JPH0522288B2 - - Google Patents

Info

Publication number
JPH0522288B2
JPH0522288B2 JP60088420A JP8842085A JPH0522288B2 JP H0522288 B2 JPH0522288 B2 JP H0522288B2 JP 60088420 A JP60088420 A JP 60088420A JP 8842085 A JP8842085 A JP 8842085A JP H0522288 B2 JPH0522288 B2 JP H0522288B2
Authority
JP
Japan
Prior art keywords
film
magnetic
magnetic disk
weight
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60088420A
Other languages
Japanese (ja)
Other versions
JPS61246921A (en
Inventor
Susumu Ito
Toshiaki Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Proterial Ltd
Original Assignee
Nippon Electric Co Ltd
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd, Sumitomo Special Metals Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8842085A priority Critical patent/JPS61246921A/en
Publication of JPS61246921A publication Critical patent/JPS61246921A/en
Publication of JPH0522288B2 publication Critical patent/JPH0522288B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気デイスク装置に用いられる磁気デ
イスクに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetic disk used in a magnetic disk device.

(従来技術とその問題点) 従来磁気デイスクは、Al合金を基板とし、そ
の上に磁性膜を形成し、さらにその上に必要に応
じて保護膜を形成したものが使われて来た。また
基板材料としてAl合金以外に、ガラスや酸化ア
ルミニウムを主材とするセラミツクス基板を実験
室的に用いた例も報告されている。しかし、いず
れも熱伝導率について言えばAl合金基板を越え
るものでなく、このため商用品は全てAl合金基
板が使われて来た。何故ならば、磁気デイスク装
置ではサーボ情報を入れたサーボ面と、データ情
報を収納するデータ面とは一般に離れているた
め、両者の間で温度差があると熱膨張によつて有
限のオフトラツク量を生じ、これが、トラツク密
度向上の障害となるからで、熱伝導率の低いもの
ほど磁気デイスクの中心部と外周部とで温度差が
大きくなり、或いは複数本の磁気デイスクを使う
ような大容量磁気デイスク装置では各磁気デイス
ク毎に、温度差が大きくなり、結局熱膨張の差で
オフトラツク量が大きくなりトラツク密度を上げ
られないことになる。
(Prior Art and its Problems) Conventionally, magnetic disks have been used with an Al alloy substrate, a magnetic film formed thereon, and a protective film further formed thereon as required. In addition to Al alloys, there have also been reports of laboratory use of ceramic substrates mainly made of glass or aluminum oxide as substrate materials. However, none of them exceeds Al alloy substrates in terms of thermal conductivity, and for this reason, Al alloy substrates have been used in all commercial products. This is because in magnetic disk drives, the servo surface that stores servo information and the data surface that stores data information are generally separated, so if there is a temperature difference between the two, a finite amount of off-track will occur due to thermal expansion. This is because the lower the thermal conductivity of the magnetic disk, the greater the temperature difference between the center and the outer periphery of the magnetic disk, or the larger the difference in temperature between the center and the outer periphery of the magnetic disk, or the larger the difference in temperature between the center and the outer periphery of the magnetic disk, or the larger the difference in temperature between the center and the outer periphery of the magnetic disk. In a magnetic disk device, the temperature difference becomes large for each magnetic disk, and the amount of off-track becomes large due to the difference in thermal expansion, making it impossible to increase the track density.

一方Al合金基板はそれ自体軟かすぎ磁気ヘツ
ドとの磨耗に耐えるものでなく、信頼性に欠ける
という欠点があつた。
On the other hand, the Al alloy substrate itself was too soft to withstand wear from the magnetic head, and had the disadvantage of lacking reliability.

(発明の目的) 本発明の目的は熱伝導率の高いかつ硬質の材料
を基板材料に採用することによつて、磁気デイス
ク装置内の温度分布により生じるオフトラツク量
を削減し、かつ信頼性の高い磁気デイスクを提供
することにある。
(Objective of the Invention) The object of the present invention is to reduce the amount of off-track caused by temperature distribution within a magnetic disk device and to achieve high reliability by using a hard material with high thermal conductivity as the substrate material. Our goal is to provide magnetic disks.

(発明の構成) 本発明の磁気デイスクは熱伝導率が0.05cal/
cm/sec/℃以上のセラミツク基板と、その上に
形成された保磁力が300Oe以上の磁性膜を備えた
ことを特徴とする。
(Structure of the Invention) The magnetic disk of the present invention has a thermal conductivity of 0.05 cal/
It is characterized by having a ceramic substrate with a magnetic field of cm/sec/°C or higher and a magnetic film formed thereon with a coercive force of 300 Oe or higher.

