JPH05243147A - Formation of low-dislocation density region on compound semiconductor layer formed on silicon substrate - Google Patents
Formation of low-dislocation density region on compound semiconductor layer formed on silicon substrateInfo
- Publication number
- JPH05243147A JPH05243147A JP4301492A JP4301492A JPH05243147A JP H05243147 A JPH05243147 A JP H05243147A JP 4301492 A JP4301492 A JP 4301492A JP 4301492 A JP4301492 A JP 4301492A JP H05243147 A JPH05243147 A JP H05243147A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- compound semiconductor
- semiconductor layer
- silicon substrate
- dislocation density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Recrystallisation Techniques (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、シリコン基板上に形
成した化合物半導体層に低転位密度領域を形成する方法
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a low dislocation density region in a compound semiconductor layer formed on a silicon substrate.
【0002】[0002]
【従来の技術】シリコン基板上に化合物半導体層を成長
させることが出来れば、従来にない大面積な化合物半導
体基板が得られるばかりでなく、シリコンが有する特徴
と化合物半導体が有する特徴とを生かした有益な半導体
装置の実現が期待出来る。2. Description of the Related Art If a compound semiconductor layer can be grown on a silicon substrate, not only a large-area compound semiconductor substrate which has never been obtained can be obtained, but also the characteristics of silicon and the characteristics of the compound semiconductor are utilized. Realization of useful semiconductor devices can be expected.
【0003】しかし、シリコン基板上に例えばGaAs
層を成長させた場合、シリコン及びGaAsそれぞれの
熱膨張係数が違うため、試料を成長温度から室温に戻し
た場合GaAs成長層には強い引張り応力が加わる。こ
のため、GaAs成長層の膜厚をあまり厚くすると(3
〜4μm以上にすると)成長層にはクラックが生じてし
まう。However, on a silicon substrate, for example, GaAs
When the layer is grown, since silicon and GaAs have different thermal expansion coefficients, when the sample is returned from the growth temperature to room temperature, a strong tensile stress is applied to the GaAs growth layer. Therefore, if the GaAs growth layer is made too thick (3
When the thickness is about 4 μm or more) cracks occur in the growth layer.
【0004】上述の引張り応力は、文献1(ジャパニー
ズ ジャーナル オブ アプライドフィジックス(Ja
panese Journal of Applied
Physics),Vol.27,No.10(198
8.10))によれば、GaAs層の成長温度に無関係
に、GaAs層成長後の試料の冷却過程中の、成長層内
の転位が動かなくなりまた成長層内で新たな転位も発生
しなくなる350℃前後の温度及び室温の間でのシリコ
ン−GaAsの熱膨張係数差により発生するという。そ
して、上記350℃前後の温度以上の温度では、応力を
緩和するために、成長層内では転位が動いたり転位が新
たに発生するという。The above-mentioned tensile stress is obtained from the literature 1 (Japanese Journal of Applied Physics (Ja
panese Journal of Applied
Physics), Vol. 27, No. 10 (198
According to 8.10)), dislocations in the growth layer do not move and new dislocations do not occur in the growth layer during the cooling process of the sample after the growth of the GaAs layer, regardless of the growth temperature of the GaAs layer. It is said to occur due to the difference in the coefficient of thermal expansion of silicon-GaAs between the temperature around 350 ° C. and room temperature. At temperatures above about 350 ° C., dislocations move or new dislocations are generated in the growth layer in order to relieve stress.
【0005】従って、成長温度において成長層内の転位
がいかに減少されていたとしても、その後の冷却過程で
上述のように転位が発生するので、成長層の品質は低下
してしまうことになる。Therefore, no matter how dislocations are reduced in the growth layer at the growth temperature, the dislocations are generated as described above in the subsequent cooling process, so that the quality of the growth layer is deteriorated.
【0006】そこで、GaAs層中の転位密度を低減さ
せる方法として、従来、例えば以下の(I)、(II)
のような方法、さらにはこれらを組み合わせた方法が開
示されていた。Therefore, as a method for reducing the dislocation density in the GaAs layer, the following methods (I) and (II) are conventionally used.
