JPS61246921A - Magnetic disk - Google Patents

Magnetic disk

Info

Publication number
JPS61246921A
JPS61246921A JP8842085A JP8842085A JPS61246921A JP S61246921 A JPS61246921 A JP S61246921A JP 8842085 A JP8842085 A JP 8842085A JP 8842085 A JP8842085 A JP 8842085A JP S61246921 A JPS61246921 A JP S61246921A
Authority
JP
Japan
Prior art keywords
magnetic
film
magnetic disk
weight
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8842085A
Other languages
Japanese (ja)
Other versions
JPH0522288B2 (en
Inventor
Susumu Ito
伊東 進
Toshiaki Wada
和田 俊朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Proterial Ltd
Original Assignee
NEC Corp
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Sumitomo Special Metals Co Ltd filed Critical NEC Corp
Priority to JP8842085A priority Critical patent/JPS61246921A/en
Publication of JPS61246921A publication Critical patent/JPS61246921A/en
Publication of JPH0522288B2 publication Critical patent/JPH0522288B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the off-track quantity and to improve the reliability of the titled magnetic disk by providing a ceramic substrate having >=0.05cal/cm/ sec/ deg.C heat conductivity and a magnetic film formed on the substrate and having >=300Oe coercive force to the disk. CONSTITUTION:For example, 1pt.wt. cellulose and 4pts.wt. tungsten powder are added to 100pts.wt. mixture composed of 70wt% silicon carbide powder and 30wt% carbon powder and wax is added to the obtained material. The material is pelletized, molded in the form of a disk under 1,000kg/cm<2> pressure and calcined in vacuum at 700 deg.C. On the calcined body, 15g silicon powder is placed. The body is heated under 0.1Torr reduced pressure to 1,500 deg.C in 1hr, kept at that temp. for 3hr and sintered. The thermal conductivity of the sintered body is 0.14cal/cm/sec/ deg.C. Since a ceramic having such high thermal conductivity is used, the difference in temp. between magnetic disks is reduced, the off-track quantity can be correspondingly decreased and high track density can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気ディスク装置に用いられる磁気ディスクに
関するものである0 (従来技術とその問題点) 従来磁気ディスクは、A1合金を基板とし、その上に磁
性膜を形成し、さらにその上に必要に応じて保護膜を形
成したものが使われて来たOまた基板材料としてA/合
金以外に、ガラスや酸化アルミニウムを主材とするセラ
ミックス基板を実験室的に用いた例も報告されているo
しかし、いずれも熱伝導率について言えばAj合金基板
を越えるものでなく。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a magnetic disk used in a magnetic disk device. In addition to A/alloys, ceramic substrates mainly made of glass or aluminum oxide are used as substrate materials. There have also been reports of laboratory use of
However, none of them exceeds the Aj alloy substrate in terms of thermal conductivity.

この丸め商用品は全てhp合金基板が使われて来た。伺
故ならば、磁気ディスク装置ではサーボ情報を入れたサ
ーボ面と、データ情報を収納するデータ面とは一般に離
れているため1両者の間で温度差があると熱膨張によっ
て有限のオフトラック量を生じ、これが、トラック密度
向上の障害となるからで、熱伝導率の低いものほど磁気
ディスクの中心部と外周部とで温度差が大きくなシ、或
いは複数枚の磁気ディスクを使うような大容量磁気ディ
スク装置では各磁気ディスク毎に、温度差が大きくなり
、結局熱膨張の差でオフトラック量が太きくfx、シト
ラック密度を上げられないことになる。
HP alloy substrates have been used in all of these rounded commercial products. The reason for this is that in magnetic disk drives, the servo surface that stores servo information and the data surface that stores data information are generally separated, so if there is a temperature difference between the two, a finite amount of off-track will occur due to thermal expansion. This is because the lower the thermal conductivity, the greater the temperature difference between the center and the outer periphery of the magnetic disk, or when using a large magnetic disk that uses multiple magnetic disks. In a capacity magnetic disk device, the temperature difference becomes large for each magnetic disk, and as a result, the off-track amount becomes large due to the difference in thermal expansion, and it becomes impossible to increase the off-track amount fx and the sit-track density.

一方h1合金基叛けそれ自体軟かすぎ磁気ヘッドとの磨
耗に耐えるものでなく、信頼性に欠けるという欠点があ
った〇 (発明の目的) 本発明の目的は熱伝導率の誦いかつ硬質の材料を基板材
料に採用することによって、磁気ディスク装置内の温度
分布によシ生じるオフトラック量を削減し、かつ信頼性
の高い磁気ディスクを提供することにある口 (発明の構成) 本発明の磁気ディスクは熱伝導率が0.05cal/c
rtt/ s e c/℃以上のセラミックス基板と、
その上に形成された保磁力が300Oe以上の磁性膜を
備えたことを特徴とする。
On the other hand, the H1 alloy base itself is too soft to withstand wear with the magnetic head, and has the drawback of lacking reliability. An object of the present invention is to provide a highly reliable magnetic disk that reduces the amount of off-track caused by temperature distribution within a magnetic disk device by employing this material as a substrate material. The thermal conductivity of magnetic disks is 0.05 cal/c.
rtt/sec/℃ or higher ceramic substrate;
It is characterized by having a magnetic film formed thereon having a coercive force of 300 Oe or more.

