JPH0770041B2 - Magnetic disk - Google Patents

Magnetic disk

Info

Publication number
JPH0770041B2
JPH0770041B2 JP61122807A JP12280786A JPH0770041B2 JP H0770041 B2 JPH0770041 B2 JP H0770041B2 JP 61122807 A JP61122807 A JP 61122807A JP 12280786 A JP12280786 A JP 12280786A JP H0770041 B2 JPH0770041 B2 JP H0770041B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
hardened layer
magnetic disk
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61122807A
Other languages
Japanese (ja)
Other versions
JPS62279519A (en
Inventor
照治 二見
康弘 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61122807A priority Critical patent/JPH0770041B2/en
Priority to KR1019870002434A priority patent/KR910006018B1/en
Publication of JPS62279519A publication Critical patent/JPS62279519A/en
Priority to US07/217,035 priority patent/US4981741A/en
Publication of JPH0770041B2 publication Critical patent/JPH0770041B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は記憶媒体として用いられる磁気ディスクの改
良に関する。
The present invention relates to an improvement of a magnetic disk used as a storage medium.

〔従来の技術〕[Conventional technology]

従来の磁気ディスクの構造を第8図に示す。第8図にお
いて1はアルミ合金で構成されたディスク形状の非磁性
基板、2は非磁性基板1上にクロム酸浴中で9〜12μm
の膜厚に形成したアルマイト層を研磨し、表面粗さをRm
ax0.02〜0.05μm、膜厚4〜12μmとした非磁性硬化
層、3はFe,α−Fe2O3等のターゲットを用いて中性法
(Ar中),還元法(Ar+H2),酸化法(Ar+O2)等のス
パッタ雰囲気でスパッタリングを行い基板上にFe3O4
を形成するか、Feのターゲットを用いて酸化法(Ar+
O2)のスパッタリングを行い基板上にα−Fe2O3膜を形
成した後水素還元によりFe3O4膜を形成した後、これらF
e3O4膜を大気中酸化工程を経てγ−Fe2O3膜にした磁性
記録媒体層、4は磁性記録媒体層3を被覆する潤滑層で
ある。
The structure of a conventional magnetic disk is shown in FIG. In FIG. 8, 1 is a disc-shaped non-magnetic substrate made of aluminum alloy, 2 is 9-12 μm on the non-magnetic substrate 1 in a chromic acid bath.
The surface roughness of Rm
Non-magnetic hardened layer with ax 0.02 to 0.05 μm and film thickness of 4 to 12 μm, 3 is a neutral method (in Ar), reduction method (Ar + H 2 ), using a target such as Fe, α-Fe 2 O 3 . The Fe 3 O 4 film is formed on the substrate by sputtering in a sputtering atmosphere such as the oxidation method (Ar + O 2 ), or the oxidation method (Ar +
O 2 ) is sputtered to form an α-Fe 2 O 3 film on the substrate, and then a Fe 3 O 4 film is formed by hydrogen reduction.
A magnetic recording medium layer 4 in which the e 3 O 4 film is formed into a γ-Fe 2 O 3 film through an oxidation step in the atmosphere is a lubricating layer which covers the magnetic recording medium layer 3.

ところでこのように構成された磁気ディスクにおいては
高記録密度化されても低密度の時と同様の読出し出力波
形を得るために磁性層の膜厚を薄くして分解能の向上を
図るとともに記録ビットセル1個あたりの磁性体体積の
減少に伴う読出出力電圧の低下を防ぐため磁性記録媒体
層の磁性体含有率を100%に高めたスパッタリング,蒸
着法等によって形成された薄膜連続媒体の採用を図って
いる。
By the way, in the magnetic disk constructed as described above, even if the recording density is increased, in order to obtain the same read output waveform as in the case of the low density, the thickness of the magnetic layer is reduced to improve the resolution and the recording bit cell 1 In order to prevent a decrease in the read output voltage due to a decrease in the volume of magnetic material per piece, we have adopted a thin film continuous medium formed by sputtering, vapor deposition, etc., in which the magnetic content of the magnetic recording medium layer is increased to 100%. There is.