(構成の詳細な説明) 以下、本発明について図面を用いて説明する。
第1図は本発明の構成を示したもので、同図aは
0.05cal/cm/sec/℃以上の熱伝導率を示すセラ
ミツクス基板1の上に保磁力が300Oe以上の磁性
膜2を形成した例を示す。同図bはこの磁性膜2
の上に保護膜3を形成した磁気デイスクを、同図
cはさらに、この保護膜3の上に潤滑膜4を有す
る磁気デイスクを同図dは同図aの構成の磁性膜
2に潤滑膜4を形成した磁気デイスクをそれぞれ
示す。
(Detailed Description of Configuration) The present invention will be described below with reference to the drawings.
Fig. 1 shows the configuration of the present invention, and a in Fig. 1 shows the structure of the present invention.
An example is shown in which a magnetic film 2 having a coercive force of 300 Oe or more is formed on a ceramic substrate 1 having a thermal conductivity of 0.05 cal/cm/sec/°C or more. Figure b shows this magnetic film 2.
Figure c shows a magnetic disk on which a protective film 3 is formed, and figure d shows a magnetic disk with a lubricating film 4 on the protective film 3. 4 are shown respectively.

第2図は本発明の他の構成を示したもので、同
図aは0.05cal/cm/sec/℃以上の熱伝導率を示
すセラミツクス基板1と保磁力が300Oe以上の磁
性膜2の間に下地膜5を設けた磁気デイスクを、
同図bは同図aの構成で磁性膜2の上に保護膜3
を設けた磁気デイスクを、同図cは同図bの構成
で保護膜3の上に潤滑膜4を設けた磁気デイスク
を、同図dは同図aの構成で磁性膜2の上に潤滑
膜4を設けた磁気デイスクをそれぞれ示す。
Figure 2 shows another configuration of the present invention, and Figure a shows a gap between a ceramic substrate 1 having a thermal conductivity of 0.05 cal/cm/sec/°C or more and a magnetic film 2 having a coercive force of 300 Oe or more. A magnetic disk with a base film 5 provided thereon,
Figure b shows the configuration of figure a, with a protective film 3 on top of the magnetic film 2.
Figure c shows a magnetic disk with a lubricating film 4 on the protective film 3 in the configuration shown in figure b, and figure d shows a magnetic disk with the lubricating film 4 on the magnetic film 2 in the configuration shown in figure a. A magnetic disk provided with a membrane 4 is shown in each case.

ここで本発明の構成要素の必要要件と代表的素
材の一例を以下に示す。
Here, the necessary requirements for the constituent elements of the present invention and an example of typical materials are shown below.

セラミツクス基板1としては、熱伝導率が
0.05cal/cm/sec/℃以上、硬度がビツカース値
にして600以上、表面粗さが0.05μm以下、空孔径
0.5μm以下であることが必要である。特に熱伝導
率については、例えば半径lのデイスク8枚より
成る磁気デイスク装置で最下層(1枚目)をサー
ボデイスクとした場合中央層(4〜5枚目)のデ
イスクとの温度差ΔTによる最外周トラツクのオ
フトラツク量Δlはデイスク基板の熱膨張係数を
αとすると、 Δl=α・ΔT・l となり、実際従来のアルミウム合金では熱伝導
率が0.2cal/cm/sec/℃でありl=10cmのとき
ΔT1℃となつた。アルミウム合金の熱膨張係
数としてα=25×10-6/℃を用いるとΔl2.5μm
となりトラツク密度は約1000TPI(Tracks Per
Inch)を越すことが困難となる。一方0.05cal/
cm/sec/℃のセラミツクス基板を用いた場合、
温度差ΔT′は約5℃となつた。セラミツクス基板
のαは組成により調整が可能で通常5×10-6/℃
以下とすることができ、 Δl≦2.5μm となり、従来のアルミウム合金以下にすることが
できる。そしてΔlをさらに小さくするには熱伝
導率を大きくし温度差ΔTを小さくすることが必
要でこのことは、磁気デイスク装置全体の温度の
均一化を図る意味に於いても鍵となる重要なポイ
ントである。Δlを小さくする他の手段として熱
膨張係数αを小さくすることも必要であるが、α
が零になつたとしても温度差ΔTが有限である限
り磁気ヘツドを支えるアームに熱膨張差を生じ望
ましくない。従つて熱伝導率を大きくし温度差を
小さくすることが基本である。このようにして
Δlが小さくなれば、その分だけトラツク密度を
増大することが可能となる。
The ceramic substrate 1 has a thermal conductivity of
0.05cal/cm/sec/℃ or more, hardness of 600 or more in terms of Vickers value, surface roughness of 0.05μm or less, pore diameter
It needs to be 0.5 μm or less. In particular, regarding thermal conductivity, for example, in a magnetic disk device consisting of 8 disks with a radius l, if the bottom layer (1st disk) is a servo disk, the temperature difference ΔT with the middle layer (4th to 5th disks) The off-track amount Δl of the outermost track is Δl=α・ΔT・l, where α is the thermal expansion coefficient of the disk substrate.In fact, the thermal conductivity of conventional aluminum alloys is 0.2 cal/cm/sec/°C, and l= At 10 cm, ΔT was 1°C. Using α=25×10 -6 /℃ as the thermal expansion coefficient of aluminum alloy, Δl2.5μm
The track density is approximately 1000 TPI (Tracks Per
Inch) becomes difficult to exceed. On the other hand, 0.05cal/
When using a ceramic substrate with cm/sec/℃,
The temperature difference ΔT' was approximately 5°C. α of ceramic substrate can be adjusted by composition and is usually 5×10 -6 /℃
Δl≦2.5μm, which is lower than that of conventional aluminum alloys. In order to further reduce Δl, it is necessary to increase the thermal conductivity and reduce the temperature difference ΔT, which is an important point in making the temperature of the entire magnetic disk device uniform. It is. As another means of reducing Δl, it is necessary to reduce the coefficient of thermal expansion α, but α
Even if it becomes zero, as long as the temperature difference ΔT is finite, a difference in thermal expansion will occur in the arm supporting the magnetic head, which is undesirable. Therefore, it is fundamental to increase the thermal conductivity and reduce the temperature difference. If Δl is reduced in this way, it becomes possible to increase the track density by that amount.