(構成の詳細な説明) 以下、本発明について図面を用いて説明する。(Detailed explanation of configuration) Hereinafter, the present invention will be explained using the drawings.

第1図は本発明の構成を示したもので、同図(!I)は
0、05 c a l /l:n4/ sec/℃以上
の熱伝導率を示すセラミックス基板1の上に保磁力が3
00Oe以上の磁性膜2を形成した例を示す0同図(b
)はこの磁性膜2の上に保護膜3を形成した磁気ディス
クを、同図(C)はさらに、この保護膜3の上に潤滑膜
4を有する磁気ディスクを同図(d)は同図(a)の構
成の磁性膜2に潤滑膜4を形成した磁気ディスクをそれ
ぞれ示す〇 第2図は本発明の他の構成を示したもので、同図(、)
は0.05 cal/+1/sec/を以上の熱伝導率
を示すセラミックス基板1と保磁力が300Oe以上の
磁性膜2の間に下地膜5を設けた磁気ディスクを、同図
(b)は同図(a)の構成で磁性膜2の上に保護膜3を
設けた磁気ディスクを、同図(C)は同図(b)の構成
で保護膜3の上に潤滑膜4を設けた磁気ディスクを、同
図(d)は同図(a)の構成で磁性膜2の上に潤滑膜4
を設けた磁気ディスクをそれぞれ示す。
Fig. 1 shows the configuration of the present invention, and the figure (!I) shows a coercive force on a ceramic substrate 1 having a thermal conductivity of 0.05 c a l /l:n4/sec/°C or more. is 3
The same figure (b
) shows a magnetic disk in which a protective film 3 is formed on the magnetic film 2, and (c) in the same figure shows a magnetic disk in which a lubricating film 4 is further formed on this protective film 3. Figure 2 shows a magnetic disk in which a lubricating film 4 is formed on a magnetic film 2 having the configuration shown in (a). Figure 2 shows another configuration of the present invention.
Figure (b) shows a magnetic disk in which a base film 5 is provided between a ceramic substrate 1 having a thermal conductivity of 0.05 cal/+1/sec/ or more and a magnetic film 2 having a coercive force of 300 Oe or more. Figure (a) shows a magnetic disk in which a protective film 3 is provided on a magnetic film 2, and figure (C) shows a magnetic disk in which a protective film 4 is provided on a protective film 3 in the configuration shown in figure (b). A magnetic disk is shown in FIG. 2(d) with a lubricating film 4 on the magnetic film 2 in the configuration shown in FIG.
Each of the magnetic disks shown in FIG.

ここで本発明の構成要素の必要要件と代人的素材の一例
を以下に示すロ セラミックス基板1としては、熱伝導率がo、osca
7/crry’s e c/℃以上、硬度がビッカース
値にして600以上、表面粗さが0.05μm以下、空
孔径0.5μm以下であることが必要である0特に熱伝
導率については、例えば半径lのディスク8枚よ構成る
磁気ディスク装置で最下層(1枚目)をサーボディスク
とした場合中央層(4〜5枚目)のディスクとの温度差
ΔTによる最外周トラックのオフトラック量Δl!はデ
ィスク基板の熱膨張係数をαとすると。
Here, the necessary requirements for the constituent elements of the present invention and an example of substitute materials are shown below as the ceramics substrate 1. The thermal conductivity is o,
7/crry's e c/℃ or higher, hardness of Vickers value of 600 or higher, surface roughness of 0.05 μm or lower, and pore diameter of 0.5 μm or lower.0 Especially for thermal conductivity, For example, in a magnetic disk device consisting of 8 disks with radius l, if the bottom layer (first disk) is a servo disk, the outermost track will be off-track due to the temperature difference ΔT with the center layer (4th to 5th disks). Amount Δl! Let α be the coefficient of thermal expansion of the disk substrate.

ΔT=α・ΔT−J となり、実際従来のアルミニウム合金では熱伝導率が約
0.2 calhVsec/lであF)!=10cmの
ときΔT’al’Cとなった。アルミニウム合金の熱膨
張係数としてα=25 X 10”6/℃を用いるとΔ
2=2.5μmとなりトラック密度は約1000TPI
(Tracks Per Inch X越すことが困難
となる。
ΔT=α・ΔT−J, and in fact, the thermal conductivity of conventional aluminum alloys is approximately 0.2 calhVsec/l (F)! = 10 cm, it became ΔT'al'C. Using α=25 x 10”6/℃ as the thermal expansion coefficient of aluminum alloy, Δ
2 = 2.5μm, and the track density is approximately 1000TPI
(Tracks Per Inch X makes it difficult to pass.

一方0.05 cal10n7 sec/℃のセラミッ
クス基板を用いた場合、温度差ΔT′は約5℃となった
。セラミックス基板のαけ組成によシ調整が可能で通常
5×107℃以下とすることができ。
On the other hand, when a ceramic substrate of 0.05 cal10n7 sec/°C was used, the temperature difference ΔT' was about 5°C. The temperature can be adjusted by adjusting the α composition of the ceramic substrate, and can usually be kept at 5 x 107°C or less.