また磁気ディスクの回転時には磁気ヘッドがディスク上
0.1〜0.3μm程度浮上し、回転停止時には磁気ヘッドデ
ィスク上に接触しているいわゆるコンタクトスタースト
ップ(CSS)方式が用いられているために、低浮上量に
おける安定したヘッド浮揚状態を確保しヘッドとディス
クの衝突(ヘッド・クラッシュ)を防止する努力がなさ
れている。
When the magnetic disk rotates, the magnetic head
Since a so-called contact star stop (CSS) method is used, in which the head floats about 0.1 to 0.3 μm and is in contact with the magnetic head disk when rotation stops, a stable head levitation state at a low flying height is secured and Efforts are being made to prevent disk collisions (head crashes).

そこで高密度記録に適する非磁性基板1の条件として機
械的平坦性及び表面粗さが良好であり、欠陥が小さくそ
の数も少ないことが挙げられる。更に、記録媒体の薄層
化に伴い基板の十分な硬度も必要とされる。すなわち、
基板が軟かいと磁気ヘッドが磁気ディスクに接触した際
に陥没などの変形を起こし、磁気ヘッドの安定した浮揚
状態が得られないことにより、読出出力電圧の変動及び
それに伴うデータエラーを招き、記憶装置としての致命
傷ともいえる記録データの一部消失をひき起こすばかり
でなく、磁気記録装置の信頼性を表すコンタクトスター
トストップ(CSS)回数が小さくなり、ひいてはヘッド
・クラッシュとなり、記録データの全消失につながると
いう問題が生じる。
Therefore, the conditions of the non-magnetic substrate 1 suitable for high-density recording include good mechanical flatness and surface roughness, small defects, and a small number of defects. Furthermore, as the recording medium becomes thinner, the substrate must have sufficient hardness. That is,
If the board is soft, the magnetic head may deform such as when it comes into contact with the magnetic disk, and the magnetic head cannot be stably floated. Not only will it cause a partial loss of recorded data, which can be said to be a fatal injury as a device, but the number of contact start stops (CSS), which shows the reliability of the magnetic recording device, will decrease, leading to a head crash, resulting in total loss of recorded data. The problem of being connected arises.

上記説明では基板硬度の不足による発生する問題につい
て述べたが、たとえ基板硬度が十分であって磁気ヘッド
と基板とが接触した際にも陥没が発生しない場合であっ
ても、潤滑層4の摩擦が大きいとその際に発生する摩擦
力により磁気ヘッドの安定した浮揚状態が崩されること
によりヘッド・クラッシュがひき起こされ、上記と同様
データが消失する問題がある。
In the above description, the problem that occurs due to insufficient substrate hardness has been described. However, even if the substrate hardness is sufficient and the depression does not occur even when the magnetic head and the substrate come into contact with each other, the friction of the lubricating layer 4 is reduced. Is large, the frictional force generated at that time breaks the stable levitating state of the magnetic head, causing a head crash, and there is a problem that data is lost as in the above case.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかして従来用いられていたアルミ合金の上にアルマイ
ト層を形成して研磨した場合の断面方向の硬度分布は第
9図に示すようになっており、またアルマイト層の表面
でのスクラッチ痕の断面は第10図に示すようになってい
る。
However, the hardness distribution in the cross-sectional direction when an alumite layer is formed on an aluminum alloy that has been conventionally used and polished is as shown in Fig. 9, and the cross-section of scratch marks on the surface of the alumite layer is shown. Is as shown in FIG.

従来のアルミ合金の上にアルマイト層を形成した基板に
あっては表面陥没や突起等の表面欠陥の改善が上記に述
べたように十分ではなかった。
In the case of the conventional substrate in which the alumite layer was formed on the aluminum alloy, the improvement of surface defects such as surface depressions and protrusions was not sufficient as described above.

この発明は上記問題点を解消するためになされたもので
十分な硬度を有するとともに表面欠陥の改善を図る非磁
性体基板を提供することを目的としている。
The present invention has been made to solve the above problems, and an object thereof is to provide a non-magnetic substrate having sufficient hardness and improving surface defects.

〔問題点を解決するための手段〕[Means for solving problems]

このためこの発明にかかる磁気ディスクは非磁性硬化層
21を少なくともニッケルと含有率34±5WT%の銅を含む
合金で構成するとともに、この非磁性硬化層上に、300
゜以上で数時間の酸化熱処理工程を要するスパッタリン
グ磁性膜により磁性記録媒体層を形成して成ることを特
徴とするものである。
Therefore, the magnetic disk according to the present invention has a non-magnetic hardened layer.
21 is composed of an alloy containing at least nickel and copper having a content of 34 ± 5 WT%, and 300 is formed on this non-magnetic hardened layer.
It is characterized in that the magnetic recording medium layer is formed of a sputtered magnetic film which requires an oxidative heat treatment step at a temperature of ≧ ° for several hours.