また硬度についても、磁気ヘツドとの接触摩耗
に耐えるためにはビツカース硬度で600以上が必
要である(従来のアルミウム合金は100〜200位で
ある)。表面粗さ、空孔径の規定は磁性膜の特性
を均一化するためと、機械的耐久性を保証する上
で不可欠の条件である。セラミツクス基板は製法
の都合上空孔が入り易い場合、この空孔径の縮小
もしくは除去のため、下地膜5を設けることもあ
る。セラミツクス基板としての前記条件を同時に
満す素材はかなり限られたものとなるが、炭化硅
素を主要部とするセラミツクスが適し、硅素5〜
10重量%、硅化タングステン1.3〜13重量%を含
む炭化硅素系セラミツクス、あるいは酸化エルビ
ウム5〜12重量%、金属系元素(軽金属元素、遷
移金属元素又は希土類金属元素)自身又はその化
合物(酸化物、窒化物又は硼化物)の少なくとも
1種以上を1〜5重量%を含む炭化硅素系セラミ
ツクスが特に適する。なお、硅素−硅化タングス
テンを含む前者の炭化硅素系セラミツクスでは硅
素の含有量が5重量%未満では緻密なセラミツク
スが得られなかつたこと、また10重量%を越える
と耐食性、機械的強度および研磨面の表面粗さが
悪化するため適さなかつたこと、硅化タングステ
ンの含有量が1.3重量%未満では耐酸化性に問題
があり、また13重量%を越えると炭化硅素との熱
膨張率の差が目立ち耐酸化性が悪くなつたことを
考慮している。さらに酸化エルビウム−金属系元
素(又はその化合物)を含む後者の炭化硅素系セ
ラミツクスでは、酸化エルビウムの含有量が5重
量%未満では緻密なセラミツクスが得られなかつ
たこと、また12重量%を越えると抗折力や衝撃値
が低下したこと、金属元素或いはその化合物の含
有量が1重量%未満では熱伝導率に顕著な向上が
見られなかつたこと、また5重量%を越えると抗
折力や衝撃値が低下したことを考慮している。
As for hardness, a Vickers hardness of 600 or higher is required to withstand contact wear with a magnetic head (conventional aluminum alloys have a Vickers hardness of 100 to 200). Defining the surface roughness and pore diameter is an essential condition for making the characteristics of the magnetic film uniform and ensuring mechanical durability. If the ceramic substrate is prone to pores due to the manufacturing method, a base film 5 may be provided in order to reduce or eliminate the pore diameter. Materials that simultaneously satisfy the above conditions for ceramic substrates are quite limited, but ceramics containing silicon carbide as the main part are suitable;
Silicon carbide ceramics containing 10% by weight, 1.3 to 13% by weight of tungsten silicide, or 5 to 12% by weight of erbium oxide, metal elements (light metal elements, transition metal elements, or rare earth metal elements) themselves or their compounds (oxides, Particularly suitable are silicon carbide ceramics containing 1 to 5% by weight of at least one type of nitride or boride. In addition, in the former type of silicon carbide ceramics containing silicon-tungsten silicide, if the silicon content is less than 5% by weight, dense ceramics cannot be obtained, and if the silicon content exceeds 10% by weight, corrosion resistance, mechanical strength, and polished surface deteriorate. If the content of tungsten silicide is less than 1.3% by weight, there is a problem with oxidation resistance, and if it exceeds 13% by weight, the difference in thermal expansion coefficient with silicon carbide becomes noticeable. This takes into consideration the fact that the oxidation resistance has deteriorated. Furthermore, in the latter type of silicon carbide ceramics containing erbium oxide-metallic elements (or their compounds), dense ceramics were not obtained when the erbium oxide content was less than 5% by weight, and when it exceeded 12% by weight. The transverse rupture strength and impact value decreased; when the content of metal elements or their compounds was less than 1% by weight, no significant improvement in thermal conductivity was observed; and when the content exceeded 5% by weight, the transverse rupture strength and impact value decreased. This takes into account that the impact value has decreased.