1252.5μm となシ、従来のアルミニウム合金以下にすることができ
るロセしてΔlをさらに小さくするには熱伝導率を大き
くし温度差ΔTを小さくすることが必要でこのことは、
磁気ディスク装置全体の温度の均一化を図る意味に於い
ても鍵となる重要なポイントである。Δlを小さくする
他の手段として熱膨張係数αを小さくすることも必要で
あるが、αが零になったとしても温度差ΔTが有限であ
る限シ磁気ヘッドを支えるアームに熱膨張差を生じ望ま
しくない。従って熱伝導率を大きくし温度差を小さくす
ることが基本である。このようにしてΔノが小さくなれ
ば、その分だけトラック密度を増大することが可能とな
る口 また硬度についても、磁気ヘッドとの接触摩耗に耐える
ためにはビッカース硬度で600以上が必要である(従
来のアルミニウム合金は100〜200位である)。表
面粗さ、空孔径の規定は磁性膜の特性を均一化するため
と、機械的耐久性を保証する上で不可欠の条件である。
1252.5μm, which can be lower than that of conventional aluminum alloys.In order to further reduce Δl, it is necessary to increase the thermal conductivity and reduce the temperature difference ΔT.
This is an important point in terms of making the temperature of the entire magnetic disk device uniform. Another means of reducing Δl is to reduce the coefficient of thermal expansion α, but even if α becomes zero, as long as the temperature difference ΔT is finite, a difference in thermal expansion will occur in the arm that supports the magnetic head. Undesirable. Therefore, it is fundamental to increase the thermal conductivity and reduce the temperature difference. If Δ is reduced in this way, it is possible to increase the track density by that amount.As for hardness, a Vickers hardness of 600 or higher is required to withstand contact wear with the magnetic head. (Conventional aluminum alloys are in the 100-200 range). Defining the surface roughness and pore diameter is an essential condition for making the characteristics of the magnetic film uniform and ensuring mechanical durability.

セラミックス基板は製法の都合上空孔が入シ易い場合、
この空孔径の縮小もしくは除去のため、下地膜5を設け
ることもある。セラミックス基板としての前記条件を同
時に満す素材はかなシ限られたものとなるが、炭化硅素
を主要部とするセラミックスが適し、硅素5〜lO重量
%、硅化タングステン1.3〜13重量−を含む炭化硅
素系セラミックス、あるいは酸化エルビウム5〜12重
量%、金属系元素(軽金属元素、遷移金属元素又は希土
類金属元素)自身又はその化合物(酸化物、窒化物又は
硼化物)の少なくとも1種以上を1〜5重量−を含む炭
化硅素系セラミックスが特に適する■なお、硅素−硅化
タングステンを含む前者の炭化硅素系セラミ、クスでは
硅素の含有量が5重量−未満では緻密なセラミックスが
得られなかりたこと、また10重量うを越えると耐食性
9機械的強度および研磨面の表面粗さが悪化するため適
さなかったこと。
Ceramic substrates tend to have holes due to the manufacturing process.
In order to reduce or eliminate the pore diameter, a base film 5 may be provided. There are only a limited number of materials that simultaneously satisfy the above conditions as a ceramic substrate, but ceramics containing silicon carbide as the main part are suitable, and contain 5 to 10% by weight of silicon and 1.3 to 13% by weight of tungsten silicide. Silicon carbide ceramics containing 5 to 12% by weight of erbium oxide, at least one metal element (light metal element, transition metal element, or rare earth metal element) itself or its compound (oxide, nitride, or boride). Silicon carbide-based ceramics containing 1 to 5% by weight of silicon are particularly suitable.In addition, in the former silicon carbide-based ceramics and clays containing silicon-tungsten silicide, dense ceramics cannot be obtained if the silicon content is less than 5% by weight. Moreover, if the weight exceeds 10, the corrosion resistance (9) mechanical strength and the surface roughness of the polished surface will deteriorate, making it unsuitable.

硅化タングステンの含有量が1.3重量−未満では耐酸
化性に問題があシ、また13重量−を越えると炭化硅素
との熱膨張率の差が目立ち耐酸化性が愚〈なりたことを
考慮している。さらに酸化エルビウム−金属系元素(又
はその化合物)を含む後者の炭化硅素系セラミックスで
は、il化エルビクムの含有量が5重量%未満では緻密
なセラミックスが得られなかりたこと、tた12重量−
を越えると抗折力や衝撃値が低下したこと、金属元素或
いはその化合物の含有量が1重量%未満では熱伝導率に
顕著な向上が見られなかったこと、また5重量−を越え
ると抗折力や衝撃値が低下したことを考慮している◎ 下地膜5としては、蒸着、スパッタ法又はプラズマCV
D法で形成された酸化アルミニウム、醸化硅素、窒化硅
素、窒化アルミニウム等の酸化物又は窒化物や、 Cr
、 Ti、 Mo、 We等の非磁性金属もしくはこれ
等の金属を主成分とする合金、又はスピン塗布と焼成に
よって形成された。酸化硅素、酸化アルミニウム等を主
成分とする酸化膜又ははレジスト、ポリイミド、エポキ
シ等の有機物をハードキエアした薄膜等が適する。
If the content of tungsten silicide is less than 1.3% by weight, there is a problem with oxidation resistance, and if it exceeds 13% by weight, the difference in thermal expansion coefficient with silicon carbide becomes noticeable and the oxidation resistance deteriorates. I am considering it. Furthermore, in the latter type of silicon carbide ceramics containing erbium oxide-metallic elements (or their compounds), dense ceramics could not be obtained when the content of erbium oxide was less than 5% by weight.
When the content of metal elements or their compounds exceeds 1% by weight, no significant improvement in thermal conductivity was observed, and when the content exceeds 5% by weight, the transverse rupture strength and impact value decrease. The reduction in rupture strength and impact value is taken into consideration.◎ The base film 5 can be formed by vapor deposition, sputtering or plasma CV.
Oxides or nitrides such as aluminum oxide, silicon nitride, silicon nitride, and aluminum nitride formed by the D method, Cr
, Ti, Mo, We, or other non-magnetic metals or alloys containing these metals as main components, or by spin coating and firing. An oxide film mainly composed of silicon oxide or aluminum oxide, or a thin film formed by hardening an organic material such as resist, polyimide, or epoxy is suitable.

