JPH01301584A - Process for growing crystal and apparatus therefor - Google Patents

Process for growing crystal and apparatus therefor

Info

Publication number
JPH01301584A
JPH01301584A JP13347588A JP13347588A JPH01301584A JP H01301584 A JPH01301584 A JP H01301584A JP 13347588 A JP13347588 A JP 13347588A JP 13347588 A JP13347588 A JP 13347588A JP H01301584 A JPH01301584 A JP H01301584A
Authority
JP
Japan
Prior art keywords
substrate
hydrogen
grown
chamber
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13347588A
Other languages
Japanese (ja)
Inventor
Naoki Furuhata
直規 古畑
Hironobu Miyamoto
広信 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13347588A priority Critical patent/JPH01301584A/en
Publication of JPH01301584A publication Critical patent/JPH01301584A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a flat interface free from defect and impurity and form an excellent epitaxial layer on the interface, by thermally dissociating hydrogen at a high temperature and supplying the dissociated hydrogen to the surface of a compound semiconductor substrate in high vacuum. CONSTITUTION:For example, for the preparation of a re-grown surface of GaAs, a molecular beam epitaxial growth chamber 3 is charged with Ga, As and Si as an n-type dopant and an Si-doped GaAs epitaxial layer is grown on the Si-doped GaAs substrate. The substrate is taken out of a substrate- exchange chamber 9, exposed to air, introduced again into the chamber 9, evacuated and returned to the growth chamber 3. The substrate temperature is raised, the substrate is irradiated with hydrogen heated at 800-1,000 deg.C in As atmosphere and an Si-doped GaAs is epitaxially grown on the substrate by a molecular beam epitaxial process. An excellent re-grown thin film having flat and clean interface free from defect can be formed by this process.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、結晶成長方法及び結晶成長装置に関し、詳し
くは化合物半導体基板上に結晶成長を行う前の基板の清
浄化に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a crystal growth method and a crystal growth apparatus, and more particularly to cleaning of a compound semiconductor substrate before crystal growth thereon.

(従来の技術) 近年、化合物半導体を用いた高速デバイス、光デバイス
、光−集積回路(OEIC)の開発が急速に進展し、そ
れに伴う素子製作プロセスも高度化してきている。
(Prior Art) In recent years, the development of high-speed devices, optical devices, and optical integrated circuits (OEICs) using compound semiconductors has progressed rapidly, and the associated device manufacturing processes have also become more sophisticated.

化合物半導体結晶の特徴として、その代表であるGaA
sを例にとると、Siに比べ電子移動度が5〜6倍も早
い上、AlGaAs、InGaP等の混晶を用いれば、
人工的に格子定数、禁制帯幅を変化させることができ、
それを利用した新しいデバイス構造ができる。しかし一
方、一般に化合物半導体の表面は活性であり、不純物を
取り込みやすく、金属、絶縁体、半導体との界面が安定
しない。ところが、デバイスの高性能化、高集積化を図
るためには、このような界面の清浄化、平坦化が必要で
あり、これは通常の分子線エピタキシャル法(MBE)
等の成長技術、反応性イオンビームエッチング(RIB
E)等のエツチング技術だけでは対応できなくなってき
ている。
As a characteristic of compound semiconductor crystals, GaA, which is the representative
Taking s as an example, the electron mobility is 5 to 6 times faster than that of Si, and if mixed crystals such as AlGaAs and InGaP are used,
It is possible to artificially change the lattice constant and forbidden band width,
A new device structure can be created using this. However, the surface of compound semiconductors is generally active and easily incorporates impurities, and the interfaces with metals, insulators, and semiconductors are unstable. However, in order to achieve high performance and high integration of devices, it is necessary to clean and flatten such interfaces, which can be done using ordinary molecular beam epitaxial method (MBE).
Reactive ion beam etching (RIB)
Etching techniques such as E) alone are no longer sufficient.

特に結晶加工を施した基板上に再成長を行う場合、界面
に炭素系の汚染物質および酸化物が生じ、深い準位を形
成することが知られているが、これを除去することは、
困難である。
It is known that when regrowth is performed on a substrate that has undergone crystal processing, carbon-based contaminants and oxides are generated at the interface, forming deep levels.
Have difficulty.