下地膜5としては、蒸着、スパツタ法又はプラ
ズマCVD法で形成された酸化アルミニウム、酸
化硅素、窒化硅素、窒化アルミニウム等の酸化物
又は窒化物や、Cr,Ti,Mo,W,等の非磁性金
属もしくはこれ等の金属を主成分とする合金、又
はスピン塗布と焼成によつて形成された、酸化硅
素、酸化アルミニウム等を主成分とする酸化膜又
ははレジスト、ポリイミド、エポキシ等の有機物
をハードキユアした薄膜等が適する。
The base film 5 may be an oxide or nitride such as aluminum oxide, silicon oxide, silicon nitride, or aluminum nitride formed by vapor deposition, sputtering, or plasma CVD, or a nonmagnetic material such as Cr, Ti, Mo, W, etc. Hard cure metals or alloys mainly composed of these metals, oxide films mainly composed of silicon oxide, aluminum oxide, etc. formed by spin coating and baking, or organic materials such as resist, polyimide, epoxy, etc. A thin film etc. that has been prepared is suitable.

磁性膜2としては、塗布法で形成された長径
0.5μm以下の針状もしくは米粒状γ−Fe2O3,Co
被着γ−Fe2O3、Coドープγ−Fe2O3、又は長径
0.5μm以下の板状Ba−フエライー等の磁性粉を
主成分とし、SiO2やAl2O3等の非磁性粒子と共に
樹脂で固めた厚さ数ミクロン以下の薄膜、メツキ
法で形成されたCo−P合金、CO−Ni−P合金、
Co−Ni−Mn−P合金、Co−Ni−Mn−Re−P
合金、等のCoを含む厚さ1.0μm以下の薄膜、蒸着
もしくはスパツタ法で形成されたγ−Fe2O3
Co,Cu等の酸化物を含むγ−Fe2O3,CoO−Co
混合物、Co,Feの窒化物、Co−Ni合金、Co−
Pt合金、Co−Cr合金、Co−P合金、Co−Re合
金、Co−希土類合金、或いはこれ等の合金同志
の混合物、さらには他の第3、第4の元素を含む
ようなCoを含む薄膜、FeNd等Fe含む合金から
成る厚さ1.0μm以下の薄膜等が適する。
The magnetic film 2 has a long diameter formed by a coating method.
Needle-like or grain-like γ-Fe 2 O 3 , Co of 0.5 μm or less
Deposited γ-Fe 2 O 3 , Co-doped γ-Fe 2 O 3 , or major axis
A thin film with a thickness of several microns or less made of a magnetic powder such as a plate-shaped Ba-ferry of 0.5 μm or less and hardened with a resin together with non-magnetic particles such as SiO 2 or Al 2 O 3 , or Co formed by the plating method. -P alloy, CO-Ni-P alloy,
Co-Ni-Mn-P alloy, Co-Ni-Mn-Re-P
Co-containing thin films of 1.0 μm or less in thickness, such as alloys, γ-Fe 2 O 3 formed by vapor deposition or sputtering,
γ-Fe 2 O 3 , CoO-Co containing oxides such as Co and Cu
Mixture, Co, Fe nitride, Co-Ni alloy, Co-
Contains Co such as Pt alloy, Co-Cr alloy, Co-P alloy, Co-Re alloy, Co-rare earth alloy, or a mixture of these alloys, as well as other third and fourth elements. A thin film or a thin film of 1.0 μm or less in thickness made of an alloy containing Fe such as FeNd is suitable.

保護膜3としては、スピン塗布法で形成された
酸化硅素、酸化アルミニウム等を主成分とする厚
さ0.1μm以下の酸化膜、蒸着・スパツタ又はプラ
ズマCVD法で形成された酸化硅素、酸化アルミ
ニウム、窒化硅素、窒化アルミニウム等を主成分
とする厚さ0.1μm以下の酸化膜もしくは窒化膜或
いはC,Cr,Mo,W,Rh等の非磁性金属を主成
分とする単体もしくは合金の厚さ0.1μm以下の薄
膜等が適する。
The protective film 3 may be an oxide film with a thickness of 0.1 μm or less mainly composed of silicon oxide or aluminum oxide formed by spin coating, silicon oxide or aluminum oxide formed by evaporation/sputtering or plasma CVD, Oxide film or nitride film with a thickness of 0.1 μm or less, mainly composed of silicon nitride, aluminum nitride, etc., or a single substance or alloy with a thickness of 0.1 μm, mainly composed of non-magnetic metals such as C, Cr, Mo, W, Rh, etc. The following thin films are suitable.

潤滑膜4としては、周知の潤滑剤KRYTOXや
VYDAX(いずれも米国デユポン社商品名)等に
代表される弗化炭素系の薄膜が適する。
As the lubricant film 4, the well-known lubricant KRYTOX or
A fluorocarbon thin film typified by VYDAX (all trade names of DuPont, USA) is suitable.

次にこの発明の具体例実施例について述べる。 Next, specific examples of the present invention will be described.