磁性膜2としては、塗布法で形成された長径0.5μm
以下の針状もしくは米粒状γ−Fe203. Co被着
r −Fe、0. 、 Coドープ’ −Fe101v
又は長径0.5μm以下の板状Ba−7エライー等の磁
性粉を主成分とし、 sio、やhl、 O,等の非磁
性粒子と共に樹脂で固めた厚さ数ミクロン以下の薄膜、
メッキ法で形成されたCo−P合金、Co−N1−P合
金、  Co−Ni−M=−P合金、  Co−Ni−
Mn−Re−P合金1等のCoを含む厚さ1.0μm以
下の薄膜、蒸着もしくはスパッタ法で形成されたγ−F
e20. + c、、 Cu等の酸化物を含むrFe2
O3,Coo−Co混合物、Co、Feの窒化物、 C
o−Ni合金、  Co−Pt合金、 Co−Cr合金
The magnetic film 2 has a long diameter of 0.5 μm formed by a coating method.
The following needle-like or grain-like γ-Fe203. Co-deposited r-Fe, 0. , Co-doped'-Fe101v
Or a thin film with a thickness of several microns or less made of magnetic powder such as plate-shaped Ba-7 Elai with a major axis of 0.5 μm or less and hardened with resin together with non-magnetic particles such as sio, hl, O, etc.
Co-P alloy, Co-N1-P alloy, Co-Ni-M=-P alloy, Co-Ni- formed by plating method
A thin film containing Co such as Mn-Re-P alloy 1 with a thickness of 1.0 μm or less, γ-F formed by vapor deposition or sputtering method
e20. + rFe2 containing oxides such as c, Cu, etc.
O3, Coo-Co mixture, Co, Fe nitride, C
o-Ni alloy, Co-Pt alloy, Co-Cr alloy.

Co−P合金、 Co−Re合金、 Co−希土類合金
、或いはこれ等の合金同志の混合物、さらには他の第3
、第4の元素を含むようfLCoを含む薄膜、’FeN
d等Fe含む合金から成る厚さ1.0μm以下の薄膜等
が適する◎ 保護膜3としては、スピン塗布法で形成された酸化硅素
、酸化アルミニウム等を主成分とする厚さ0.1μm以
下の酸化膜、蒸着・スパッタ又はプラズマCVD法で形
成された酸化硅素、酸化アルミニウム、窒化硅素、窒化
アルミニウム等を主成分とする厚さ0.1μm以下の酸
化膜もしくは窒化膜或いはC,Cr、 Mo、 W、 
Rh等の非磁性金属を主成分とする単体もしくは合金の
厚さ0.1μm以下の薄膜等が適する。
Co-P alloy, Co-Re alloy, Co-rare earth alloy, or mixtures of these alloys, as well as other tertiary alloys.
, a thin film containing fLCo to contain the fourth element, 'FeN
A thin film with a thickness of 1.0 μm or less made of an alloy containing Fe such as d is suitable.◎ As the protective film 3, a thin film with a thickness of 0.1 μm or less made of silicon oxide, aluminum oxide, etc. formed by a spin coating method is suitable. Oxide film, oxide film or nitride film with a thickness of 0.1 μm or less mainly composed of silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, etc. formed by vapor deposition/sputtering or plasma CVD method, or C, Cr, Mo, W,
A thin film having a thickness of 0.1 μm or less made of a single substance or an alloy containing a non-magnetic metal such as Rh as a main component is suitable.

潤滑膜4としては1周知の潤滑剤KRYTOXやVYD
AX (いずれも米国デエポン社商品名)等に代表され
る弗化炭素系の薄膜が適する。
As the lubricant film 4, well-known lubricants KRYTOX and VYD are used.
A fluorocarbon thin film typified by AX (all trade names of Depon Co., Ltd., USA) is suitable.

次にこの発明の具体的実施例について述べる。Next, specific embodiments of this invention will be described.

