdown and deterioration. Since the junction depth tends to become very shallow due to the miniaturization of devices, there is a need to prevent the junction from breaking and deteriorating, and for this reason, aluminum is alloyed with about 1 to 2% silicon. Efforts are being made to prevent the reaction. However, the silicon in this aluminum is
It precipitates in the cooling process after heat treatment at 00 to 450°C, and as a result, silicon containing aluminum, which is an m group element and becomes a ρ type impurity, is formed in the contact hole, that is, P type silicon, and the n This brings about the aforementioned problem of forming a pn junction with the type semiconductor region. Therefore, a technology has been adopted in which a barrier metal is interposed between the aluminum electrode and the semiconductor substrate to prevent alloying of the two.
As described in the March 1987 issue of ``Metallization and Application of Barrier Metals to VLSI'', pages 90 to 94, titanium nitride TiN is seen as promising as a barrier metal.

(D、発明か解決しようとする問題点)ところで、チタ
ンナイトライドTiNにより形成したバリアメタルのバ
リア効果について本願発明者が実験を重ねたところバリ
ア効果が必ずしも充分ではないことか判明した。
(D. Problems to be Solved by the Invention) By the way, as a result of repeated experiments by the inventor of the present invention regarding the barrier effect of the barrier metal formed of titanium nitride TiN, it was found that the barrier effect is not necessarily sufficient.

そこで、本願発明者は更に実験を重ねチタンナ−f ド
ライドに酸素を添加することによりバリア効果を高める
ことができることを突き止め本発明を為すに至ったので
あり、本発明はバリアメタルのバリア効果を抵抗率を徒
らに増大させることなく高めることを目的とする。
Therefore, the inventor of the present invention conducted further experiments and found that the barrier effect can be enhanced by adding oxygen to titanium oxide.The present invention has been developed to overcome the barrier effect of the barrier metal. The aim is to increase the rate without increasing it unnecessarily.

(E、問題点を解決するための手段) 本発明半導体装置は上記問題点を解決するため、バリア
メタルを酸素の含有率が3〜7at%のチタンオキシナ
イトライドTiONにより形成したことを特徴とする。
(E. Means for Solving the Problems) In order to solve the above problems, the semiconductor device of the present invention is characterized in that the barrier metal is formed of titanium oxynitride TiON with an oxygen content of 3 to 7 at%. do.

(F、作用) 本発明者の実験により得たところのバリアメタル形成用
スパッタガスに加える酸素の流量比とバリア効県のバロ
メータとなる接合リーク電流との関係を示す第2図から
必要なバリア効果を得るには、換言すればリーク電流を
許容限界埴以下にするには酸素0の流量比を4容量%以
上にする必要かあることが解る。ぞして、酸素0の流量
比を4容量%以上にした場合、酸素Oの流量比とチタン
オキシナイトライドTiNの含有率との関係を示す第3
図から形成されるチタンオキシナイトライドTiN0膜
の酸素の含有率は3at%以上になることが解る。
(F, Effect) From Figure 2, which shows the relationship between the flow rate ratio of oxygen added to the sputtering gas for barrier metal formation and the junction leakage current, which is a barometer of barrier effectiveness, obtained through experiments by the inventor, the necessary barrier It can be seen that in order to obtain the effect, in other words, to reduce the leakage current to below the allowable limit, the flow rate ratio of zero oxygen needs to be 4% by volume or more. Therefore, when the flow rate ratio of oxygen 0 is set to 4% by volume or more, the third graph showing the relationship between the flow rate ratio of oxygen O and the content rate of titanium oxynitride TiN
It can be seen from the figure that the oxygen content of the titanium oxynitride TiN0 film formed is 3 at% or more.

一方、酸素0の流量比を約6容1%以上にすると抵抗率
が10−2Ωam以上となりコンタクト抵抗を許容限度
を超えて大きくすることになることが酸素0の流量比と
チタンオキシナイトライド膜の抵抗率の関係を示す第4
図から解る。そして、酸素0の流量比を6容量%程にし
た場合、できるチタンオキシナイトライド酸素Oの含有
率は第2図から約7at%であることが解る。しかして
、バリアメタルとして酸素0の含有率が3〜7at%の
チタンオキシナイトライド膜が抵抗率を許容限度内の値
にしつつバリア効果を高くすることができ、最適といえ
るのである。
On the other hand, if the flow rate ratio of oxygen 0 is increased to about 6 vol. The fourth equation shows the relationship between the resistivity of
It can be understood from the diagram. When the flow rate ratio of oxygen 0 is set to about 6% by volume, it can be seen from FIG. 2 that the content of titanium oxynitride oxygen O produced is about 7 at%. Therefore, as a barrier metal, a titanium oxynitride film having an oxygen content of 3 to 7 at % can be said to be optimal because it can increase the barrier effect while keeping the resistivity within the permissible limit.