(実施例 1) 炭化硅素粉末70重量%と炭素粉末30重量%から
成るもの100に対し、セルロース1タングステン
粉末を4をそれぞれ重量比で選びワツクスを添加
して造粒し1000Kg/cm2の圧力で外径210mm内径50
mm厚さ2mmのデイスク状に整形し、次いで真空中
700℃で仮焼成した。この仮焼成体にシリコン粉
末15gをのせ0.1Torr減圧下で温度1500℃に1時
間かけて昇温し、次いで3時間保持し反応焼結を
行つた。このようにして得られた反応焼結体の組
成は、硅素6重量%、硅化タングステン5重量
%、残部炭化硅素であり、熱伝導率は0.14cal/
cm/sec/℃、熱膨張係数4.3×10-6/℃、ビツカ
ース硬度1.800、空孔径0.5μm以下であつた。この
焼結体の表面を0.1μmのダイアモンド粘粒で研磨
し、表面粗さを0.05μm以下に仕上げデイスク基
板とした。次いで、このデイスク基板上に塗布法
の代表として長径0.2μmのγ−Fe2O3針状粒子と
0.2μm径のAl2O3微粒子とを分散剤及びエポキシ
系樹脂とを調合し、スピン塗布法により厚さ
0.7μmの磁性膜を形成し磁気デイスクとした。塗
布後の磁性膜の保磁力Hcは350Oeであつた。
(Example 1) A product consisting of 70% by weight of silicon carbide powder and 30% by weight of carbon powder was selected at a weight ratio of 10% of cellulose and 4% of tungsten powder, respectively, and wax was added and granulated at a pressure of 1000Kg/ cm2. Outer diameter 210mm inner diameter 50
Shaped into a disc shape with a thickness of 2 mm, then placed in a vacuum
Temporary firing was performed at 700℃. 15 g of silicon powder was placed on this calcined body, and the temperature was raised to 1500° C. over 1 hour under a reduced pressure of 0.1 Torr, and then held for 3 hours to perform reaction sintering. The composition of the reaction sintered body thus obtained was 6% by weight of silicon, 5% by weight of tungsten silicide, and the balance was silicon carbide, and the thermal conductivity was 0.14 cal//.
cm/sec/°C, thermal expansion coefficient 4.3×10 -6 /°C, Vickers hardness 1.800, and pore diameter 0.5 μm or less. The surface of this sintered body was polished with diamond granules of 0.1 μm to give a finished surface roughness of 0.05 μm or less, which was used as a disk substrate. Next, as a representative coating method, γ-Fe 2 O 3 needle-shaped particles with a major diameter of 0.2 μm were deposited on this disk substrate.
Al 2 O 3 fine particles with a diameter of 0.2 μm are mixed with a dispersant and an epoxy resin, and the thickness is coated by spin coating.
A 0.7 μm magnetic film was formed to form a magnetic disk. The coercive force Hc of the magnetic film after coating was 350 Oe.

(実施例 2) 実施例1と同様の手順でデイスク基板を作製し
た。但し基板材料を以下の如く変更した。炭化硅
素粉末90重量%金属系元素の酸化物として酸化ア
ルミニウム粉末を3重量%、酸化エルビウム粉末
7重量%から成るものに対しセルロース及びワツ
クスを添加して造粒し、1000Kg/cm2の圧力で外径
210mm内径50mm厚さ2mmのデイスク状の整形し、
次いで真空中700℃で仮焼成した。この仮焼成体
を0.1Torrの減圧下で温度1500℃に1時間かけ昇
温し、次いでそのまま3時間保持し焼結を行つ
た。このようにして得られた反応焼結体の組成
は、酸化アルミニウム3重量%、酸化エルビウム
7重量%、残部炭化硅素から成るものであり、熱
伝導率は0.28cal/cm/sec/℃、熱膨張係数は4.4
×10-6/℃、ビツカース硬度は2000、空孔径は
0.5μm以下であつた。この焼結体の表面を0.1μm
のダイアモンド粘粒で研磨し表面粗さを0.05μm
以下に仕上げデイスク基板とした。
(Example 2) A disk substrate was produced in the same manner as in Example 1. However, the substrate material was changed as follows. Cellulose and wax were added to a silicon carbide powder consisting of 90% by weight, 3% by weight of aluminum oxide powder and 7% by weight of erbium oxide powder as oxides of metal elements, and granulated at a pressure of 1000Kg/ cm2. Outer diameter
Shaped into a disc shape of 210mm inner diameter 50mm thickness 2mm,
Next, it was pre-baked at 700°C in vacuum. The temperature of this calcined body was raised to 1500° C. over 1 hour under a reduced pressure of 0.1 Torr, and then the temperature was maintained for 3 hours to perform sintering. The composition of the reaction sintered body thus obtained was 3% by weight of aluminum oxide, 7% by weight of erbium oxide, and the balance was silicon carbide, and the thermal conductivity was 0.28 cal/cm/sec/°C. Expansion coefficient is 4.4
×10 -6 /℃, Bitkers hardness is 2000, pore diameter is
It was 0.5 μm or less. The surface of this sintered body is 0.1μm
Polished with diamond granules to a surface roughness of 0.05μm
The following is a finished disk substrate.

次いで、このデイスク基板上に塗布法の代表と
して長径0.2μmのCo被着γ−Fe2O3針状粒子と
0.2μm径のAl2O3微粒子とを分散剤及びエポキシ
樹脂とを調合し、スピン塗布法により厚さ0.7μm
の磁性膜を形成し、さらにこの表面にKRYTOX
を塗布し潤滑剤とし、このようにして磁気デイス
クを作つた。この磁性膜の保磁力は600Oeであつ
た。
Next, Co-coated γ-Fe 2 O 3 acicular particles with a major diameter of 0.2 μm were deposited on this disk substrate as a representative coating method.
Mix Al 2 O 3 fine particles with a diameter of 0.2 μm with a dispersant and an epoxy resin, and apply the mixture to a thickness of 0.7 μm using a spin coating method.
A magnetic film of KRYTOX is formed on this surface.
was applied as a lubricant, and in this way a magnetic disk was made. The coercive force of this magnetic film was 600 Oe.

