JPH05211232A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH05211232A
JPH05211232A JP719892A JP719892A JPH05211232A JP H05211232 A JPH05211232 A JP H05211232A JP 719892 A JP719892 A JP 719892A JP 719892 A JP719892 A JP 719892A JP H05211232 A JPH05211232 A JP H05211232A
Authority
JP
Japan
Prior art keywords
type
polycrystalline silicon
diffusion layer
impurities
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP719892A
Other languages
Japanese (ja)
Inventor
Takehiro Aritoku
武浩 有得
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP719892A priority Critical patent/JPH05211232A/en
Publication of JPH05211232A publication Critical patent/JPH05211232A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To inhibit the extent of a diffusion layer formed by diffusing impurities to a substrate from a polycrystalline silicon wiring, to which impurities are doped, and to improve the element isolation width dependency of element isolation breakdown strength. CONSTITUTION:The ions of impurities having the same type as a P-type semiconductor substrate 1 are implanted by high energy while using a resist pattern 5 for boring a gate oxide film 4 as a mask, and a thick P-type impurity diffusion layer 6 is formed to the deep section of the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置に関し、特に
一導電型の半導体基体に直接に接する様に形成された逆
導電型の多結晶シリコンとこの多結晶シリコンから不純
物を拡散されて形成された逆導電型の拡散層とを備えた
半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a reverse conductivity type polycrystalline silicon formed so as to be in direct contact with a semiconductor substrate of one conductivity type, and impurities formed by diffusing impurities from the polycrystalline silicon. And a diffusion layer of opposite conductivity type.

【0002】[0002]

【従来の技術】従来、この種の半導体装置は図3の様な
構造をしており、その製造方法と共に説明する。まず、
p型半導体基板11に素子分離用p型拡散層12,LO
COS酸化膜13,及びゲート酸化膜14を形成する。
次に、多結晶シリコンと半導体基板とが直接に接触する
様に、リソグラフィー技術と弗酸等のエッチング液を用
いてゲート酸化膜に開孔部を形成する。フォトレジスト
を剥離した後、多結晶シリコンを気相成長し、この多結
晶シリコンにn型不純物(例えばリン)を拡散し、その
後、リソグラフィー技術を用いてn型多結晶シリコン配
線17を形成する。さらに、熱処理によりn型多結晶シ
リコン配線17から、n型不純物(リン)をp型半導体
基板11に拡散させ、高濃度n型拡散層18を形成す
る。
2. Description of the Related Art Conventionally, a semiconductor device of this type has a structure as shown in FIG. 3, and its manufacturing method will be described. First,
On the p-type semiconductor substrate 11, the p-type diffusion layer 12 for element isolation, LO
A COS oxide film 13 and a gate oxide film 14 are formed.
Next, an opening is formed in the gate oxide film by using a lithography technique and an etching solution such as hydrofluoric acid so that the polycrystalline silicon and the semiconductor substrate are in direct contact with each other. After the photoresist is stripped off, polycrystalline silicon is vapor-deposited, n-type impurities (for example, phosphorus) are diffused in this polycrystalline silicon, and then an n-type polycrystalline silicon wiring 17 is formed by using a lithography technique. Further, an n-type impurity (phosphorus) is diffused from the n-type polycrystalline silicon wiring 17 into the p-type semiconductor substrate 11 by heat treatment to form a high concentration n-type diffusion layer 18.

【0003】[0003]

【発明が解決しようとする課題】上述の従来の半導体装
置では、多結晶シリコン配線からの半導体基体への不純
物の拡散が大きいので、不純物拡散層が横と下に広く広
がってしまう。このため、素子分離幅が小さく(サブミ
クロン程度以下に)なってくると、分離耐圧が著しく低
下してしまうという不具合があった。一方、分離耐圧向
上の為に、不純物の濃度を抑さえたり、熱処理の温度や
時間を抑さえたりして、不純物の拡散を抑さえようとす
ると、今度は多結晶シリコン配線と不純物拡散層との接
触抵抗が高くなるという問題が生じていた。
In the above-described conventional semiconductor device, since the diffusion of impurities from the polycrystalline silicon wiring into the semiconductor substrate is large, the impurity diffusion layer spreads laterally and downward. For this reason, when the element isolation width becomes smaller (less than about submicron), there is a problem that the isolation breakdown voltage is significantly lowered. On the other hand, in order to improve the isolation breakdown voltage, if the impurity concentration is suppressed or the temperature and time of the heat treatment are suppressed so as to suppress the diffusion of impurities, the polycrystalline silicon wiring and the impurity diffusion layer will be separated. However, there was a problem that the contact resistance of was high.