(G、実施例)[第1図7’7至第5図]以下、本発明
半導体装置を図示実施例に従って詳細に説明する。
(G. Embodiment) [FIGS. 1 7'7 to 5] The semiconductor device of the present invention will be described in detail below according to the illustrated embodiment.

第1図は本発明半導体装置の一つの実施例を示す断面図
である。同図において、lはP型の半導体基板、2は半
導体基板1の選択酸化膜3の下側にあたる部分に形成さ
れたチャンネルストッパ、4は半導体基板1の素子形成
領域内に形成されたソースあるいはドレインを成すn+
型半導体領域、5.6は層間絶縁膜で、5かSiNかう
なる膜で、500人の膜厚を有し、6がAs5Gからな
る膜で、5000人の膜厚を有している。7は層間絶縁
膜5.6に形成されたコンタクトホール、8は厚さ30
0人のチタン膜、9は厚さ500人のチタンオキシナイ
トライドTiON[で、3〜7at%の酸素を含有して
おり、バリアメタルとしての役割を担う。IOは配線膜
の本体を成す1%のシリコンを含有したアルミニウム合
金膜で、4000人の膜厚を有している。該アルミニウ
ム合金膜10は下地としてバリアメタルであるチタンオ
キシナイトライド膜9とコンタクト抵抗を小さくするた
めに敷かれたチタン膜8を有し、コンタクトホール7を
通して半導体領域4に接続されている。。
FIG. 1 is a sectional view showing one embodiment of the semiconductor device of the present invention. In the figure, l is a P-type semiconductor substrate, 2 is a channel stopper formed on the lower side of the selective oxide film 3 of the semiconductor substrate 1, and 4 is a source or n+ forming the drain
In the type semiconductor region, 5.6 is an interlayer insulating film, which is a film made of SiN or SiN, and has a thickness of 500 nm, and 6 is a film made of As5G, which has a thickness of 5000 nm. 7 is a contact hole formed in the interlayer insulating film 5.6, 8 is a thickness of 30
The titanium film 9 is a titanium oxynitride TiON with a thickness of 500 mm, which contains 3 to 7 at% oxygen and plays a role as a barrier metal. IO is an aluminum alloy film containing 1% silicon, which forms the main body of the wiring film, and has a thickness of 4000 nm. The aluminum alloy film 10 has a titanium oxynitride film 9 serving as a barrier metal and a titanium film 8 laid down to reduce contact resistance as a base, and is connected to the semiconductor region 4 through a contact hole 7. .

ところで、第2図は、第1図に示すような構造の素子が
形成された半導体ウェハを試料としてバリアメタルであ
るチタンオキシナイトライド膜9形成用のスパッタガス
の酸素流量比を異ならせた場合に接合リーク電流がどう
変化するかを示すところの酸素流量比と接合リーク電流
の関係図であり、同図の右肩部分は接合リーク電流のウ
ェハ内測定点(5点)の位置を黒で塗りつぶして示すウ
ェハの平面図である。ここで、接合リーク電流は逆バイ
アスで5.5vの電圧を電極10と基板1との間に印加
した場合の電流値であり、一般に311PA(ペリフェ
リ10mで10nA相当)が許容電流値とされ(第2図
の2点鎖線がそのリーク許容限界値を示している。、)
、それより大きいと好ましくない。同図において、黒丸
・はチタンオキシナイトライド」i9形成後処理(シン
ター>fA度を400℃にした場合を、白丸○は同じく
処理(シンター)温度を450℃にした場合を示してい
る。ちなみに、最近は処理温度が高くなる傾向にあり、
450℃、60分の処理に耐えるようにする必要がある
By the way, FIG. 2 shows the case where the oxygen flow rate ratio of the sputtering gas for forming the titanium oxynitride film 9, which is a barrier metal, is varied using a semiconductor wafer on which an element having the structure shown in FIG. 1 is formed as a sample. This is a diagram showing the relationship between the oxygen flow rate ratio and the junction leakage current, showing how the junction leakage current changes.The right shoulder of the diagram shows the positions of the junction leakage current measurement points (5 points) within the wafer in black. FIG. 2 is a plan view of a wafer shown filled in; Here, the junction leakage current is the current value when a reverse bias voltage of 5.5V is applied between the electrode 10 and the substrate 1, and the allowable current value is generally 311PA (equivalent to 10nA at a periphery of 10m). The two-dot chain line in Figure 2 shows the allowable leak limit value.)
, larger than that is not desirable. In the figure, the black circles indicate the case where the titanium oxynitride i9 formation treatment (sintering > fA degrees was set at 400°C), and the white circles indicate the case where the treatment (sintering) temperature was set at 450°C.By the way, Recently, processing temperatures have tended to be higher.
It is necessary to withstand treatment at 450°C for 60 minutes.