〔作用〕[Action]

この発明においては非磁性体基板の上に形成された少な
くともニッケルを含む合金は非磁性硬化層21の表面陥没
や突起等の表面欠陥を大巾に減少させる。また、非磁性
硬化層を、ニッケルと含有率34±5WT%の銅を含む合金
で構成することにより、この非磁性硬化層上に、300゜
以上で数時間の酸化熱処理工程を要するスパッタリング
磁性膜により磁性記録媒体層を形成しても、非磁性硬化
層にクラックが発生しない。
In the present invention, the alloy containing at least nickel formed on the non-magnetic substrate greatly reduces surface defects such as surface depressions and protrusions of the non-magnetic hardened layer 21. Further, by forming the nonmagnetic hardened layer from an alloy containing nickel and copper having a content of 34 ± 5 WT%, a sputtered magnetic film requiring an oxidation heat treatment step at 300 ° or more for several hours is formed on the nonmagnetic hardened layer. Therefore, even if the magnetic recording medium layer is formed, cracks do not occur in the nonmagnetic hardened layer.

〔実施例〕〔Example〕

以下図面にもとづいて本発明の一実施例を説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示す構成図で、1,3,4は従
来の磁気ディスクと同一の構成要素、21は少なくともニ
ッケルを含む合金で構成される非磁性硬化層である。
FIG. 1 is a constitutional view showing an embodiment of the present invention, in which 1,3,4 are the same constituent elements as in the conventional magnetic disk, and 21 is a non-magnetic hardened layer made of an alloy containing at least nickel.

ニッケルを含む合金としてニッケル−リン(Ni−P)を
用いた場合、第9図に示すように硬度が比較的高くなっ
ており、また表面突起についても従来のアルマイト被膜
に比べて大巾に改善されていることがわかった。
When nickel-phosphorus (Ni-P) is used as the alloy containing nickel, the hardness is relatively high as shown in FIG. 9, and the surface protrusions are greatly improved compared to the conventional alumite coating. I found out that it was done.

この理由として従来のアルマイト被膜の場合、アルミ中
に含まれる小量のMg,Si,Feあるいはこれらの化合物が軟
かいアルミ合金の基板に硬い不純物として存在し、突起
となっているのに対し、Ni−P合金では基板が比較的硬
く、同様の不純物が存在しても研磨したときに基板の中
に軟かいものとして凹形状に加工されてしまうことによ
ると考えられる。
As a reason for this, in the case of a conventional alumite coating, a small amount of Mg, Si, Fe or a compound thereof contained in aluminum is present as a hard impurity on the substrate of a soft aluminum alloy, and is a protrusion, whereas It is considered that the substrate is relatively hard with the Ni-P alloy, and even if similar impurities are present, it is processed into a concave shape as a soft substance in the substrate when polished.

このようにNi系合金皮膜は非磁性硬化層21として優れて
いることがわかった。
Thus, it was found that the Ni-based alloy film is excellent as the nonmagnetic hardened layer 21.

しかし、γ−Fe2O3膜磁気ディスクの前記工程のうち、
スパッタリングの際の基板温度は通常240℃前後であ
り、γ−Fe2O3化のための大気中酸化工程では300℃以上
で数時間の加熱を必要とする。
However, among the above steps of the γ-Fe 2 O 3 film magnetic disk,
The substrate temperature at the time of sputtering is usually around 240 ° C., and the atmospheric oxidation step for converting γ-Fe 2 O 3 requires heating at 300 ° C. or higher for several hours.

したがって、Ni−Pめっき膜の磁性発生温度が通常200
℃前後であるため、前記工程処理後にはNi−Pめっき膜
は磁性化している。
Therefore, the magnetism generation temperature of Ni-P plating film is usually 200
Since the temperature is around ° C, the Ni-P plated film is magnetized after the above process.

硬化層が磁性化してしまった場合、磁気記録の際磁性媒
体層及びこの下の硬化層にも記録され磁化遷移幅が増大
し、再生の際は磁性媒体層の磁化がこの下の硬化層によ
って閉じるために磁気記録媒体外部に生じる磁束が減少
し、ヘッド出力が低下する問題があった。
When the hardened layer becomes magnetized, the magnetic transition width is increased by being recorded in the magnetic medium layer and the hardened layer below this during magnetic recording, and the magnetization of the magnetic medium layer is reproduced by the hardened layer below this during reproduction. Due to the closing, the magnetic flux generated outside the magnetic recording medium is reduced, and there is a problem that the head output is reduced.