通常の分子線エピタキシャル法(MBE法)では、ジャ
パン、ジャーナル・オブ・アプライド・フィジックス(
Japan Journal of Applied 
Physics)25巻、1216頁(1986年)に
発表されているように、基板を700°C以上に加熱し
て表面の結晶をを熱により蒸発させる方法で界面の不純
物を除去している。
In the ordinary molecular beam epitaxial method (MBE method), Japan, Journal of Applied Physics (
Japan Journal of Applied
Physics), Vol. 25, p. 1216 (1986), impurities at the interface are removed by heating the substrate to 700° C. or higher to evaporate the crystals on the surface.

また反応性イオンビームエツチング(RIBE法)にお
いては、高真空下でECRイオン源を用いてラジカル化
した反応性ガスや水素により、基板表面をエツチングす
る方法かに、Asakawaらによって、ジャーナル・
オブ・バキューム・サイエンス・テクノロジー−A(J
ournal of Vacuum 5cience 
Technology A)第4巻、677頁(198
6年)に報告されている。
In addition, in reactive ion beam etching (RIBE method), the substrate surface is etched using radicalized reactive gas or hydrogen using an ECR ion source under high vacuum, as reported by Asakawa et al.
Of Vacuum Science Technology-A (J
internal of vacuum 5science
Technology A) Volume 4, page 677 (198
It was reported in 2006).

他に、J、P、Contourらは、MBEの準備室に
塩酸(MCI)を導入して、基板表面に吸着させ、その
後MBE室内で昇温しで、基板表面をクリーニングする
方法を用いている。ジャーナル・オブ・バキューム・サ
イエンス・テクノロジー−B(Journal of 
VacuumScience Technology 
B)第5巻、730頁(1987年)。
In addition, J. P. Contour et al. used a method in which hydrochloric acid (MCI) was introduced into the MBE preparation chamber, adsorbed onto the substrate surface, and then heated in the MBE chamber to clean the substrate surface. . Journal of Vacuum Science and Technology-B
Vacuum Science Technology
B) Volume 5, page 730 (1987).

これらの方法は、いずれも高真空下で行うことにより雰
囲気からの汚染がないという利点がある。
All of these methods have the advantage that there is no contamination from the atmosphere because they are performed under high vacuum.

(発明が解決しようとする問題点) しかし上述したこれらの方法は以下のような問題がある
(Problems to be Solved by the Invention) However, these methods described above have the following problems.

まずMBE法で行われている高温で熱により結晶表面を
蒸発させる方法(サーマルエツチング法)では、表面の
平坦性が損われる上、高温により不純物濃度の再分布が
生じ、デバイス特性を劣化させる原因となっている。ま
たこの方法では、炭素系の不純物を完全に除去できない
First, in the MBE method, which uses heat to evaporate the crystal surface at high temperatures (thermal etching method), the flatness of the surface is impaired, and the high temperature causes redistribution of impurity concentrations, which causes deterioration of device characteristics. It becomes. Furthermore, this method cannot completely remove carbon-based impurities.

次にRIBE法によるラジカルエツチング法では、炭素
系の不純物除去には効果があるが、高いエネルギーを持
つ分子が基板表面にダメージを与え、欠陥を生じさせる
。さらにイオンやラジカルに成長装置の内壁などがスパ
ッタされて不純物(おもに重金属)の汚染がおき、清浄
な界面を得ることは困難である。
Next, radical etching using the RIBE method is effective in removing carbon-based impurities, but molecules with high energy damage the substrate surface and cause defects. Furthermore, the inner walls of the growth apparatus are sputtered by ions and radicals, causing contamination with impurities (mainly heavy metals), making it difficult to obtain a clean interface.

また反応性ガスを導入して表面をエツチングする方法は
、ダメージがなく平坦性を損うこともないが、炭素系不
純物の除去にはあまり効果がない。
Further, a method of etching the surface by introducing a reactive gas causes no damage and does not impair flatness, but is not very effective in removing carbon-based impurities.

本発明の目的は、欠陥、不純物がなく、平坦な界面を形
成し、その上に良好なエピタキシャル層を成長すること
にある。
An object of the present invention is to form a flat interface free of defects and impurities, and to grow a good epitaxial layer thereon.