(実施例 3) 実施例1で用いたデイスク基板を用いた。但
し、ダイアモンド粘粒による研磨前に下地膜とし
てスパツタ法でAl2O3膜を10μm前記焼結体に形
成し、この後で0.1μmのダイアモンド粘粒で研磨
した。この結果表面粗さは0.01μm程度となり表
面性の優れたデイスク基板が得られた。この上に
薄膜磁性体の代表としてFe3O4膜を0.15μmスパツ
タ法で形成し次いで大気中300℃で徐々に酸化す
ることによりγ−Fe2O3膜に変換し磁性膜を作り
磁気デイスクとした。Cu及びCoをそれぞれ3.0重
量%及び1.8重量%添加することによりこの磁性
膜の保磁力は600Oeとなつた。
(Example 3) The disk substrate used in Example 1 was used. However, before polishing with diamond granules, a 10 μm Al 2 O 3 film was formed on the sintered body as a base film by sputtering, and then polished with 0.1 μm diamond granules. As a result, the surface roughness was approximately 0.01 μm, and a disk substrate with excellent surface properties was obtained. On top of this, a 0.15 μm Fe 3 O 4 film, representative of a thin magnetic material, is formed using a sputtering method, and then gradually oxidized in the atmosphere at 300°C to convert it into a γ-Fe 2 O 3 film, creating a magnetic film and forming a magnetic disk. And so. By adding 3.0% by weight and 1.8% by weight of Cu and Co, respectively, the coercive force of this magnetic film became 600 Oe.

(実施例 4) 実施例3で用いた製造プロセスと同様の手順で
磁性膜まで形成し、この上に保護膜としてSiO2
をスパツタ法で0.05μm形成し磁気デイスクとし
た。
(Example 4) A magnetic film was formed using the same manufacturing process as that used in Example 3, and SiO 2 was added as a protective film on top of the magnetic film.
was formed to a thickness of 0.05 μm using the sputtering method to form a magnetic disk.

(実施例 5) 実施例4で用いた製造プロセスと同様の手順で
保護膜まで形成し、この上に潤滑剤として
KRYTOXを塗布し磁気デイスクとした。
(Example 5) A protective film was formed using the same manufacturing process as in Example 4, and a lubricant was added on top of this.
KRYTOX was applied to create a magnetic disk.

(実施例 6) 実施例3で用いた製造プロセスと同様の手順で
磁性膜まで形成し、この上に潤滑剤として
KRYTOXを塗布し磁気デイスクとした。
(Example 6) A magnetic film was formed using the same manufacturing process as in Example 3, and a lubricant was added on top of this.
KRYTOX was applied to create a magnetic disk.

(実施例 7) 実施例2で用いたデイスク基板を用いた。但
し、ダイアモンド粘粒による研磨前に下地膜とし
てスパツタ法でW膜を5μm前記焼結体に形成し、
この後で0.1μmのダイアモンド粘粒で研磨した。
この結果表面粗さは0.02μm程度となり表面性の
優れたデイスク基板が得られた。この基板を硫酸
コバルト、硫酸ニツケル、次亜リン酸ナトリウ
ム、リンゴ酸ナトリウム、コハク酸ナトリウム、
マロン酸ナトリウム、硫酸アンモニウムからなる
めつき浴中に浸漬し、Co−Ni−P合金から成る
磁性膜を0.05μm無電解めつき法により形成した。
この上にスピン塗布法によりSiO2膜を0.1μm形成
し、次いで潤滑剤としてKRYTOXを塗布し磁気
デイスクとした。この磁性膜の保磁力は600Oeで
あつた。
(Example 7) The disk substrate used in Example 2 was used. However, before polishing with diamond granules, a 5 μm thick W film was formed on the sintered body as a base film by sputtering.
After this, it was polished with 0.1 μm diamond granules.
As a result, the surface roughness was approximately 0.02 μm, and a disk substrate with excellent surface properties was obtained. Cobalt sulfate, nickel sulfate, sodium hypophosphite, sodium malate, sodium succinate,
The sample was immersed in a plating bath containing sodium malonate and ammonium sulfate, and a magnetic film made of Co--Ni--P alloy was formed by electroless plating to a thickness of 0.05 μm.
A 0.1 μm SiO 2 film was formed on this by spin coating, and then KRYTOX was applied as a lubricant to form a magnetic disk. The coercive force of this magnetic film was 600 Oe.

(実施例 8) 実施例7で用いたデイスク基板を使用し、この
上にNiFe合金(Fe18重量%)を0.5μm、次いで
CoCr合金(Cr20重量%)を0.2μmスパツタ法で
形成し磁性膜とし、磁気デイスクとした。CoCr
膜のデイスク面に垂直方向の保磁力は300Oeであ
つた。
(Example 8) Using the disk substrate used in Example 7, 0.5 μm of NiFe alloy (Fe18% by weight) was applied on it, and then
A CoCr alloy (20% by weight of Cr) was formed using a 0.2 μm sputtering method to form a magnetic film and a magnetic disk. CoCr
The coercive force of the film in the direction perpendicular to the disk surface was 300 Oe.