そこでこの問題を解決するためNi含有率60wt%以下で非
磁性を示すNi−Cu−P三元合金めっき膜が考えられた。
Therefore, in order to solve this problem, a Ni-Cu-P ternary alloy plating film showing non-magnetism with a Ni content of 60 wt% or less was considered.

この3元合金めっき膜は第2図に示すようにNi含有率60
wt%以下で非磁性となっており、しかも第9図に示すよ
うに硬度が非常に高くなっていることがわかった。
This ternary alloy plating film has a Ni content of 60 as shown in FIG.
It was found that it was non-magnetic at less than wt% and that the hardness was extremely high as shown in FIG.

しかしながら磁性体としてγ−Fe2O3スパッタ膜を用い
るには製造途中で300℃以上で数時間の酸化熱処理工程
があり、この熱処理に耐えることが必要であり、クラッ
クを発生しないことが必要である。
However, in order to use a γ-Fe 2 O 3 sputtered film as a magnetic material, there is an oxidation heat treatment step at 300 ° C. or higher for several hours during the manufacturing process, and it is necessary to endure this heat treatment and it is necessary that cracks do not occur. is there.

しかし、当初試作した円板はこの工程で円板面全体ある
いは内,外周端近傍に同心円状あるいは放射状の多数の
クラックを発生してしまい、耐熱性不足の問題が明らか
となった。
However, the initially prototyped disk produced a large number of concentric or radial cracks on the entire disk surface or in the vicinity of the inner and outer peripheral edges in this process, and the problem of insufficient heat resistance became clear.

このクラックは第3図に示すように同心円状のクラック
と放射状のクラックとに分類され、更にクラックの断面
構造が第4図に示されることもわかった。
It was also found that the cracks were classified into concentric circular cracks and radial cracks as shown in FIG. 3, and the sectional structure of the cracks was shown in FIG.

この結果3元合金のクラック発生原因は応力割れと推定
され、この応力割れを解消するためにNi,Cu,Pの含有率
を種々に変えたサンプルを作成し、熱処理前後での応力
状態を調査した。この調査は矩形アルミ板の片面にめっ
き膜を形成し、板のそり量を測定する方法によった。
As a result, it is presumed that the cause of cracking in the ternary alloy is stress cracking. In order to eliminate this stress cracking, samples with various Ni, Cu, and P contents were made, and the stress state before and after heat treatment was investigated. did. This investigation was performed by forming a plating film on one surface of a rectangular aluminum plate and measuring the amount of warpage of the plate.

この調査により第5図に示す応力−Cu含有率のグラフが
得られた。
By this investigation, the graph of stress-Cu content shown in FIG. 5 was obtained.

またアルミ箔の両面に3元合金のめっき膜を形成し、常
温から300℃に至るまでの熱膨張率を測定した。
A ternary alloy plating film was formed on both sides of the aluminum foil, and the coefficient of thermal expansion from room temperature to 300 ° C was measured.

この結果第6図に示す銅含有率と熱膨張率の関係を示す
グラフが得られた。
As a result, a graph showing the relationship between the copper content and the coefficient of thermal expansion shown in FIG. 6 was obtained.

これら第5図及び第6図によってCuの含有率が34±5wt
%において熱処理前後の応力変化がなく、しかもこの時
の含有率がアルミニウムの熱膨張率に等しいことが見い
出された。
According to these Fig. 5 and Fig. 6, the Cu content is 34 ± 5 wt.
%, There was no change in stress before and after heat treatment, and the content at this time was found to be equal to the coefficient of thermal expansion of aluminum.

そこで更に銅(Cu)の含有率を34±5wt%としたときを
中心にして15〜60wt%の膜を各種円板サイズ(外径
3″,5 1/4″,8″,8.8″,9″,10.5″)にて成膜し、ク
ラック発生状況を調べた。
Therefore, with the content of copper (Cu) set to 34 ± 5 wt%, a film of 15-60 wt% with various disk sizes (outer diameter 3 ", 5 1/4", 8 ", 8.8", A film was formed at 9 ″, 10.5 ″), and the crack generation state was examined.

この結果第7図に示すグラフが得られた。As a result, the graph shown in FIG. 7 was obtained.