さて、この第2図からスパッタガスの酸素0□の流量比
を4容量%以上にしなければならないことが明らかであ
る。ところで、スパッタガスの酸素0□の流量比がその
ままチタンオキシナイトラー(ド膜の酸素の含有率にな
るわけではない。第3図はスパッタガスの酸素の流量比
とスパッタにより形成されるチタンオキシナイトライド
膜9の酸素の含有率の関係を黒丸・で示すところの流量
比と含有率との関係図であり、この図から酸素0□の流
量比を4容量%にした場合チタンオキシナイトライドI
li 8の酸素の含有率は3at%になり、バリアメタ
ルとして必要なバリア効果を持つには酸素の含有率が3
at%以上でなければならないことが明らかである。ち
なみに、第3図の白丸○は窒素Nについての流量比と含
有率の関係を、中に−の入った白丸OはチタンTiにつ
いての流量比と含有率の関係を示ず。尚、チタンオキシ
ナイトライド膜の組成はAES (オージェ)分光によ
り測定した。
Now, from FIG. 2, it is clear that the flow rate ratio of oxygen 0□ in the sputtering gas must be 4% by volume or more. By the way, the flow rate ratio of oxygen 0□ in the sputtering gas does not directly determine the oxygen content of the titanium oxynitride film. This is a diagram showing the relationship between the oxygen content of the nitride film 9 and the flow rate ratio indicated by black circles.From this figure, when the flow rate ratio of oxygen 0□ is set to 4% by volume, titanium oxynitride I
The oxygen content of li 8 is 3 at%, and the oxygen content must be 3 at% to have the necessary barrier effect as a barrier metal.
It is clear that it must be at % or more. Incidentally, the white circles ○ in FIG. 3 indicate the relationship between the flow rate ratio and the content rate for nitrogen N, and the white circle O with a - in it does not indicate the relationship between the flow rate ratio and content rate for titanium Ti. The composition of the titanium oxynitride film was measured by AES (Auger) spectroscopy.

ところで、チタンオキシナイトライド膜の酸素の含有率
を高くすればする程バリア効果を大きくすることができ
るが、その反面においてその含有率を高くする程第4図
に示すようにチタンオキシナイトライド膜の抵抗率が高
くなる。第4図はチタンオキシナイトライド膜形成用ス
パッタガスの酸素02の流量比とスパッタにより形成さ
れたチタンオキシナイトライド膜の抵抗率の関係図であ
り、そして、チタンオキシナイトライド膜の抵抗率は1
0−2Ωcmが限度で、それ以上に大きくするとコンタ
クト抵抗増大の要因となり、無視できない。この第4図
からチタンオキシナイトライド膜の抵抗率を10−2Ω
cm程度以下にするには、スパッタガスの酸素の流量比
を6容量%以下にする必要がある。そして、第3図から
酸素の流量比を68廿%にした場合チタンオキシナイト
ライド膜の酸素の含有率は7at%であることが解る。
By the way, the higher the content of oxygen in the titanium oxynitride film, the greater the barrier effect, but on the other hand, the higher the oxygen content, the more the titanium oxynitride film becomes resistivity increases. FIG. 4 is a diagram showing the relationship between the flow rate ratio of oxygen 02 in the sputtering gas for forming a titanium oxynitride film and the resistivity of the titanium oxynitride film formed by sputtering. 1
The limit is 0-2 Ωcm, and if it is made larger than that, it becomes a cause of an increase in contact resistance, which cannot be ignored. From this figure 4, the resistivity of the titanium oxynitride film is 10-2Ω.
In order to reduce the amount to about cm or less, the flow rate ratio of oxygen in the sputtering gas needs to be 6% by volume or less. From FIG. 3, it can be seen that when the oxygen flow rate ratio is set to 68 %, the oxygen content of the titanium oxynitride film is 7 at %.