(実施例 9) 実施例8で用いた製造プロセスと同様の手順で
磁性膜まで形成し、この上に保護膜としてSiO2
をスパツタ法で0.05μm形成し磁気デイスクとし
た。
(Example 9) A magnetic film was formed using the same manufacturing process as that used in Example 8, and SiO 2 was added as a protective film on top of the magnetic film.
was formed to a thickness of 0.05 μm using the sputtering method to form a magnetic disk.

(実施例 10) 実施例9で用いた製造プロセスと同様の手順で
保護膜まで形成し潤滑剤としてVYDAXを塗布
し磁気デイスクとした。
(Example 10) A protective film was formed using the same manufacturing process as in Example 9, and VYDAX was applied as a lubricant to prepare a magnetic disk.

(実施例 11) 実施例8で用いた製造プロセスと同様の手順で
磁性膜まで形成し、潤滑剤としてVYDAXを塗
布し磁気デイスクとした。
(Example 11) A magnetic film was formed using the same manufacturing process as in Example 8, and VYDAX was applied as a lubricant to prepare a magnetic disk.

(比較例) Al−Mg合金5086を外径210mm、内径50mm、厚
さ1.9mmのデイスク状に加工し、ダイアモンド旋
盤で表面粗さを0.05μm程度に仕上げデイスク基
板とした。この上に実施例1と同様の磁性膜を同
じ手順で形成し、さらに潤滑剤としてKRYTOX
を塗布し磁気デイスクとした。磁性膜の保磁力
は、実施例1と同様350Oeであつた。
(Comparative Example) Al-Mg alloy 5086 was processed into a disk shape with an outer diameter of 210 mm, an inner diameter of 50 mm, and a thickness of 1.9 mm, and the surface roughness was finished to about 0.05 μm using a diamond lathe to obtain a disk substrate. On top of this, a magnetic film similar to that in Example 1 was formed using the same procedure, and KRYTOX was added as a lubricant.
was coated to make a magnetic disk. The coercive force of the magnetic film was 350 Oe as in Example 1.

実施例1乃至11および比較例の磁気デイスクを
それぞれ8枚づつ選択し、磁気デイスク装置に搭
載し最下層(1枚目)にサーボパターンを書込
み、中央層(4〜5枚目)のデイスクでの電源投
入直後と30分間のシークテスト後の位置ずれ量
Δlを測定したところ、実施例1乃至11の磁気デ
イスクを用いた場合では全てΔl<1μmとなつた
のに対し比較例ではΔl1.5μmとなり、かつコン
タクト・スタート・ステツプテストでは前者の本
発明実施例ではいずれも3万回パス後も無事故で
あつたのに対し、後者の比較例では5000回でクラ
ツシュ事故を起した。
Select eight magnetic disks each from Examples 1 to 11 and Comparative Example, load them into a magnetic disk device, write a servo pattern on the bottom layer (first disk), and write the servo pattern on the middle layer (fourth to fifth disk). When we measured the amount of positional deviation Δl immediately after turning on the power and after a 30-minute seek test, it was found that Δl<1 μm in all cases using the magnetic disks of Examples 1 to 11, whereas Δl was 1.5 μm in the comparative example. In the contact start step test, the former examples of the present invention had no accidents even after 30,000 passes, while the latter comparative example had a crash accident after 5,000 passes.

(発明の効果) 以上の本発明の実施例と比較例で示した如く、
本発明は磁気デイスクとして従来のものに比し、 (1) 熱伝導率が高いセラミツクスを使つているた
め磁気デイスク間の温度差が小さくなりその分
オフトラツク量を少くでき高トラツク密度を可
能にする。
(Effects of the invention) As shown in the above examples and comparative examples of the present invention,
Compared to conventional magnetic disks, the present invention has the following advantages: (1) Since ceramics with high thermal conductivity are used, the temperature difference between the magnetic disks is small, which reduces the amount of off-track and enables high track density. .

(2) 基板材料として従来より格段に硬いセラミツ
クスを使つているため、コンタクト・スター
ト・ストツプテストでの耐久性が高く従つて長
期信頼性が高い。
(2) Since ceramics, which are much harder than conventional ones, is used as the substrate material, it has high durability in contact start/stop tests, and therefore has high long-term reliability.

といつた実用上極めて有用な特徴を有する。It has extremely useful features in practice.

なお、本発明のこのような効果は先に挙げた素
材やその一例を用いた実施例に限るものでなく、
特許請求の範囲に記した条件を満す磁気デイスク
であれば、その全てが具備できるものであること
は明らかである。
Note that such effects of the present invention are not limited to the above-mentioned materials or examples using the materials,
It is clear that any magnetic disk that satisfies the conditions set forth in the claims can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,b,c及びd、さらに第2図a,
b,c及びdは本発明の構成例を示した図で、 1……セラミツクス基板、2……磁性膜、3…
…保護膜、4……潤滑膜、5……下地膜である。
Figure 1 a, b, c and d, and Figure 2 a,
b, c, and d are diagrams showing configuration examples of the present invention, in which 1...ceramic substrate, 2...magnetic film, 3...
. . . protective film, 4 . . . lubricating film, 5 . . . base film.