The above method and a method combining these methods have been disclosed.
【0007】(I)成長層に対し900℃前後の温度で
アニールを繰り返す方法(例えば文献2:アプライド
フィジックス レターズ(Appl.Phys.Let
t),51,p.130(1987))。(I) A method of repeating annealing of a grown layer at a temperature of about 900 ° C. (for example, Reference 2: Applied
Physics Letters (Appl.Phys.Let
t), 51, p. 130 (1987)).
【0008】(II)シリコン基板上に、InGaAs
/GaAs等を用いた歪超格子を成長させた後この上に
GaAs層を成長させる方法(例えば文献3;App
l.Phys.Lett.),46,p.294(19
85)。(II) InGaAs on a silicon substrate
After growing a strained superlattice using / GaAs or the like, a GaAs layer is grown on the strained superlattice (for example, Document 3; App.
l. Phys. Lett. ), 46, p. 294 (19
85).
【0009】[0009]
【発明が解決しようとする課題】しかしながら、従来の
いずれの成長方法も、GaAs成長層の転位密度を10
6 /cm2 以下にすることは非常にむづかしいため、よ
り転位密度の低減が図れるGaAs層の成長方法が望ま
れていた。一方、シリコン基板上に成長させたGaAs
成長層に半導体素子を作り込む場合、このGaAs成長
層の全領域で転位密度が所望の値となっていることが好
ましいが、一部に低転位密度領域が形成されているもの
でもその利用価値は充分にあると考えられる。However, in any of the conventional growth methods, the dislocation density of the GaAs growth layer is 10 or less.
Since it is very difficult to reduce the dislocation density to 6 / cm 2 or less, a method for growing a GaAs layer that can further reduce the dislocation density has been desired. On the other hand, GaAs grown on a silicon substrate
When a semiconductor element is formed in the growth layer, it is preferable that the dislocation density has a desired value in the entire region of this GaAs growth layer, but even if a low dislocation density region is partially formed, its utility value is high. Is considered to be sufficient.
【0010】この発明はこのような点に鑑みなされたも
のであり、従ってこの発明の目的は、シリコン基板上に
形成した化合物半導体層の一部領域に低転位密度領域を
形成できる方法を提供することにある。The present invention has been made in view of the above points, and therefore an object of the present invention is to provide a method capable of forming a low dislocation density region in a partial region of a compound semiconductor layer formed on a silicon substrate. Especially.
【0011】[0011]
【課題を解決するための手段】この目的の達成を図るた
め、この発明の、シリコン基板に形成した化合物半導体
層の低転位密度領域形成方法(以下、「低転位密度領域
形成方法」と略称することもある。)によれば、シリコ
ン基板上に形成した化合物半導体層上に、該化合物半導
体層とは熱膨張係数が異なる他の物質を、部分的に形成
する工程と、前述の他の物質及び化合物半導体層形成済
みのシリコン基板に対し、該化合物半導体層で転位の移
動が起こり得る温度を少なくとも含む2種以上の温度に
よる熱サイクル処理を実施する工程と、を含むことを特
徴とする。In order to achieve this object, a method for forming a low dislocation density region of a compound semiconductor layer formed on a silicon substrate according to the present invention (hereinafter abbreviated as "low dislocation density region forming method"). According to the above method, a step of partially forming another substance having a thermal expansion coefficient different from that of the compound semiconductor layer on the compound semiconductor layer formed on the silicon substrate, and the above-mentioned other substance. And a step of subjecting the silicon substrate on which the compound semiconductor layer has been formed to a thermal cycle treatment at two or more temperatures including at least a temperature at which dislocation migration may occur in the compound semiconductor layer.
【0012】ここで、熱サイクル処理の温度や熱サイク
ル処理の回数は化合物半導体層の材質、該層の膜厚や面
積などに応じ適正な値に設定すれば良い。Here, the temperature of the heat cycle treatment and the number of heat cycle treatments may be set to appropriate values according to the material of the compound semiconductor layer, the film thickness and area of the layer, and the like.