これから円板サイズにより許容できる範囲が異なること
がわかる。
From this, it can be seen that the allowable range varies depending on the disk size.

これは熱膨張率により発生する熱応力との関連で理解で
きる。
This can be understood in relation to the thermal stress generated by the coefficient of thermal expansion.

このように磁気ディスクに用いられる非磁性硬化層の材
質はニッケル(Ni),銅(Cu),リン(P)からなる3
元合金で、しかも銅の含有率が質量比で34±5%以内が
最も適していると結論づけられた。
As described above, the material of the nonmagnetic hardened layer used in the magnetic disk is composed of nickel (Ni), copper (Cu), and phosphorus (P).
It was concluded that the optimum content of the original alloy and the copper content within the mass ratio of 34 ± 5%.

なお本発明はアルミ合金を非磁性体基板1として用いた
例を示したが、非磁性体基板が他の金属であっても同様
の効果が得られる。
Although the present invention shows an example in which the aluminum alloy is used as the non-magnetic substrate 1, the same effect can be obtained even if the non-magnetic substrate is made of other metal.

また磁性記録媒体層3としてγ−Fe2O3を用いる場合に
ついて述べてきたが、Co−Ni,Co−Cr,Co−Ni−P,Ba−Fe
rrite,Tb−Fe,Gd−Co等他の磁性体へ適用しても支障の
ないことは明らかであり、更に、磁性体の上にSiO2,Ti
N,SiC,C等の保護膜を設ける場合についても適用に支障
のないことは明らかであり、いづれにおいても非磁性、
高硬度、耐熱性の効果が得られる。
Further, the case where γ-Fe 2 O 3 is used as the magnetic recording medium layer 3 has been described, but Co-Ni, Co-Cr, Co-Ni-P, Ba-Fe are used.
rrite, Tb-Fe, it is clear there is no hindrance to apply to Gd-Co, etc. other magnetic, further, SiO 2, Ti on the magnetic
It is clear that there is no problem in application when a protective film of N, SiC, C, etc. is provided.
The effects of high hardness and heat resistance can be obtained.