Claims (1)

【特許請求の範囲】 1 硅素5〜10重量%、硅化タングステン1.3〜
13重量%、残部が炭化硅素からなり、熱伝導率が
0.05cal/cm/sec/℃以上のセラミツク基板と、
その上に形成された保磁力が300Oe以上の磁性膜
とを有することを特徴とする磁気デイスク。 2 セラミツク基板と磁性膜との間に下地膜が形
成されていることを特徴とする特許請求の範囲第
1項記載の磁気デイスク。 3 磁性膜の上に保護膜を有することを特徴とす
る特許請求の範囲第1項記載の磁気デイスク。 4 少くとも表面に潤滑膜を有することを特徴と
する特許請求の範囲第1項記載の磁気デイスク。 6 セラミツクス基板の組成が、酸化エルビウム
5〜12重量%、金属系元素(軽金属元素、遷移金
属元素又は希土類金属元素)自身或いはその化合
物(酸化物、窒化物又は硼化物)の少くとも1種
以上を1〜5重量%。残部の主要部が炭化硅素か
ら成ることを特徴とする特許請求の範囲第1項乃
至第4項記載の磁気デイスク。
[Claims] 1. 5 to 10% by weight of silicon, 1.3 to 1.3% of tungsten silicide
13% by weight, the balance is silicon carbide, and the thermal conductivity is
Ceramic substrate of 0.05cal/cm/sec/℃ or more,
1. A magnetic disk comprising a magnetic film having a coercive force of 300 Oe or more formed thereon. 2. The magnetic disk according to claim 1, wherein a base film is formed between the ceramic substrate and the magnetic film. 3. The magnetic disk according to claim 1, further comprising a protective film on the magnetic film. 4. The magnetic disk according to claim 1, which has a lubricating film on at least its surface. 6. The composition of the ceramic substrate is 5 to 12% by weight of erbium oxide, at least one metal element (light metal element, transition metal element, or rare earth metal element) itself or a compound thereof (oxide, nitride, or boride). 1 to 5% by weight. 5. The magnetic disk according to claim 1, wherein the remaining main portion is made of silicon carbide.
JP8842085A 1985-04-24 1985-04-24 Magnetic disk Granted JPS61246921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8842085A JPS61246921A (en) 1985-04-24 1985-04-24 Magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8842085A JPS61246921A (en) 1985-04-24 1985-04-24 Magnetic disk

Publications (2)

Publication Number Publication Date
JPS61246921A JPS61246921A (en) 1986-11-04
JPH0522288B2 true JPH0522288B2 (en) 1993-03-29

Family

ID=13942289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8842085A Granted JPS61246921A (en) 1985-04-24 1985-04-24 Magnetic disk

Country Status (1)

Country Link
JP (1) JPS61246921A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59221832A (en) * 1983-05-27 1984-12-13 インタ−ナシヨナル ビジネス マシ−ンズ コ−ポレ−シヨン Compound magnetic disc
JPS6022733A (en) * 1983-07-19 1985-02-05 Hitachi Metals Ltd Substrate for magnetic disc

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59221832A (en) * 1983-05-27 1984-12-13 インタ−ナシヨナル ビジネス マシ−ンズ コ−ポレ−シヨン Compound magnetic disc
JPS6022733A (en) * 1983-07-19 1985-02-05 Hitachi Metals Ltd Substrate for magnetic disc

Also Published As

Publication number Publication date
JPS61246921A (en) 1986-11-04

Similar Documents

Publication Publication Date Title
JP4428835B2 (en) Magnetic recording medium and method for manufacturing the same
JP2816472B2 (en) Magnetic recording media
US4390562A (en) Process of manufacturing a magnetic record member
EP0120413A1 (en) Perpendicular magnetic-recording medium and method of manufacturing the same
US5091225A (en) Magnetic disc member and process for manufacturing the same
US5252367A (en) Method of manufacturing a magnetic recording medium
JPH0522288B2 (en)
JPS61199224A (en) Magnetic recording medium
JPH0462413B2 (en)
EP0213346B1 (en) Magnetic recording medium
JPS61199236A (en) Magnetic recording medium
JPH0315254B2 (en)
JP2814630B2 (en) Magnetic recording media
JPS59180829A (en) Magnetic storage body
JPH07121856A (en) Magnetic recording medium and its production
JPS63217520A (en) Magnetic memory body
JPH01237925A (en) Magnetic recording medium
JPS59142744A (en) Magnetic recording medium
JPS6154019A (en) Magnetic recording medium provided with protective film
JPS6035332A (en) Magnetic storage body
JPH0467251B2 (en)
JPH0513333B2 (en)
JPS61204830A (en) Magnetic storage body
JPS61199231A (en) Magnetic recording medium
JPH0770041B2 (en) Magnetic disk

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term