(問題点を解決するための手段) 本発明では、化合物半導体の基板表面を清浄化して、そ
の上に結晶成長する結晶成長方法において、高真空下で
の化合物半導体の基板表面に、高温に加熱することによ
り熱的に解離させた水素を供給して、表面を清浄化する
工程と該基板上に結晶を成長する工程が、連続して行わ
れることを特徴とする結晶成長方法と、真空容器と、該
真空容器内に設けられ基板を保持しかつ加熱する基板ホ
ルダと、前記真空容器内し°水素を導入するガス導入管
と、水素を加熱できる加熱装置と、半導体結晶をエピタ
キシャル成長できる分子線源を備えていることを特徴と
する結晶成長装置を提供する。
(Means for Solving the Problems) In the present invention, in a crystal growth method in which the surface of a compound semiconductor substrate is cleaned and crystals are grown thereon, the surface of the compound semiconductor substrate is heated to a high temperature under a high vacuum. A crystal growth method characterized in that a step of supplying thermally dissociated hydrogen by cleaning a surface and a step of growing a crystal on the substrate are successively performed, and a vacuum container. a substrate holder provided in the vacuum container to hold and heat the substrate; a gas introduction tube to introduce hydrogen into the vacuum container; a heating device capable of heating hydrogen; and a molecular beam capable of epitaxial growth of semiconductor crystals. A crystal growth apparatus is provided, characterized in that it is equipped with a crystal growth source.

(作用) 水素ガスは、化合物半導体表面の酸化膜や炭素系の不純
物を除去する効果があることが知られているが、常温で
は反応が起こらず、水素に高いエネルギーを与えて解離
させる必要がある。本発明では、水素を高温に加熱して
、熱的に解離させ基板表面に供給するので、基板温度を
それ程、高くする必要もなく、また水素をイオンやラジ
カルにする必要もない。従って、不純物の再分布やダメ
ージが生じることはない。なお、800°Cで加熱した
水素を質量分析計により測定したところ、1%の水素が
解離していることが分った。さらに望ましくは1O−3
torr以下の高真空下で行うとガス流はほぼ分子流と
なり、解離した水素は有効に基板表面に供給される。
(Function) Hydrogen gas is known to be effective in removing oxide films and carbon-based impurities on the surface of compound semiconductors, but no reaction occurs at room temperature, and it is necessary to give high energy to hydrogen to dissociate it. be. In the present invention, hydrogen is heated to a high temperature, thermally dissociated, and supplied to the substrate surface, so there is no need to raise the substrate temperature that high, and there is no need to convert hydrogen into ions or radicals. Therefore, no redistribution of impurities or damage occurs. In addition, when hydrogen heated at 800° C. was measured using a mass spectrometer, it was found that 1% of hydrogen was dissociated. More preferably 1O-3
When carried out under a high vacuum of torr or less, the gas flow becomes almost a molecular flow, and the dissociated hydrogen is effectively supplied to the substrate surface.

(実施例) 以下に本発明の実施例を図によって説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本願第2の発明の半導体結晶成長装置の構成を
示す概略図である。
FIG. 1 is a schematic diagram showing the configuration of a semiconductor crystal growth apparatus according to the second invention of the present application.

本実施例の装置は、排気装置1と加熱機構を有する基板
ホルダー2を備えている通常の分子線エピタキシャル(
MBE)成長室3と、水素ガスを導入するマスフローコ
ントローラ1とガス導入管4と、水素ガスを加熱する加
熱装置5と分子線を供給するためのIII族原料セル6
、V族原料セルフ、ドーパント原料セル8、基板交換室
9、ゲートバルブ10によって構成されている。ガス導
入管4は成長室3側ではステンレス製でこのステンレス
部分に石英管が接続され、マスコントローラ11へと続
いている。加熱装置5はガス導入管4の石英部分にヒー
タを巻きつけた構造となっている。なお、加熱装置5は
この構造に限らず、例えば石英管内部にヒータを封入し
た型であっても良い。
The apparatus of this embodiment is a conventional molecular beam epitaxial (
MBE) A growth chamber 3, a mass flow controller 1 for introducing hydrogen gas, a gas introduction pipe 4, a heating device 5 for heating hydrogen gas, and a group III raw material cell 6 for supplying molecular beams.
, a group V raw material cell, a dopant raw material cell 8, a substrate exchange chamber 9, and a gate valve 10. The gas introduction tube 4 on the growth chamber 3 side is made of stainless steel, and a quartz tube is connected to this stainless steel portion, leading to a mass controller 11. The heating device 5 has a structure in which a heater is wound around the quartz portion of the gas introduction pipe 4. Note that the heating device 5 is not limited to this structure, and may be of a type in which a heater is enclosed within a quartz tube, for example.