しかして、バリアメタルとしてのチタンオキシナイトラ
イド膜8は含有率が3〜7at%であれば良い。そして
、それをスパッタで形成する場合には、スパタガスの酸
素02の流量比を4〜7容量%にすれば良いといえる。
Therefore, it is sufficient that the titanium oxynitride film 8 as a barrier metal has a content of 3 to 7 at%. When forming it by sputtering, it is sufficient to set the flow rate ratio of oxygen 02 in the sputtering gas to 4 to 7% by volume.

第5図は本発明半導体装置の別の実施例を示すもので、
この半導体装置はコンタクトホール7か選択酸化膜3の
エツジに至るまで開いており、そして、1%のシリコン
を含有した第2層目のアルミニウム合金膜12がスタッ
クされた構造である点で第1図に示した半導体装置と異
なっているが、それ以外の点では共通している。勿論、
第1層目のチタンオキシナイトライド膜9か3〜7at
%の酸素0を含有していることはいうまでもない。
FIG. 5 shows another embodiment of the semiconductor device of the present invention.
This semiconductor device has a structure in which the contact hole 7 is open to the edge of the selective oxide film 3, and the second layer aluminum alloy film 12 containing 1% silicon is stacked. Although it is different from the semiconductor device shown in the figure, it is common in other respects. Of course,
First layer titanium oxynitride film 9 or 3 to 7at
Needless to say, it contains 0% oxygen.

(H,発明の効果) 以上に述べたように、本発明半導体装置によれば、バリ
アメタルの抵抗率を許容限度を超えないようにしつつバ
リア効果を必要な高さに高めることができる。
(H. Effects of the Invention) As described above, according to the semiconductor device of the present invention, the barrier effect can be increased to a required level while preventing the resistivity of the barrier metal from exceeding the permissible limit.

符号の説明 1・・・シリコン半導体基板、 9・・・バリアメタル(チタンオキシナイトライド膜)
、 10.12−・・アルミニウム合金からなる電極。
Explanation of symbols 1...Silicon semiconductor substrate, 9...Barrier metal (titanium oxynitride film)
, 10.12-- Electrode made of aluminum alloy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明半導体装置の一つの実施例を示す断面図
、第2図はチタンオキシナイトライド膜を形成するスパ
ッタカスの酸素の流量比とリーク電流との関係図、第3
図はスパッタガスの酸素の流量比とチタンオキシナイト
ライド膜の酸素の含有率との関係図、第4図はスパッタ
ガスの酸素の流−贋比とチタンオキシナイトライドの抵
抗率との関係図、第5図は本発明半導体装置の別の実施
例を示す断面図である。 ズ/Y、、、タガスの酸素の流量比とチタンオキシナイ
トライドの酸素の含有率の関イ示図4   6   8
    t。 ス/Y、、、夕がスの02流量比(容量%)O2流量比
とチタンナイトライド膜の キ氏士ル率とf>関係図
FIG. 1 is a cross-sectional view showing one embodiment of the semiconductor device of the present invention, FIG. 2 is a relationship between the leakage current and the oxygen flow rate ratio of the sputtering residue forming the titanium oxynitride film, and FIG.
The figure shows the relationship between the oxygen flow ratio of the sputtering gas and the oxygen content of the titanium oxynitride film, and Figure 4 shows the relationship between the oxygen flow ratio of the sputtering gas and the resistivity of titanium oxynitride. , FIG. 5 is a sectional view showing another embodiment of the semiconductor device of the present invention. Figure 4 shows the relationship between the oxygen flow rate ratio of tagas and the oxygen content of titanium oxynitride.
t. 02 flow rate ratio (volume %) of evening gas, O2 flow rate ratio, titanium nitride film's power ratio and f > relationship diagram