【0004】[0004]

【課題を解決するための手段】本発明の半導体装置は、
一導電型半導体基体上にこの半導体基体と接する様に形
成された逆導電型多結晶シリコンと、この逆導電型多結
晶シリコンから不純物拡散して形成された逆導電型半導
体層とを有する半導体装置において、この逆導電型半導
体層下部に接する位置に、半導体基体よりも高濃度な一
導電型半導体層を備えている。
The semiconductor device of the present invention comprises:
Semiconductor device having reverse conductivity type polycrystalline silicon formed on one conductivity type semiconductor substrate so as to be in contact with the semiconductor substrate, and reverse conductivity type semiconductor layer formed by impurity diffusion from the reverse conductivity type polycrystalline silicon In the above, the one-conductivity-type semiconductor layer having a higher concentration than that of the semiconductor substrate is provided at a position in contact with the lower part of the opposite-conductivity-type semiconductor layer.

【0005】[0005]

【実施例】次に本発明について図面を説明する。図1は
本発明の第1の実施例の半導体装置の要部断面図であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described with reference to the drawings. FIG. 1 is a cross-sectional view of essential parts of a semiconductor device according to a first embodiment of the present invention.

【0006】まず、p型半導体基板1上に濃い素子分離
用p型拡散層2,LOCOS酸化膜3(膜厚1μm程
度),及びゲート酸化膜4(膜厚20nm程度)を形成
する。次に、所望の場所でゲート酸化膜4に開孔部を設
ける為にフォトレジストパターン5を形成する。その
後、高エネルギーで5E12cm-2程度のドーズ量のp
型不純物(例えばボロンで200keV程度)をゲート
酸化膜4を通して注入し、p型半導体基板1の深さ50
0nm程度の深い部分に濃いp型不純物拡散層6を形成
する。[図1(a)]。
First, a dense p-type diffusion layer 2 for element isolation 2, a LOCOS oxide film 3 (about 1 μm in film thickness), and a gate oxide film 4 (about 20 nm in film thickness) are formed on a p-type semiconductor substrate 1. Next, a photoresist pattern 5 is formed to provide an opening in the gate oxide film 4 at a desired location. After that, p with high energy and a dose amount of about 5E12 cm -2
-Type impurities (for example, about 200 keV of boron) are implanted through the gate oxide film 4 so that the depth of the p-type semiconductor substrate 1 is 50
A deep p-type impurity diffusion layer 6 is formed in a deep portion of about 0 nm. [FIG. 1 (a)].

【0007】次に、弗酸等でエッチングを行ない、フォ
トレジストパターン5の開孔部にあるゲート酸化膜4を
除去する[図1(b)]。
Next, etching is performed with hydrofluoric acid or the like to remove the gate oxide film 4 in the opening of the photoresist pattern 5 [FIG. 1 (b)].

【0008】続いて、フォトレジストパターン5を剥離
する。次に、多結晶シリコンを化学気相成長(膜厚40
0nm程度)させ、n型不純物(例えばリン)をドープ
し、リソグラフィー技術を用いてエッチングをし、多結
晶シリコン配線7を形成する。その後、熱処理を行な
い、多結晶シリコン配線7から不純物を拡散しn型高濃
度不純物拡散層8を形成する[図1(c)]。
Then, the photoresist pattern 5 is peeled off. Next, polycrystalline silicon is chemically vapor-deposited (film thickness 40
To about 0 nm), doped with an n-type impurity (for example, phosphorus), and etched using a lithographic technique to form a polycrystalline silicon wiring 7. Then, heat treatment is performed to diffuse impurities from the polycrystalline silicon wiring 7 to form an n-type high-concentration impurity diffusion layer 8 [FIG. 1 (c)].

【0009】第1の実施例では、多結晶シリコンの配線
を用いたが、本発明の第2の実施例では図2の様に、多
結晶シリコン配線7の上にTi,Co,W,Mo,Ta
等を主材料とする合金あるいはこれらの窒化物,もしく
はこれらの硅化物などを積層した積層配線9を用いても
良い。
In the first embodiment, wiring of polycrystalline silicon was used, but in the second embodiment of the present invention, Ti, Co, W, Mo is formed on the polycrystalline silicon wiring 7 as shown in FIG. , Ta
It is also possible to use a laminated wiring 9 in which an alloy containing, or the like as a main material, a nitride of these, or a silicide of these is laminated.

【0010】[0010]

【発明の効果】以上説明したように本発明は、一導電型
の多結晶シリコン配線からの不純物拡散により形成され
る濃い一導電型不純物拡散層の下部に接するかまたは、
多少くい込む様に、濃い逆導電型不純物拡散層を形成し
たので、前記一導電型不純物拡散層の広がりを抑さえる
ことができ、一導電型の多結晶シリコン配線と濃い一導
電型不純物拡散層との接触抵抗を低下させることなく、
素子分離耐圧の分離幅依存性を向上させることができる
という効果を有する。
As described above, the present invention is in contact with the lower portion of the dense one conductivity type impurity diffusion layer formed by impurity diffusion from one conductivity type polycrystalline silicon wiring, or
Since the deep opposite conductivity type impurity diffusion layer is formed so as to be bitten in somewhat, it is possible to suppress the spread of the first conductivity type impurity diffusion layer, and the single conductivity type polycrystalline silicon wiring and the deep single conductivity type impurity diffusion layer are formed. Without reducing the contact resistance with
This has an effect that the isolation width dependency of the element isolation breakdown voltage can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の要部断面図である。FIG. 1 is a cross-sectional view of a main part of a first embodiment of the present invention.