【0013】また、化合物半導体層上に形成する物質
は、基本的には化合物半導体層と熱膨張係数が異なる物
であれば種々のもので良い。しかし、化合物半導体層に
対し化学的に安定なもので任意の形状にパターニングし
易い物質が好ましい。The substance formed on the compound semiconductor layer may be basically any substance as long as it has a thermal expansion coefficient different from that of the compound semiconductor layer. However, a substance that is chemically stable with respect to the compound semiconductor layer and is easily patterned into an arbitrary shape is preferable.
【0014】また、化合物半導体層上に該層とは熱膨張
係数が異なる物質を部分的に形成する際の該物質の配列
のし方は、設計に応じ決定すれば良い。以下の実施例で
は、GaAs層上にSiO2 を略碁盤目の目の部分がS
iO2 膜となるように形成する例及び略碁盤目の線部分
がSiO2 膜となるように形成する例を示している。Further, the method of arranging the material having a different thermal expansion coefficient from that of the compound semiconductor layer partially on the compound semiconductor layer may be determined according to the design. In the following examples, SiO 2 is formed on the GaAs layer and the cross-cut is S
An example in which it is formed to be an iO 2 film and an example in which the line portion of the cross-cut is a SiO 2 film are shown.
【0015】[0015]
【作用】この発明の構成によれば、化合物半導体層上に
該層とは熱膨張係数の異なる他の物質を部分的に形成し
てあるので、この試料にこの発明に係る熱サイクル処理
を行なうと、この化合物半導体層の、前記他の物質が形
成されている部分とそうでない部分との境界部分に、過
大な応力が働く。また、この熱サイクル処理において
は、化合物半導体層中の応力を緩和しようと化合物半導
体層では転位の移動が起こるが、転位は化合物半導体層
中を一様に移動するのではなく、前記境界部分に集中す
るように移動する。この結果、この化合物半導体層のあ
る部分に転位密度が低い領域が形成される。According to the structure of the present invention, since another substance having a different thermal expansion coefficient from the layer is partially formed on the compound semiconductor layer, this sample is subjected to the thermal cycle treatment according to the present invention. Then, excessive stress acts on the boundary portion between the portion where the other substance is formed and the portion where the other substance is not formed in the compound semiconductor layer. Further, in this thermal cycle treatment, dislocations move in the compound semiconductor layer in order to relax the stress in the compound semiconductor layer, but the dislocations do not move uniformly in the compound semiconductor layer, but move to the boundary portion. Move to focus. As a result, a region having a low dislocation density is formed in a portion of the compound semiconductor layer.
【0016】[0016]
【実施例】以下、図面を参照して、この発明の低転位密
度領域形成方法の実施例について説明する。なお、以下
の説明中で述べる、使用材料及び時間、温度、膜厚等の
数値的条件は、この発明の範囲内の好適例にすぎない。
従って、この発明がこれら条件にのみ限定されるもので
ないことは理解されたい。また、以下の実施例は、化合
物半導体層をGaAs層とし、このGaAs層上に部分
的に形成する他の物質であってGaAs層とは熱膨張係
数が異なる他の物質をSiO2 とした例である。Embodiments of the method for forming a low dislocation density region of the present invention will be described below with reference to the drawings. The materials used and numerical conditions such as time, temperature, and film thickness described in the following description are only suitable examples within the scope of the present invention.
Therefore, it should be understood that the present invention is not limited to only these conditions. In the following examples, the compound semiconductor layer is a GaAs layer, and another substance partially formed on the GaAs layer and having a thermal expansion coefficient different from that of the GaAs layer is SiO 2. Is.