本願第1の発明の実施例では、本装置を用いGaAsの
再成長界面を以下の手順で作製した。まずMBE成長室
にIII族原料として金属Ga、 V族原料としてAs
、n型ドーパントとして、Siを投入し、Siドープ3
 X 1.018cm ”のGaAs基板上にSiドー
プ3X1016cm−3のGaAsエピタキシャル層を
成長温度6000Cで、1.5pm成長させた。
In an example of the first invention of the present application, a GaAs regrowth interface was produced using the present apparatus in the following procedure. First, in the MBE growth chamber, metal Ga as a group III raw material and As as a group V raw material were introduced into the MBE growth chamber.
, Si is introduced as an n-type dopant, and Si-doped 3
A Si-doped 3×10 16 cm −3 GaAs epitaxial layer was grown to a thickness of 1.5 pm on a GaAs substrate of 1.018 cm ” at a growth temperature of 6000 C.

この基板を基板交換室9から大気に取出、大気中にさら
した後、再び基板交換室9に入れて真空排気した後、M
BE成長室3に戻した。次に、基板温度を500°Cに
上げて、As雰囲気中で、800°C〜1000°Cの
各種温度に加熱した水素を、10分間基板に照射した。
This board is taken out from the board exchange chamber 9 to the atmosphere, exposed to the atmosphere, then put back into the board exchange chamber 9 and evacuated, and then
Returned to BE growth room 3. Next, the substrate temperature was raised to 500° C., and the substrate was irradiated with hydrogen heated to various temperatures of 800° C. to 1000° C. for 10 minutes in an As atmosphere.

水素の分圧は、5 X 10−’Torrである。The partial pressure of hydrogen is 5 x 10-' Torr.

この後、基板上にMBE法によりSiドープ3 X 1
0110l6のGaAsを0.511mエピタキシャル
成長した。基板温度は、600°Cである。
After that, Si-doped 3×1 was deposited on the substrate by MBE.
0110l6 GaAs was epitaxially grown to a thickness of 0.511 m. The substrate temperature was 600°C.

再成長界面の評価として、C−■測定により基板表面か
らの深さ方向のキャリア濃度の分布を求めた。第2図に
その結果を示す。第2図には比較のため、再成長界面を
従来のサーマルエツチング法で処理したものを示したが
、従来法では、界面でキャリア濃度の低下が見られたが
、本実施例の方法では、界面での不純物、ダメージがま
ったくないので、キャリア濃度の低下はまったく見られ
ない。また水素の加熱温度は800°C〜1000°C
の各温度で、発明の効果が認められた。
As an evaluation of the regrowth interface, the carrier concentration distribution in the depth direction from the substrate surface was determined by C-■ measurement. Figure 2 shows the results. For comparison, FIG. 2 shows the regrown interface treated with the conventional thermal etching method. In the conventional method, a decrease in carrier concentration was observed at the interface, but in the method of this example, Since there is no impurity or damage at the interface, no decrease in carrier concentration is observed at all. Also, the heating temperature of hydrogen is 800°C to 1000°C.
The effects of the invention were observed at each temperature.

さらに再成長する前のエツチング面を、RHEEDで観
察したところ、本実施例でエツチングした基板は、スト
リークの超構造パターンを示し、損傷のない良好な界面
の形成が確認された。
Furthermore, when the etched surface before regrowth was observed by RHEED, the substrate etched in this example showed a streak superstructure pattern, confirming the formation of a good interface without damage.

なお、本実施例で用いた基板はGaAsであるが他にI
nP、 AlGaAsのような他のIII−V族化合物
あるいはその混晶でも同林な効果が得られた。
The substrate used in this example was GaAs, but other materials such as I
Similar effects were obtained with other III-V group compounds such as nP and AlGaAs, or their mixed crystals.

またIILV族化合物半導体基板上に成長させる材料は
、Siなどの他の半導体、電極金属などでも良いし、多
結晶あるいはアモルファスでも構わない。
Further, the material grown on the IILV group compound semiconductor substrate may be other semiconductors such as Si, electrode metals, or may be polycrystalline or amorphous.

(発明の効果) 以上述べたように、本発明によれば、平坦で欠陥のない
清浄な界面を有する良好な再成長薄膜を得ることができ
、ひいてはデバイス特性を向上させる効果を有する。
(Effects of the Invention) As described above, according to the present invention, a good regrown thin film having a flat, defect-free and clean interface can be obtained, which has the effect of improving device characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の概略図。第2図はGaAs成長層
のキャリア濃度の表面から基板方向への深さ分布を示す
図である。 1、排気装置、2.基板ホルダ、3. MBE成長室、
4゜ガス導入管、5.加熱装置、6、III族原料セル
、7゜V族原料セル、8.ドーパント原料セル、9.基
板交換室、10.ゲートバルブ、11.マスフローコン
トローラ。
FIG. 1 is a schematic diagram of the apparatus of the present invention. FIG. 2 is a diagram showing the depth distribution of the carrier concentration of the GaAs growth layer from the surface toward the substrate. 1. Exhaust device, 2. substrate holder, 3. MBE growth room,
4° gas introduction pipe, 5. Heating device, 6. Group III raw material cell, 7° Group V raw material cell, 8. Dopant raw material cell, 9. Board exchange room, 10. Gate valve, 11. mass flow controller.