(実施例1) 炭化硅素粉末70重量%と炭素粉末30重量%から成る
もの100に対し、セルロース1.I’7/ステン粉末
を4をそれぞれ重量比で選びワックスを添加して造粒し
1000 K17cm2の圧力で外径210mm内径5
0mm厚さ2mのディスク状に整形し5次いで真空中7
00℃で仮焼成した。この仮焼成体にシリコン粉末15
gをのせ0.1Torrの減圧下で温度1500℃に1
時間かけて昇温し、次いで3時間保持し反応焼結を行っ
た。このようにして得られた反応焼結体の組成は、硅素
6重量%。
(Example 1) For 100% of silicon carbide powder and 30% of carbon powder by weight, cellulose 1. Select I'7/Sten powder in a weight ratio of 4, add wax, granulate it, and make it into granules with an outer diameter of 210 mm and an inner diameter of 5 at a pressure of 1000 K17 cm2.
Shaped into a disc with a thickness of 0mm and 2m 5 and then placed in a vacuum 7
Temporary firing was performed at 00°C. Silicon powder 15 is added to this pre-fired body.
1 g at a temperature of 1500°C under a reduced pressure of 0.1 Torr.
The temperature was raised over time and then held for 3 hours to perform reaction sintering. The composition of the reaction sintered body thus obtained was 6% by weight of silicon.

硅化タングステン5重量%、残部炭化硅素であり。5% by weight of tungsten silicide, balance silicon carbide.

熱伝導率は0.14 cal/CM7′sec/℃、熱
膨張係数43X10  /l?:、ビッカース硬度1,
800 、空孔径0.5μm以下であった。この焼結体
の表面を0.1μmのダイアモンド精粒で研磨し、表面
粗さを0.05μm以下に仕上げディスク基板とした。
Thermal conductivity is 0.14 cal/CM7'sec/℃, thermal expansion coefficient 43X10/l? :, Vickers hardness 1,
800, and the pore diameter was 0.5 μm or less. The surface of this sintered body was polished with fine diamond particles of 0.1 μm to obtain a finished disk substrate with a surface roughness of 0.05 μm or less.

次いで、このディスク基板上に塗布法の代表として長径
0.2μmのT−FelO3針状粒子と0.2μm径の
Al2O,微粒子とを分散剤及びエポキシ系樹脂とを調
合し、スピン塗布法によシ厚さ067μmの磁性膜を形
成し磁気ディスクとした。塗布後の磁性膜の保磁力Hc
は350Oeでありた〇 (実施例2) 実施例1と同様の手順でディスク基板を作製した。但し
基板材料を以下の如く変更した。炭化硅素粉末90重量
%金属系元素の酸化物として酸化アルミニウム粉末を3
重量俤、酸化エルビウム粉末7重量−から成るものに対
しセルロース及びワックスを添加して造粒し、 100
0 h/1m  の圧力で外径210 mm内径50m
m厚さ2mmのディスク状の整形し1次いで真空中70
0℃で仮焼成した口この仮焼成体をQ、1Torrの減
圧下で温度1500℃に1時間かけ昇温し、次いでその
まま3時間保持し焼結を行った口このようにして得られ
た反応焼結体の組成は、酸化アルミニウム3重量%、酸
化エルビウム7重量%、残部炭化硅素から成るものであ
り、熱伝導率は0.28 cal/′cHv′sec/
C,熱膨張係数は4.4.X 10−6/l t ビッ
カース硬度は2000、空孔後世キは0.5μm以下で
あった・この焼結体の表面を0.1μmのダイアモンド
精粒で研磨し表面粗さを0.05μm以下に仕上げディ
スク基板とした。
Next, as a typical coating method, T-FelO3 acicular particles with a major diameter of 0.2 μm and Al2O fine particles with a diameter of 0.2 μm were mixed with a dispersant and an epoxy resin, and then applied by spin coating. A magnetic film with a thickness of 067 μm was formed to obtain a magnetic disk. Coercive force Hc of magnetic film after coating
was 350 Oe. (Example 2) A disk substrate was produced in the same manner as in Example 1. However, the substrate material was changed as follows. Silicon carbide powder 90% by weight Aluminum oxide powder as an oxide of metal element 3
By weight, cellulose and wax are added to a product consisting of erbium oxide powder (7 by weight) and granulated, and 100
Outer diameter 210 mm and inner diameter 50 m at a pressure of 0 h/1 m
Shaped into a disk shape with a thickness of 2 mm and then heated in a vacuum for 70 minutes.
This calcined body was calcined at 0°C, and then the temperature was raised to 1500°C over 1 hour under a reduced pressure of 1 Torr, and then held as it was for 3 hours to perform sintering. The composition of the sintered body is 3% by weight of aluminum oxide, 7% by weight of erbium oxide, and the balance is silicon carbide, and the thermal conductivity is 0.28 cal/'cHv'sec/
C, thermal expansion coefficient is 4.4. X 10-6/l t The Vickers hardness was 2000, and the pore generation rate was 0.5 μm or less. The surface of this sintered body was polished with 0.1 μm diamond fine particles to reduce the surface roughness to 0.05 μm or less. Finished with a disc substrate.