【0017】図1(A)〜(C)は、この実施例の説明
に供する工程図である。いずれの図も試料をシリコン基
板11の厚み方向に沿って切った断面図により示したも
のである。また、図2は図1(C)に示した試料をその
上方から見て示した平面図である。ただし、いずれの図
もこの発明を理解出来る程度に各構成成分の寸法、形状
及び配置関係を概略的に示してある。1 (A) to 1 (C) are process diagrams for explaining this embodiment. In all of the figures, the sample is shown by a cross-sectional view taken along the thickness direction of the silicon substrate 11. Further, FIG. 2 is a plan view showing the sample shown in FIG. 1C as viewed from above. However, in each of the drawings, the dimensions, shapes, and arrangement relationships of the respective constituent components are schematically shown so that the present invention can be understood.
【0018】先ず、シリコン基板11上にGaAs層1
3を成長させる(図1(A))。この発明の低転位密度
領域形成方法では、化合物半導体層の形成方法は特定さ
れないので、GaAsの成長は従来公知の種々の方法で
行なえる。この実施例では、いわゆる2段階成長法によ
って以下に説明するようにGaAs層13を成長させ
た。First, the GaAs layer 1 is formed on the silicon substrate 11.
3 is grown (FIG. 1 (A)). In the method of forming a low dislocation density region of the present invention, the method of forming the compound semiconductor layer is not specified, so that GaAs can be grown by various conventionally known methods. In this example, the GaAs layer 13 was grown by the so-called two-step growth method as described below.
【0019】先ず、直径2インチ(1インチは約2.5
4cm。)のシリコン基板11(以下、基板11と略称
する場合もある。)をMOCVD装置の反応管内に載置
する。First, the diameter is 2 inches (1 inch is about 2.5).
4 cm. ) The silicon substrate 11 (hereinafter, may be simply referred to as the substrate 11) is placed in the reaction tube of the MOCVD apparatus.
【0020】次に、シリコン基板11をクリーニングす
るため、この反応管内にAsH3 (アルシン:100
%)を20SCCMの流量で流しながら、シリコン基板
を950℃の温度で5分間加熱する。次に、加熱装置の
出力を零にし基板の温度が400℃になるまで基板を自
然冷却する。Next, in order to clean the silicon substrate 11, AsH 3 (arsine: 100
%) At a flow rate of 20 SCCM while heating the silicon substrate at a temperature of 950 ° C. for 5 minutes. Next, the output of the heating device is set to zero and the substrate is naturally cooled until the temperature of the substrate reaches 400 ° C.
【0021】次に、基板温度を700℃まで上昇させこ
の温度を維持した状態で、反応管内にAsH3 とTMG
(トリメチルガリウム)とを、AsH3 の流量を20S
CCM、TMGの流量を3.2SCCMとした条件で所
定時間供給する。これにより、基板11上にノンドープ
GaAs層13が3μmの厚さで形成される(図1
(A))。なお、この際のTMGボンベの温度は−4.
4℃に維持してある。Next, while raising the substrate temperature to 700 ° C. and maintaining this temperature, AsH 3 and TMG are placed in the reaction tube.
(Trimethylgallium) and AsH 3 flow rate of 20S
The CCM and TMG are supplied for a predetermined time under the condition that the flow rate is 3.2 SCCM. As a result, the non-doped GaAs layer 13 having a thickness of 3 μm is formed on the substrate 11 (see FIG. 1).
(A)). The temperature of the TMG cylinder at this time is -4.
It is maintained at 4 ° C.
【0022】なお、必要に応じては基板11上に先ずバ
ッファ層(図示せず)を成長させ、このバッファ層上に
GaAs層13を成長させるようにしても良い。バッフ
ァ層を形成する場合は、基板11の上記クリーニングの
後に、基板温度を400℃に維持した状態で、反応管内
にAsH3 とTMGとを、AsH3 の流量を20SCC
M及びTMGの流量を3.2SCCMとした条件で2分
間流すようにすれば良い。If necessary, a buffer layer (not shown) may be first grown on the substrate 11 and then the GaAs layer 13 may be grown on this buffer layer. When forming the buffer layer, after the above-mentioned cleaning of the substrate 11, while maintaining the substrate temperature at 400 ° C., AsH 3 and TMG are introduced into the reaction tube, and the flow rate of AsH 3 is changed to 20 SCC.