〔発明の効果〕〔The invention's effect〕

以上述べたようにこの発明は非磁性硬化層として少なく
ともニッケルと含有率34±5WT%の銅を含む合金で構成
するとともに、この非磁性硬化層上に、300゜以上で数
時間の酸化熱処理工程を要するスパッタリング磁性膜に
より上記磁性記録媒体層を形成して成るので、このよう
な熱処理を経ても非磁性硬化層にクラックが発生せず、
製品として表面欠陥の少ない高品質な磁気ディスクを得
ることができた。
As described above, the present invention comprises a non-magnetic hardened layer made of an alloy containing at least nickel and a copper content of 34 ± 5 WT%, and an oxidation heat treatment step on the non-magnetic hardened layer at 300 ° or more for several hours. Since the magnetic recording medium layer is formed by a sputtering magnetic film that requires, cracks do not occur in the non-magnetic hardened layer even after such heat treatment,
As a product, a high-quality magnetic disk with few surface defects could be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の磁気ディスクの構成図、第2図はニッ
ケル含有率と磁性の関係を示す図、第3図はニッケル−
銅−リンの3元合金のクラックの状況を示す図、第4図
は同じくクラックの断面構造を示す図、第5図は銅の含
有率と応力の関係を示す図、第6図は銅の含有率と熱膨
張の関係を示す図、第7図は非磁性体基板の9円板サイ
ズとクラックの発生との関係を示す図、第8図は従来の
磁気ディスクの構成図、第9図は各種材料の硬度分布を
示す図、第10図はスクラッチ傷の断面を示す断面図であ
る。 1……非磁性基板、2……非磁性硬化層、3……磁性記
録媒体層、4……潤滑層。
FIG. 1 is a structural diagram of a magnetic disk of the present invention, FIG. 2 is a diagram showing the relationship between nickel content and magnetism, and FIG.
FIG. 4 is a diagram showing a state of cracks in a copper-phosphorus ternary alloy, FIG. 4 is a diagram showing a sectional structure of the crack, FIG. 5 is a diagram showing a relationship between copper content and stress, and FIG. FIG. 7 is a diagram showing the relationship between the content rate and thermal expansion, FIG. 7 is a diagram showing the relationship between the 9-disk size of a non-magnetic substrate and the occurrence of cracks, and FIG. 8 is a configuration diagram of a conventional magnetic disk, FIG. Is a diagram showing hardness distribution of various materials, and FIG. 10 is a cross-sectional view showing a cross section of a scratch. 1 ... Non-magnetic substrate, 2 ... Non-magnetic hardened layer, 3 ... Magnetic recording medium layer, 4 ... Lubrication layer.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】非磁性基板に非磁性硬化層を被覆し、この
被覆した非磁性硬化層に磁性記録媒体層を被覆し、更に
この磁性記録媒体層に潤滑層を被覆して構成する磁気デ
ィスクにおいて、 上記非磁性硬化層を少なくともニッケルと含有率34±5W
T%の銅を含む合金で構成するとともに、この非磁性硬
化層上に、300゜以上で数時間の酸化熱処理工程を要す
るスパッタリング磁性膜により上記磁性記録媒体層を形
成して成ることを特徴とする磁気ディスク。
1. A magnetic disk comprising a nonmagnetic substrate coated with a nonmagnetic hardened layer, the coated nonmagnetic hardened layer coated with a magnetic recording medium layer, and the magnetic recording medium layer coated with a lubricating layer. In the above non-magnetic hardened layer, at least nickel and the content rate of 34 ± 5 W
The magnetic recording medium layer is formed of an alloy containing T% copper, and the nonmagnetic hardened layer is formed with a sputtering magnetic film requiring an oxidation heat treatment step at 300 ° or more for several hours. Magnetic disk to do.
【請求項2】上記非磁性硬化層はニッケルと銅との合金
にリンを合えた3元合金で構成したことを特徴とする特
許請求の範囲第1項記載の磁気ディスク。
2. The magnetic disk according to claim 1, wherein the nonmagnetic hardened layer is formed of a ternary alloy in which phosphorus is mixed with an alloy of nickel and copper.
【請求項3】ニッケルの含有率を60WT%以下にしたこと
を特徴とする特許請求の範囲第1項記載または第2項記
載の磁気ディスク。
3. The magnetic disk according to claim 1 or 2, wherein the nickel content is 60 WT% or less.
JP61122807A 1986-03-19 1986-05-28 Magnetic disk Expired - Lifetime JPH0770041B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61122807A JPH0770041B2 (en) 1986-05-28 1986-05-28 Magnetic disk
KR1019870002434A KR910006018B1 (en) 1986-03-19 1987-03-18 Coating alloy
US07/217,035 US4981741A (en) 1986-03-19 1988-07-11 Coating alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61122807A JPH0770041B2 (en) 1986-05-28 1986-05-28 Magnetic disk

Publications (2)

Publication Number Publication Date
JPS62279519A JPS62279519A (en) 1987-12-04
JPH0770041B2 true JPH0770041B2 (en) 1995-07-31

Family

ID=14845121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61122807A Expired - Lifetime JPH0770041B2 (en) 1986-03-19 1986-05-28 Magnetic disk

Country Status (1)

Country Link
JP (1) JPH0770041B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651024A (en) * 1979-10-02 1981-05-08 Nec Corp Magnetic recording body
JPS60261022A (en) * 1984-06-07 1985-12-24 C Uyemura & Co Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPS62279519A (en) 1987-12-04

Similar Documents

Publication Publication Date Title
US4629660A (en) Perpendicular magnetic-recording medium
US5252367A (en) Method of manufacturing a magnetic recording medium
JPH0566647B2 (en)
US4680218A (en) Magnetic recording medium
JPH0323972B2 (en)
JPH0481268B2 (en)
JPH0770041B2 (en) Magnetic disk
EP0213346B1 (en) Magnetic recording medium
JPH0650683B2 (en) Magnetic memory
JPH0628088B2 (en) Magnetic recording medium
JP2527616B2 (en) Metal thin film magnetic recording medium
JPH0315254B2 (en)
JPS61199236A (en) Magnetic recording medium
JP2814630B2 (en) Magnetic recording media
US4686151A (en) Substrate material for magnetic recording media
JPS61202326A (en) Magnetic disk
JPH0514325B2 (en)
JP2990975B2 (en) Magnetic recording media
JPS59177725A (en) Magnetic storage body
JP2732153B2 (en) Metal thin-film magnetic recording media
JPH0467251B2 (en)
JPS61188734A (en) Magnetic disk
JPH0518169B2 (en)
JPS6052918A (en) Magnetic memory medium
JPS63217520A (en) Magnetic memory body