【図2】本発明の第2の実施例の要部断面図である。FIG. 2 is a cross-sectional view of essential parts of a second embodiment of the present invention.

【図3】従来の半導体装置の断面図である。FIG. 3 is a cross-sectional view of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1,11 p型半導体基板 2,12 素子分離用p型拡散層 3,13 LOCOS酸化膜 4,14 ゲート酸化膜 5 フォトレジストパターン 6 濃いp型不純物拡散層 7,17 多結晶シリコン配線 8,18 n型高濃度不純物拡散層 9 積層配線 1, 11 p-type semiconductor substrate 2, 12 p-type diffusion layer for element isolation 3, 13 LOCOS oxide film 4, 14 gate oxide film 5 photoresist pattern 6 dark p-type impurity diffusion layer 7, 17 polycrystalline silicon wiring 8, 18 n-type high-concentration impurity diffusion layer 9 Laminated wiring

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一導電型基体上に該半導体基体と直接接
する様に形成された逆導電型多結晶シリコンと、該逆導
電型多結晶シリコンから不純物拡散して前記半導体基体
の表面に形成された逆導電型半導体層とを有する半導体
装置において、 前記逆導電型半導体層下部の前記半導体基体中に設けら
れ,前記逆導電型半導体層と接し,かつ前記一導電型半
導体基体よりも高濃度の一導電型半導体層を有すること
を特徴とする半導体装置。
1. A reverse-conductivity-type polycrystalline silicon formed on a one-conductivity-type base so as to be in direct contact with the semiconductor base, and impurities diffused from the reverse-conductivity-type polycrystalline silicon to be formed on the surface of the semiconductor base. A semiconductor device having a reverse conductivity type semiconductor layer, the semiconductor device being provided in the semiconductor substrate below the reverse conductivity type semiconductor layer, being in contact with the reverse conductivity type semiconductor layer and having a higher concentration than the one conductivity type semiconductor substrate. A semiconductor device having one conductivity type semiconductor layer.
JP719892A 1992-01-20 1992-01-20 Semiconductor device Withdrawn JPH05211232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP719892A JPH05211232A (en) 1992-01-20 1992-01-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP719892A JPH05211232A (en) 1992-01-20 1992-01-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH05211232A true JPH05211232A (en) 1993-08-20

Family

ID=11659338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP719892A Withdrawn JPH05211232A (en) 1992-01-20 1992-01-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH05211232A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531363B2 (en) * 1998-03-05 2003-03-11 Nec Corporation Method for manufacturing a semiconductor integrated circuit of triple well structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531363B2 (en) * 1998-03-05 2003-03-11 Nec Corporation Method for manufacturing a semiconductor integrated circuit of triple well structure

Similar Documents

Publication Publication Date Title
WO1985004984A1 (en) Cmos integrated circuit technology
JP2797798B2 (en) Semiconductor device having buried contact for preventing penetration and method of manufacturing the same
JP3283458B2 (en) Method for manufacturing semiconductor device
JPH05211232A (en) Semiconductor device
TW334641B (en) Method of manufacturing semiconductor device
KR970053502A (en) Semiconductor device and manufacturing method thereof
JPS60193371A (en) Manufacture of semiconductor device
JPS6244862B2 (en)
JPH02133929A (en) Semiconductor device and its manufacture
JP2624365B2 (en) Method for manufacturing semiconductor device
JP2943855B2 (en) Method for manufacturing semiconductor device
JP2656159B2 (en) Thin film transistor and method of manufacturing the same
JP2633411B2 (en) Method for manufacturing semiconductor device
JP2820284B2 (en) Method for manufacturing semiconductor device
JPH0226034A (en) Manufacture of semiconductor device
JPH0247865A (en) Manufacture of semiconductor integrated circuit device
JPH06104276A (en) Semiconductor device and manufacture thereof
JPH06120243A (en) Manufacture of semiconductor device
JPH0294444A (en) Manufacture of semiconductor device
JPS59100521A (en) Manufacture of semiconductor device
JPS61202464A (en) Manufacture of semiconductor device
JPH03159167A (en) Manufacture of semiconductor integrated circuit
JPH02159035A (en) Integrated circuit device
JPS62245649A (en) Semiconductor device and manufacture thereof
JPS5882572A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408