The flow rate of M and TMG may be set to 3.2 SCCM for 2 minutes.
【0023】次に、この実施例では、反応管内に水素と
AsH3 とを導入した状態で基板温度が900℃になっ
た状態を3分保持しその後加熱装置を切り基板温度が6
00℃になったときに再び加熱装置を駆動して試料温度
を900℃にするという熱サイクルを3サイクル(以
下、「成長層単独熱サイクル処理」と称する。)実施す
る。GaAs層13のみの状態においてもこの層中の転
位密度をある程度低減させるためである。なお、成長層
単独熱サイクル処理は実施しなくてもこの発明の効果は
勿論得られる。Next, in this embodiment, the state where the substrate temperature was 900 ° C. was maintained for 3 minutes while hydrogen and AsH 3 were introduced into the reaction tube, and then the heating device was turned off to bring the substrate temperature to 6 ° C.
When the temperature reaches 00 ° C., the heating device is driven again to bring the sample temperature to 900 ° C., and three thermal cycles (hereinafter, referred to as “growth layer independent thermal cycle treatment”) are performed. This is to reduce the dislocation density in this layer to some extent even in the state of only the GaAs layer 13. The effects of the present invention can of course be obtained without performing the thermal cycle treatment for the growth layer alone.
【0024】次に、試料を冷却後、GaAs層13形成
済みの試料を反応管から取り出す。そして、このGaA
s層13上にSiO2 膜を部分的に形成するために、先
ずこのGaAs層13上全面にSiO2 膜15を形成す
る(図1(B))。このSiO2 膜の形成方法は特に限
定されず従来公知の種々の方法で良い。この実施例で
は、CVD法により行なった。また、SiO2 膜の膜厚
は、この実施例では約300nmとしている。Next, after cooling the sample, the sample on which the GaAs layer 13 is formed is taken out from the reaction tube. And this GaA
In order to partially form the SiO 2 film on the s layer 13, the SiO 2 film 15 is first formed on the entire surface of the GaAs layer 13 (FIG. 1B). The method of forming this SiO 2 film is not particularly limited, and various conventionally known methods may be used. In this embodiment, the CVD method is used. The thickness of the SiO 2 film is about 300 nm in this embodiment.
【0025】次に、公知のフォトリソグラフィ法により
このSiO2 膜15上に碁盤目の目の部分にレジストが
残存するようなレジストパターン(図示せず)を形成す
る。その後、このレジストパターンをマスクとしてHF
(フッ酸)水溶液によりSiO2 膜15を選択的にエッ
チングし、GaAs層13上に略正方形状のSiO膜1
5aをマトリクス状に多数残存させる(図1(C)、図
2)。なお、この実施例では、SiO2 膜15aの一辺
a(図2参照。)を40μmとし、GaAs層13の露
出幅b(図2参照。)も20μmとしている。Next, by a well-known photolithography to form a resist pattern (not shown) such as a resist remains on the eye portion of the cross-cut on the SiO 2 film 15. After that, using this resist pattern as a mask, HF
The SiO 2 film 15 is selectively etched with an aqueous solution of (hydrofluoric acid) to form a substantially square SiO film 1 on the GaAs layer 13.
Many 5a are left in a matrix (FIG. 1C, FIG. 2). In this embodiment, one side a (see FIG. 2) of the SiO 2 film 15a is 40 μm, and the exposed width b (see FIG. 2) of the GaAs layer 13 is 20 μm.
【0026】次に、このように部分的にSiO2 膜15
aを残存させた試料に対し、GaAs層13で転位の移
動及び新たな転位の発生の少なくとも一方が起こり得る
温度を少なくとも含む2種以上の温度による熱サイクル
処理を実施する。この実施例では、この熱サイクルは、
試料をMOCVD装置の反応管中に入れ、上述の成長層
単独熱サイクル処理と同じ条件により行なう。Next, in this way, the SiO 2 film 15 is partially
The sample in which a is left is subjected to thermal cycle treatment at two or more temperatures including at least one temperature at which dislocation movement and / or new dislocation generation may occur in the GaAs layer 13. In this example, this thermal cycle is
The sample is put in the reaction tube of the MOCVD apparatus, and the same thermal cycle treatment as for the growth layer is performed under the same conditions.