次いで、このディスク基板上に塗布法の代表として長径
0.2μmのCo被被着−Fe101針状粒子と0.2
μm径のAJ!、0.微粒子とを分散剤及びエポキシ樹
脂とを調合し、スピン塗布法によシ厚さ0.7μmの磁
性膜を形成し、さらにこの表面にKRYTQXを塗布し
潤滑剤とし、このようにして磁気ディスクを作った。こ
の磁性膜の保磁力は600Oeでありた0 (実施例3) 実施例1で用いたディスク基板を用いた。但し、ダイア
モンド精粒による新暦前に下地膜としてスパッタ法でA
I!、0.膜を10μm前記焼結体に形成し、この後で
0.1μmのダイアモンド精粒で研磨した。
Next, as a representative coating method, Co-coated Fe101 acicular particles with a major diameter of 0.2 μm and 0.2 μm were coated onto this disk substrate.
AJ with μm diameter! ,0. The fine particles are mixed with a dispersant and an epoxy resin, a magnetic film with a thickness of 0.7 μm is formed by spin coating, and KRYTQX is coated on the surface of this film as a lubricant. Had made. The coercive force of this magnetic film was 600 Oe. (Example 3) The disk substrate used in Example 1 was used. However, A using sputtering method as a base film before the new calendar using diamond fine particles.
I! ,0. A film of 10 .mu.m was formed on the sintered body, which was then polished with 0.1 .mu.m diamond grains.

この結果表面粗さは0−OXμm程度とな〕表面性の優
れたディスク基板が得られた。この上に薄膜磁性体の代
表としてFe104膜を0.15μn1スパツタ法で形
成し次いで大気中300℃で徐々に酸化することにより
r −Fezes膜に変換し磁性膜を作シ磁気ディスク
とした。Cu及びCoをそれぞれ3.0重量%及び1.
8重量%添加することによシこの磁性膜の保磁力は60
0Oeとなった口 (実施例4) 実施例3で用いた製造プロセスと同様の手順で磁性膜ま
で形成し、この上に保護膜として810@をスパッタ法
で0.05μm形成し磁気ディスクとした。
As a result, a disk substrate with excellent surface roughness was obtained, with a surface roughness of approximately 0-OX μm. A Fe104 film as a representative thin film magnetic material was formed thereon by a 0.15 .mu.n1 sputtering method, and then gradually oxidized in the atmosphere at 300.degree. C. to convert it into an r-Fezes film, thereby forming a magnetic film to form a magnetic disk. 3.0% by weight and 1.0% by weight of Cu and Co, respectively.
By adding 8% by weight, the coercive force of this magnetic film is 60%.
0 Oe (Example 4) A magnetic film was formed using the same manufacturing process as in Example 3, and 0.05 μm of 810@ was formed as a protective film by sputtering on this to form a magnetic disk. .

(実施例5) 実施例4で用いた製造プロセスと同様の手順で保護膜ま
で形成し、この上に潤滑剤としてKRYTOXを塗布し
磁気ディスクとした。
(Example 5) A protective film was formed using the same manufacturing process as in Example 4, and KRYTOX was applied thereon as a lubricant to prepare a magnetic disk.

(実施例6) 実施例3で用いた製造プロセスと同様の手順で磁性膜ま
で形成し、この上に潤滑剤としてKRXTOXを塗布し
磁気ディスクとした口 (実施例7) 実施例2で用いたディスク基板を用いた0但し。
(Example 6) The magnetic film was formed using the same manufacturing process as in Example 3, and KRXTOX was applied thereon as a lubricant to create a magnetic disk (Example 7) Used in Example 2 However, using a disk substrate.

ダイアモンド精粒による研磨前に下地膜としてスパッタ
法でW膜を5μm前記焼結体に形成し、この後で0.1
μmのダイアモンド精粒で研磨した0この結果表面粗さ
は0.02μm程度となシ表面性の優れたディスク基板
が得られた。この基板を硫酸コバルト硫酸ニッケル、次
亜リン酸ナトリウム、リンゴ酸ナトリウム、コハク酸ナ
トリウム、マロン酸ナトリウム、硫酸アンモニウムから
なるめっき浴中に浸漬し、Co−N1−P合金から成る
磁性膜を0.05μm無電解めっき法によシ形成した。
Before polishing with fine diamond particles, a W film of 5 μm thickness was formed on the sintered body as a base film by sputtering, and then a 0.1 μm
As a result of polishing with .mu.m fine diamond particles, a disk substrate with excellent surface roughness was obtained with a surface roughness of about 0.02 .mu.m. This substrate was immersed in a plating bath consisting of cobalt sulfate, nickel sulfate, sodium hypophosphite, sodium malate, sodium succinate, sodium malonate, and ammonium sulfate, and a magnetic film made of Co-N1-P alloy was coated with a thickness of 0.05 μm. It was formed by electroless plating.

この上にスピン塗布法により5iO1膜を0.1μm形
成し、次いで潤滑剤としてIIYTOXを塗布し磁気デ
ィスクとした。この磁性膜の保磁力は600Oeであっ
た〇 (実施例8) 実施例7で用いたディスク基板を使用し、この上にNi
Fe合金(Pg l 8重量%)を0.5μm1次いで
CoCr合金(Cr 20重量1を0.2μmスパッタ
法で形成し磁性膜とし、磁気ディスクとした。
A 5iO1 film having a thickness of 0.1 μm was formed thereon by spin coating, and then IIYTOX was applied as a lubricant to form a magnetic disk. The coercive force of this magnetic film was 600 Oe (Example 8) The disk substrate used in Example 7 was used, and Ni
A 0.5 μm thick Fe alloy (Pg 1 8% by weight) was then formed by a 0.2 μm sputtering method using a CoCr alloy (Cr 20 weight 1 layer) to form a magnetic film to form a magnetic disk.

CoCr膜のディスク面に垂直方向の保磁力は300O
eであった。
The coercive force of the CoCr film in the direction perpendicular to the disk surface is 300O.
It was e.