Claims (1)

【特許請求の範囲】[Claims] (1)シリコン半導体基板と、アルミニウムあるいはア
ルミニウム合金からなる電極との間にコンタクトをとる
ために介在せしめられたバリアメタルが、酸素の含有率
が3〜7at%のチタンオキシナイトライドTiONか
らなることを特徴とする半導体装置
(1) The barrier metal interposed to establish contact between the silicon semiconductor substrate and the electrode made of aluminum or aluminum alloy is made of titanium oxynitride TiON with an oxygen content of 3 to 7 at%. A semiconductor device characterized by
JP63219784A 1988-09-02 1988-09-02 Method for manufacturing semiconductor device Expired - Lifetime JP2893686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63219784A JP2893686B2 (en) 1988-09-02 1988-09-02 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63219784A JP2893686B2 (en) 1988-09-02 1988-09-02 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0267763A true JPH0267763A (en) 1990-03-07
JP2893686B2 JP2893686B2 (en) 1999-05-24

Family

ID=16740955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63219784A Expired - Lifetime JP2893686B2 (en) 1988-09-02 1988-09-02 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2893686B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243579A (en) * 1992-02-28 1993-09-21 Canon Inc Semiconductor device
US5561326A (en) * 1992-01-08 1996-10-01 Mitsubishi Denki Kabushiki Kaisha Large scale integrated circuit device
US6893905B2 (en) 1997-07-15 2005-05-17 Micron Technology, Inc. Method of forming substantially hillock-free aluminum-containing components
US7161211B2 (en) 1997-07-15 2007-01-09 Micron Technology, Inc. Aluminum-containing film derived from using hydrogen and oxygen gas in sputter deposition
WO2007004378A1 (en) * 2005-06-30 2007-01-11 Sharp Kabushiki Kaisha Nitride semiconductor laser element and nitride semiconductor laser device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPL PHYS LETT=1985US *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561326A (en) * 1992-01-08 1996-10-01 Mitsubishi Denki Kabushiki Kaisha Large scale integrated circuit device
JPH05243579A (en) * 1992-02-28 1993-09-21 Canon Inc Semiconductor device
US6893905B2 (en) 1997-07-15 2005-05-17 Micron Technology, Inc. Method of forming substantially hillock-free aluminum-containing components
US7161211B2 (en) 1997-07-15 2007-01-09 Micron Technology, Inc. Aluminum-containing film derived from using hydrogen and oxygen gas in sputter deposition
WO2007004378A1 (en) * 2005-06-30 2007-01-11 Sharp Kabushiki Kaisha Nitride semiconductor laser element and nitride semiconductor laser device
US7804880B2 (en) 2005-06-30 2010-09-28 Sharp Kabushiki Kaisha Nitride semiconductor laser device and nitride semiconductor laser apparatus

Also Published As

Publication number Publication date
JP2893686B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
US9842906B2 (en) Semiconductor device
JPS63314850A (en) Semiconductor device
JPH0267763A (en) Semiconductor device
JPS60123060A (en) Semiconductor device
JPS62188268A (en) Semiconductor device
JPH0258874A (en) Semiconductor integrated circuit device
JPS63133672A (en) Semiconductor device
JPH0648880Y2 (en) Semiconductor device
JPS5923474B2 (en) semiconductor equipment
JPH01122139A (en) Semiconductor device
JP2740275B2 (en) Thin film transistor
JPS61224435A (en) Semiconductor device
JPS6187353A (en) Semiconductor integrated circuit device
JPS61140177A (en) Semiconductor device
JPH04316370A (en) Semiconductor integrated circuit device
JPS6220374A (en) Semiconductor integrated circuit device
JPS6289354A (en) Semiconductor integrated circuit device and manufacture thereof
JPS60245255A (en) Wiring structure of semiconductor device
JP3237640B2 (en) Semiconductor device
JP2005086118A (en) Semiconductor device
KR960008567B1 (en) Silicide layer forming method
JPH01298742A (en) Semiconductor device
JPH03101231A (en) Semiconductor device and its formation
JPS6350043A (en) Inter-layer insulating film for semiconductor device
JPH05326616A (en) Bonding pad of semiconductor device and bonding method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10