【0027】この熱サイクル処理において、GaAs層
13にある応力によりこのGaAs層13中の転位が移
動するが、GaAs層13のSiO2 膜15aを設けた
部分と設けなかった部分との境界にストレスがかかって
いるので、前記転位はこの境界部分の応力を緩和するべ
くこの境界部分に集中するように移動する。この結果、
GaAs層13の、SiO2 膜15aを設けなかった部
分に転位密度の低い領域が形成できる。なお、SiO2
膜15aは、この後のGaAs層13の活用のし方次第
で除去しても残存させておいても良い。In this thermal cycle treatment, dislocations in the GaAs layer 13 move due to the stress in the GaAs layer 13, but stress is applied to the boundary between the portion of the GaAs layer 13 where the SiO 2 film 15a is provided and the portion where it is not provided. Therefore, the dislocations move so as to concentrate on the boundary portion so as to relieve the stress at the boundary portion. As a result,
A region having a low dislocation density can be formed in the portion of the GaAs layer 13 where the SiO 2 film 15a is not provided. Note that SiO 2
The film 15a may be removed or may remain depending on how the GaAs layer 13 is used thereafter.
【0028】次に、この実施例では低転位密度領域が形
成されていることを確認するために、上述のような一連
の処理を実施した試料のGaAs層13を溶融KOHに
より所定量エッチングしエッチピットを出現させ、この
試料表面を光学顕微鏡により観察した。なお、SiO2
膜15aは溶融KOHを用いたGaAs層13のエッチ
ングの際に除去される。Next, in this embodiment, in order to confirm that a low dislocation density region is formed, the GaAs layer 13 of the sample which has been subjected to the series of treatments as described above is etched by a predetermined amount with molten KOH and etched. A pit was made to appear and the surface of this sample was observed with an optical microscope. Note that SiO 2
The film 15a is removed during etching of the GaAs layer 13 with molten KOH.
【0029】図3は光学顕微鏡観察の際に試料表面の一
部を撮影した写真を模写した図である。なお、試料の写
真撮影領域は図2にPで示した部分である。エッチピッ
ト21が転位に対応する。この図3から明らかなよう
に、転位はGaAs層13のSiO2 膜15aを設けて
あった部分13xと設けなかった部分13yとの境界
(図3中一点鎖線で示した当たりの部分)に集中的に発
生しており、SiO2 膜を設けなかったGaAs層部分
13yでは転位密度が低くなっていることが分かる。FIG. 3 is a copy of a photograph of a part of the surface of the sample under observation with an optical microscope. The photographed area of the sample is the portion indicated by P in FIG. The etch pits 21 correspond to dislocations. As is clear from FIG. 3, dislocations are concentrated at the boundary between the portion 13x of the GaAs layer 13 where the SiO 2 film 15a is provided and the portion 13y where it is not provided (the portion indicated by the one-dot chain line in FIG. 3). It can be seen that the dislocation density is low in the GaAs layer portion 13y where the SiO 2 film is not provided.
【0030】また、実施例とは別に、GaAs層13上
にSiO2 膜を残存させる際に、SiO2 膜の配置を図
2の場合と逆転させたこと以外は上述の実施例と同様に
実験を行なった。すなわち、図2では碁盤の目の部分が
SiO2 膜とされていたのに対し碁盤の線の部分にSi
O2 膜を残存させて実施例と同様な実験を行なった。こ
の場合も、上述の実施例と同様に、転位はGaAs層1
3のSiO2 膜15aを設けてあった部分と設けなかっ
た部分との境界に集中的に発生しており、SiO2 膜を
設けなかったGaAs層部分(この場合は各正方形の領
域)では転位密度が低くなっていることが分かった。Separately from the example, the same experiment as the above example was performed except that when the SiO 2 film was left on the GaAs layer 13, the arrangement of the SiO 2 film was reversed from that shown in FIG. Was done. That is, in FIG. 2, the squares of the grid are made of SiO 2 film, while the lines of the grid are made of Si.