(実施例9) 実施例8で用いた製造プロセスと同様の手順で磁性膜ま
で形成し、この上に保護膜として5i02をスパッタ法
で0.05μm形成し磁気ディスクとしたO (実施例10) 実施例9で用いた製造プロセスと同様の手順で保護膜ま
で形成し潤滑剤として買…αを塗布し磁気ディスクとし
た口 (実施例11) 実施例8で用いた製造プロセスと同様の手順で磁性膜ま
で形成し、潤滑剤として買刊αを塗布し磁気ディスクと
した。
(Example 9) A magnetic film was formed using the same manufacturing process as in Example 8, and a protective film of 5i02 with a thickness of 0.05 μm was formed thereon by sputtering to form a magnetic disk. (Example 10) A protective film was formed using the same manufacturing process as in Example 9, and a magnetic disk was made by applying α as a lubricant (Example 11) Using the same manufacturing process as in Example 8 A magnetic film was formed, and a lubricant, Shukan α, was applied to create a magnetic disk.

(比較例) AI!−Mg合金5086を外径210 mm、内径5
0m、厚さ1.9mmのディスク状に加工し、ダイアモ
ンド旋盤で表面粗さをO,OSμm程度に仕上げディス
ク基板とした。この上に実施例1と同様の磁性膜を同じ
手順で形成し、さらに潤滑剤としてKRYTOXを塗布
し磁気ディスクとした。磁性膜の保磁力は、実施例1と
同様350Oeであった。
(Comparative example) AI! - Mg alloy 5086 with an outer diameter of 210 mm and an inner diameter of 5
It was processed into a disk shape with a length of 0 m and a thickness of 1.9 mm, and finished with a diamond lathe to a surface roughness of about 0.0 μm to obtain a disk substrate. A magnetic film similar to that in Example 1 was formed thereon by the same procedure, and KRYTOX was further applied as a lubricant to form a magnetic disk. The coercive force of the magnetic film was 350 Oe as in Example 1.

実施例1乃至11および比較例の磁気ディスクをそれぞ
れ8枚づつ選択し、磁気ディスク装置に搭載し最下層(
1枚目)にサーボパターンを書込み、中央層(4〜5枚
目)のディスクでの電源投入直後と30分間のシークテ
スト後の位置ずれ量Δlを測定したところ、実施例1乃
至11の磁気ディスクを用いた場合は全てΔtl、1μ
mとなったのに対し比較例ではΔ/”:1.5μmとな
シ、かつコンタクト・スタート・ストップテストでは前
者の本発明実施例ではいずれも3万回パス後も無事故で
あったのに対し、後者の比較例では5000回でクラッ
シェ事故を起した。
Eight magnetic disks each from Examples 1 to 11 and Comparative Example were selected, mounted on a magnetic disk device, and placed in the bottom layer (
When a servo pattern was written on the disk in the center layer (4th to 5th disks) and the positional deviation amount Δl was measured immediately after turning on the power and after a 30-minute seek test, it was found that the magnetic fields of Examples 1 to 11 were When using a disk, Δtl, 1μ
m, whereas in the comparative example it was Δ/'': 1.5 μm, and in the contact start/stop test, the former example of the present invention had no accidents even after 30,000 passes. On the other hand, in the latter comparative example, a crush accident occurred after 5000 cycles.

(発明の効果) 以上の本発明の実施例と比較例で示した如く。(Effect of the invention) As shown in the above examples of the present invention and comparative examples.

本発明は磁気ディスクとして従来のものに比し、(11
熱伝導率が高いセラミックスを使っている丸め磁気ディ
スク間の温度差が小さくなシその分オフトラック量を少
くでき高トラツク密度を可能にする。
Compared to conventional magnetic disks, the present invention has (11
Since the temperature difference between the rounded magnetic disks using ceramics with high thermal conductivity is small, the amount of off-track can be reduced and high track density can be achieved.

(2)基板材料として従来よシ格段に硬いセラミックス
を使っているため、コンタクト・スタート・ストップテ
ストでの耐久性が高く従って長期信頼性が高い。
(2) Since ceramics, which are much harder than conventional ones, is used as the substrate material, it has high durability in contact start/stop tests, and therefore has high long-term reliability.

といった実用上極めて有用な特徴を有する。It has extremely useful features in practice.

なお1本発明のこのような効果は先に挙げた素材やその
一例を用いた実施例に限るものでなく、特許請求の範囲
に記した条件を満す磁気ディスクであれば、その全てが
具備できるものであることは明らかである。
Note that such effects of the present invention are not limited to the above-mentioned materials or embodiments using one example thereof, but can be achieved by any magnetic disk that satisfies the conditions set forth in the claims. It is clear that it can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)* (bL (c)及び(d)、さらに第
2図talt (b)t(c)及び(d)は本発明の構
成例を示した図で、l・・・セラミックス基板 2・・・磁性膜 3・・・保護膜 4・・・潤滑膜 5・・・下地膜 であるり /−゛ 享   1  図 (a) 亭  2  口 (d)
Fig. 1 (a) Substrate 2...Magnetic film 3...Protective film 4...Lubricating film 5...Underlying film/-゛ Enjoy 1 Figure (a) 2 Port (d)

Claims (6)