Claims (2)

【特許請求の範囲】[Claims] (1)高真空下で、化合物半導体の基板表面に、高温に
加熱することにより少くとも一部が熱的に解離させてあ
る水素を供給して表面を清浄化する工程と、該基板上に
結晶を成長する工程が連続して行われることを特徴とす
る結晶成長方法。
(1) A step of supplying hydrogen, which has been thermally dissociated at least in part by heating it to a high temperature, to the surface of a compound semiconductor substrate under high vacuum to clean the surface; A crystal growth method characterized in that the steps of growing crystals are performed continuously.
(2)真空容器と、該真空容器内に設けられ半導体基板
を保持しかつ加熱する基板ホルダと、結晶を成長させる
ための分子線源とを備えた結晶成長装置において前記真
空容器内に水素を導入するためのガス導入管と、水素を
加熱するための加熱装置とを備えてあること特徴とする
結晶成長装置。
(2) In a crystal growth apparatus equipped with a vacuum vessel, a substrate holder provided in the vacuum vessel to hold and heat a semiconductor substrate, and a molecular beam source for growing a crystal, hydrogen is introduced into the vacuum vessel. A crystal growth apparatus characterized by comprising a gas introduction pipe for introducing hydrogen and a heating device for heating hydrogen.
JP13347588A 1988-05-30 1988-05-30 Process for growing crystal and apparatus therefor Pending JPH01301584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13347588A JPH01301584A (en) 1988-05-30 1988-05-30 Process for growing crystal and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13347588A JPH01301584A (en) 1988-05-30 1988-05-30 Process for growing crystal and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH01301584A true JPH01301584A (en) 1989-12-05

Family

ID=15105647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13347588A Pending JPH01301584A (en) 1988-05-30 1988-05-30 Process for growing crystal and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH01301584A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845842A (en) * 1994-07-27 1996-02-16 Nec Corp Surface-treating method and apparatus for iii-v compound semiconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845842A (en) * 1994-07-27 1996-02-16 Nec Corp Surface-treating method and apparatus for iii-v compound semiconductor

Similar Documents

Publication Publication Date Title
US5275687A (en) Process for removing surface contaminants from III-V semiconductors
JPS61270830A (en) Surface cleaning method
JP2576766B2 (en) Semiconductor substrate manufacturing method
JPH0795546B2 (en) Silicon surface treatment method
Fronius et al. Elimination of GaAs oval defects and high-throughput fabrication of selectively doped AlxGa1− xAs/GaAs heterostructures by MBE
JP3214505B2 (en) Method for manufacturing semiconductor device
JPH01301584A (en) Process for growing crystal and apparatus therefor
JPS6170715A (en) Growing method of compound semiconductor
JPS6246994A (en) Method and apparatus for growing thin film
JP2596027B2 (en) Compound semiconductor crystal growth method and crystal growth apparatus
JP2717162B2 (en) Method for forming structure of compound semiconductor
JP2717163B2 (en) Method for forming structure of compound semiconductor
JP2917900B2 (en) Method for surface treatment of III-V compound semiconductor substrate
JPH01160899A (en) Method for growing compound semiconductor crystal and apparatus therefor
JPH04212411A (en) Epitaxial growth method
JP2717165B2 (en) Method for forming structure of compound semiconductor
JPH0410739B2 (en)
JP3077876B2 (en) Surface treatment method for III-V compound semiconductor
JPH01223722A (en) Method and device for crystal growth
JPH03131593A (en) Preliminary treatment of substrate for epitaxial grow
JP2897107B2 (en) Crystal growth method
JPH01144630A (en) Etching of compound semiconductor substrate and device therefor
JPH05139881A (en) Molecular beam epitaxial growing method and unit therefor
JPH0243720A (en) Molecular beam epitaxial growth method
JP2998336B2 (en) Method for etching compound semiconductor and method for forming semiconductor structure