An experiment similar to that of the example was performed with the O 2 film left. Also in this case, dislocations are caused in the GaAs layer 1 as in the above embodiment.
No. 3 SiO 2 film 15a is provided at the boundary between the part where the SiO 2 film is provided and the part where the SiO 2 film is not provided, and dislocations occur in the GaAs layer part where the SiO 2 film is not provided (in this case, each square area) It was found that the density was low.
【0031】上述においては、この発明の低転位密度領
域の形成方法の実施例について説明したが、この発明は
上述の実施例に限られず以下に説明するような変更を加
えることができる。Although the embodiment of the method for forming a low dislocation density region of the present invention has been described above, the present invention is not limited to the above-described embodiment but can be modified as described below.
【0032】例えば、上述の実施例ではGaAs層上に
部分的に形成する他の物質をSiO2 膜としていたがこ
の物質はGaAs熱膨張係数が異なるものであれば他の
好適なものでも良い。例えば、シリコン窒化膜などでも
良い。For example, in the above-mentioned embodiment, the other material partially formed on the GaAs layer is the SiO 2 film, but this material may be another suitable material as long as it has a different GaAs thermal expansion coefficient. For example, a silicon nitride film or the like may be used.
【0033】また、上述の実施例では、シリコン基板上
に形成されたGaAs層に低転位密度領域を形成する例
を説明したが、この発明はGaAs層以外の化合物半導
体層に低転位密度領域を形成する場合にも適用できる。Further, in the above-mentioned embodiment, the example of forming the low dislocation density region in the GaAs layer formed on the silicon substrate has been described. However, the present invention forms the low dislocation density region in the compound semiconductor layer other than the GaAs layer. It can also be applied when forming.
【0034】[0034]
【発明の効果】上述した説明からも明らかなように、こ
の発明の低転位密度領域の形成方法によれば、化合物半
導体層の特定部分に転位が集中するので他の部分に転位
密度の低い領域が形成できる。このため、例えばシリコ
ン基板上に、転位密度が実用レベルで低い領域を持つG
aAs層を、形成できる。As is apparent from the above description, according to the method of forming a low dislocation density region of the present invention, dislocations are concentrated in a specific portion of the compound semiconductor layer, and thus the region of low dislocation density is formed in other portions. Can be formed. For this reason, for example, G having a region where the dislocation density is low at a practical level on a silicon substrate.
An aAs layer can be formed.
【図1】(A)〜(C)は実施例の説明に供する工程図
である。FIG. 1A to FIG. 1C are process drawings provided for explaining an example.
【図2】シリコン基板上に形成したGaAs層上にSi
O2 膜を部分的に形成した様子を示した平面図である。FIG. 2 Si on a GaAs layer formed on a silicon substrate
FIG. 6 is a plan view showing a state where an O 2 film is partially formed.
【図3】試料を溶融KOHによりエッチングしその一部
を光学顕微鏡で観察して得た写真を模写した図である。FIG. 3 is a copy of a photograph obtained by etching a sample with molten KOH and observing a part thereof with an optical microscope.