【特許請求の範囲】[Claims] (1)熱伝導率が0.05cal/cm/sec/℃以
上のセラミック基板と、その上に形成された保磁力が3
00Oe以上の磁性膜とを有することを特徴とする磁気
ディスク。
(1) A ceramic substrate with a thermal conductivity of 0.05 cal/cm/sec/°C or higher and a coercive force of 3
A magnetic disk characterized by having a magnetic film of 00 Oe or more.
(2)セラミックス基板と磁性膜との間に下地膜が形成
されていることを特徴とする特許請求の範囲第1項記載
の磁気ディスク。
(2) The magnetic disk according to claim 1, wherein a base film is formed between the ceramic substrate and the magnetic film.
(3)磁性膜の上に保護膜を有することを特徴とする特
許請求の範囲第1項記載の磁気ディスク。
(3) The magnetic disk according to claim 1, further comprising a protective film on the magnetic film.
(4)少くとも表面に潤滑膜を有することを特徴とする
特許請求の範囲第1項記載の磁気ディスク。
(4) The magnetic disk according to claim 1, which has a lubricating film on at least its surface.
(5)セラミックス基板の組成が硅素5〜10重量%、
硅化タングステン1.3〜13重量%、残部の主要部が
炭化硅素からなることを特徴とする特許請求の範囲第1
項乃至第4項記載の磁気ディスク。
(5) The composition of the ceramic substrate is 5 to 10% by weight of silicon,
Claim 1, characterized in that 1.3 to 13% by weight of tungsten silicide, with the remainder mainly consisting of silicon carbide.
A magnetic disk according to items 4 to 4.
(6)セラミックス基板の組成が、酸化エルビウム5〜
12重量%、金属系元素(軽金属元素、遷移金属元素又
は希土類金属元素)自身或いはその化合物(酸化物、窒
化物又は硼化物)の少くとも1種以上を1〜5重量%、
残部の主要部が炭化硅素から成ることを特徴とする特許
請求の範囲第1項乃至第4項記載の磁気ディスク。
(6) The composition of the ceramic substrate is erbium oxide 5~
12% by weight, 1 to 5% by weight of at least one metal element (light metal element, transition metal element, or rare earth metal element) itself or its compound (oxide, nitride, or boride);
5. The magnetic disk according to claim 1, wherein the remaining main portion is made of silicon carbide.
JP8842085A 1985-04-24 1985-04-24 Magnetic disk Granted JPS61246921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8842085A JPS61246921A (en) 1985-04-24 1985-04-24 Magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8842085A JPS61246921A (en) 1985-04-24 1985-04-24 Magnetic disk

Publications (2)

Publication Number Publication Date
JPS61246921A true JPS61246921A (en) 1986-11-04
JPH0522288B2 JPH0522288B2 (en) 1993-03-29

Family

ID=13942289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8842085A Granted JPS61246921A (en) 1985-04-24 1985-04-24 Magnetic disk

Country Status (1)

Country Link
JP (1) JPS61246921A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59221832A (en) * 1983-05-27 1984-12-13 インタ−ナシヨナル ビジネス マシ−ンズ コ−ポレ−シヨン Compound magnetic disc
JPS6022733A (en) * 1983-07-19 1985-02-05 Hitachi Metals Ltd Substrate for magnetic disc

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59221832A (en) * 1983-05-27 1984-12-13 インタ−ナシヨナル ビジネス マシ−ンズ コ−ポレ−シヨン Compound magnetic disc
JPS6022733A (en) * 1983-07-19 1985-02-05 Hitachi Metals Ltd Substrate for magnetic disc

Also Published As

Publication number Publication date
JPH0522288B2 (en) 1993-03-29

Similar Documents

Publication Publication Date Title
US6673474B2 (en) Medium substrate, production method thereof and magnetic disk device
US4738885A (en) Magnetic disk, substrate therefor and process for preparation thereof
JP2816472B2 (en) Magnetic recording media
US4709284A (en) Magnetic recording device having a stabilized zirconia slider and a cobalt based recording medium
US4629660A (en) Perpendicular magnetic-recording medium
KR910006150B1 (en) Magnetic recording medium and producing method
US5091225A (en) Magnetic disc member and process for manufacturing the same
JPS63268127A (en) Magnetic memory body and its production
US5252367A (en) Method of manufacturing a magnetic recording medium
US6030681A (en) Magnetic disk comprising a substrate with a cermet layer on a porcelain
US6680133B2 (en) Magnetic recording medium and sputtering target
US4735853A (en) Magnetic recording medium having an amorphous, nonmagnetic nickel-tungston-phosphorus underlayer
JPS61246921A (en) Magnetic disk
JPWO2004061829A1 (en) Perpendicular magnetic recording medium
JPS59217224A (en) Magnetic memory medium
JP2952967B2 (en) Magnetic recording media
JP2547994B2 (en) Magnetic recording media
KR100368615B1 (en) A hard disk for computer and a method of preparing surface protecting film on the hard disk
JP2873702B2 (en) Magnetic recording medium and magnetic recording / reproducing method
JPS59180829A (en) Magnetic storage body
JPH0315254B2 (en)
JPS6154019A (en) Magnetic recording medium provided with protective film
JPS6035332A (en) Magnetic storage body
JPS63104214A (en) Magnetic memory body and its production
JPH01125720A (en) Magnetic memory body and its production

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term