11:シリコン基板 13:GaAs層 13x:GaAs層のSiO2 膜を設けてあった部分 13y:GaAs層のSiO2 膜を設けなかった部分 15:SiO2 膜 15a:GaAs層上に部分的に設けたSiO2 膜 21:エッチピット11: Silicon substrate 13: GaAs layer 13x: part had been provided an SiO 2 film of the GaAs layer 13y: portion not provided with the SiO 2 film of the GaAs layer 15: SiO 2 film 15a: partially provided on the GaAs layer SiO 2 film 21: Etch pit
Claims (1)
層上に、該化合物半導体層とは熱膨張係数が異なる他の
物質を、部分的に形成する工程と、 前記他の物質及び化合物半導体層形成済みのシリコン基
板に対し、該化合物半導体層で転位の移動が起こり得る
温度を少なくとも含む2種以上の温度による熱サイクル
処理を実施する工程と、を含むことを特徴とするシリコ
ン基板上に形成した化合物半導体層の低転位密度領域形
成方法。1. A step of partially forming, on a compound semiconductor layer formed on a silicon substrate, another substance having a coefficient of thermal expansion different from that of the compound semiconductor layer, and forming the other substance and the compound semiconductor layer. A step of performing a thermal cycle treatment on the completed silicon substrate at two or more temperatures including at least a temperature at which dislocation migration may occur in the compound semiconductor layer. Method for forming low dislocation density region of compound semiconductor layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4301492A JP2786561B2 (en) | 1992-02-28 | 1992-02-28 | Method for forming low dislocation density region of compound semiconductor layer formed on silicon substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4301492A JP2786561B2 (en) | 1992-02-28 | 1992-02-28 | Method for forming low dislocation density region of compound semiconductor layer formed on silicon substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05243147A true JPH05243147A (en) | 1993-09-21 |
JP2786561B2 JP2786561B2 (en) | 1998-08-13 |
Family
ID=12652130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4301492A Expired - Lifetime JP2786561B2 (en) | 1992-02-28 | 1992-02-28 | Method for forming low dislocation density region of compound semiconductor layer formed on silicon substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2786561B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014219003A1 (en) | 2014-03-07 | 2015-09-10 | Mitsubishi Electric Corp. | TMR magnetic sensor and manufacturing method therefor |
-
1992
- 1992-02-28 JP JP4301492A patent/JP2786561B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014219003A1 (en) | 2014-03-07 | 2015-09-10 | Mitsubishi Electric Corp. | TMR magnetic sensor and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2786561B2 (en) | 1998-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0484418A (en) | Method of heteroepitaxial development of iii-v group compound semiconductor for different types of substrates | |
JPH06232100A (en) | Surface impurity removal of iii-v group semiconductor element | |
DE10393440T5 (en) | Process for treating semiconductor material | |
JP4894390B2 (en) | Manufacturing method of semiconductor substrate | |
JP2576766B2 (en) | Semiconductor substrate manufacturing method | |
JP2786561B2 (en) | Method for forming low dislocation density region of compound semiconductor layer formed on silicon substrate | |
JP3667124B2 (en) | Method for manufacturing compound semiconductor substrate | |
EP0407233B1 (en) | Method for fabricating a semiconductor substrate | |
JP3089732B2 (en) | Method for epitaxial growth of compound semiconductor | |
JP3868407B2 (en) | Method for forming compound semiconductor layer | |
JPH0677129A (en) | Manufacture of semiconductor thin film | |
JP3400085B2 (en) | Method for forming compound semiconductor layer | |
JPH0645249A (en) | Growth method of gaas layer | |
JP2706592B2 (en) | Crystal substrate manufacturing method | |
JPH0434920A (en) | Hetero epitaxial growth method for group iii-v compound semiconductor on different type board | |
Shi et al. | Selective area heteroepitaxy of antiphase boundary free GaAs microridges on on-axis (001) Si for silicon photonics | |
JPH0536605A (en) | Manufacture of compound semiconductor substrate | |
JPH07263454A (en) | Forming method of wafer having low dislocation | |
JP2545997B2 (en) | Method for growing semiconductor thin film | |
JPH05206026A (en) | Semiconductor substrate forming method | |
JPH08321465A (en) | Manufacture of compound semiconductor | |
JPH01301584A (en) | Process for growing crystal and apparatus therefor | |
JPH0927451A (en) | Manufacture of compound semiconductor substrate | |
JPH04199812A (en) | Semiconductor crystal growth method | |
JPH04107828A (en) | Reducing method for dislocation in compound semiconductor layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980519 |