JPH05205923A - Manufacture of permanent magnet having excellent corrosion-proof property - Google Patents

Manufacture of permanent magnet having excellent corrosion-proof property

Info

Publication number
JPH05205923A
JPH05205923A JP4179077A JP17907792A JPH05205923A JP H05205923 A JPH05205923 A JP H05205923A JP 4179077 A JP4179077 A JP 4179077A JP 17907792 A JP17907792 A JP 17907792A JP H05205923 A JPH05205923 A JP H05205923A
Authority
JP
Japan
Prior art keywords
permanent magnet
thin film
atomic
corrosion
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4179077A
Other languages
Japanese (ja)
Other versions
JPH0644525B2 (en
Inventor
Shigeki Hamada
隆樹 浜田
Tetsuharu Hayakawa
徹治 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP4179077A priority Critical patent/JPH0644525B2/en
Publication of JPH05205923A publication Critical patent/JPH05205923A/en
Publication of JPH0644525B2 publication Critical patent/JPH0644525B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To form a corrosion-proof thin film, having excellent adhesive property and corrosion-proof property, on the surface of a permanent magnet material in uniform thickness by a method wherein a corrosion-proof thin film layer is formed on the surface of a permanent magnet body, having the main phase consisting of tetragonal crystal, by an ion vapor-deposition thin film forming method. CONSTITUTION:The fine powder, in the composition of Nd 15, Dy 1.5, B 8 and Fe 75.5atom%, is placed in a metal mold, the fine powder is oriented in a magnetic field, and a molded body is formed by molding. The molded body is heat-treated, and a permanent magnet is manufactured. A test piece is cut out from the permanent magnet obtained, the Ti thin piece of coating material is evaporated by arc discharge under vacuum in a vacuum container containing the test piece, N2 gas is formed into accelarated N2 gas ions, Ti vapor and N2 gas ions are made to irradiate, and a Ti thin film is formed on the surface of the test piece. As a result, a corrosion-proof thin film layer, having the prescribed thickness and excellent uniformity, can be obtained, and the oxidization of the permanent magnet can completely be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、この発明は、R(R
はYを含む希土類元素のうち少なくとも1種)、B、F
eを主成分とする永久磁石の製造方法に係り、イオン蒸
着薄膜形成法(IVD)により耐食性薄膜を形成して永
久磁石の耐食性を改善した希土類・ボロン・鉄系永久磁
石の製造方法に関する。
This invention relates to R (R
Is at least one of rare earth elements including Y), B, F
The present invention relates to a method for producing a permanent magnet containing e as a main component, and relates to a method for producing a rare earth / boron / iron-based permanent magnet in which a corrosion-resistant thin film is formed by an ion deposition thin film forming method (IVD) to improve the corrosion resistance of the permanent magnet.

【0002】[0002]

【従来の技術】現在の代表的な永久磁石材料は、アルニ
コ、ハードフェライトおよび希土類コバルト磁石であ
る。近年のコバルトの原料事情の不安定化に伴ない、コ
バルトを20〜30wt%含むアルニコ磁石の需要は減
り、鉄の酸化物を主成分とする安価なハードフェライト
が磁石材料の主流を占めるようになった。
2. Description of the Related Art The typical current permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets. With the destabilization of the situation of cobalt raw materials in recent years, the demand for alnico magnets containing 20 to 30 wt% of cobalt has decreased, and inexpensive hard ferrite containing iron oxide as a main component has become the mainstream of magnet materials. became.

【0003】一方、希土類コバルト磁石はコバルトを5
0〜60wt%も含むうえ、希土類鉱石中にあまり含ま
れていないSmを使用するため大変高価であるが、他の
磁石に比べて、磁気特性が格段に高いため、主として小
型で付加価値の高い磁気回路に多用されるようになっ
た。
On the other hand, rare earth cobalt magnets contain 5% cobalt.
It is very expensive because it contains 0 to 60 wt% and Sm, which is rarely contained in rare earth ores, but is very expensive compared to other magnets, so it is mainly small and has high added value. It has become widely used in magnetic circuits.

【0004】出願人は先に、高価なSmやCoを必ずし
も含有しない新しい高性能永久磁石としてFe−B−R
系(RはYを含む希土類元素のうち少なくとも1種)永
久磁石を提案した(特願昭57−145072号)。こ
の永久磁石は、RとしてNdやPrを中心とする資源的
に豊富な軽希土類を用い、Feを主成分として25MG
Oe以上の極めて高いエネルギー積を示す、すぐれた永
久磁石である。
The applicant has previously proposed Fe-BR as a new high-performance permanent magnet which does not necessarily contain expensive Sm and Co.
A system (R is at least one of rare earth elements including Y) permanent magnet has been proposed (Japanese Patent Application No. 57-145072). This permanent magnet uses Rd, which is a resource-rich light rare earth element centered on Nd and Pr, and has 25 MG with Fe as a main component.
It is an excellent permanent magnet that exhibits an extremely high energy product over Oe.

【0005】[0005]

【発明が解決しようとする課題】上記のすぐれた磁気特
性を有するFe−B−R系永久磁石は、主成分として、
空気中で酸化し易い希土類元素及び鉄を含有するため、
磁気回路に組込んだ場合に、磁石表面に生成する酸化物
により、磁気回路の出力低下及び磁気回路のばらつきを
惹起し、また、表面酸化物の脱落による周辺機器への汚
染の問題があった。
The Fe-BR type permanent magnet having the above-mentioned excellent magnetic characteristics has, as a main component,
Since it contains iron and rare earth elements that are easily oxidized in air,
When incorporated into a magnetic circuit, the oxide generated on the surface of the magnet causes the output of the magnetic circuit to decrease and the magnetic circuit to fluctuate, and there is a problem of contamination of peripheral equipment due to the dropping of the surface oxide. ..

【0006】そこで、出願人は先に、上記のFe−B−
R系永久磁石の対象系の改善のため、磁石体表面に無電
解めっき法あるいは電解めっき法により耐食性金属めっ
き層を被覆した永久磁石(特願昭58−162350
号)、及び磁石体表面にスプレー法あるいは浸漬法によ
って、耐食性樹脂層を被覆した永久磁石を提案(特願昭
58−171907号)した。
[0006] Therefore, the applicant has previously proposed the above Fe-B-
In order to improve the target system of the R type permanent magnet, a permanent magnet having a corrosion resistant metal plating layer coated on the surface of the magnet body by electroless plating or electrolytic plating (Japanese Patent Application No. 58-162350).
No.) and a permanent magnet whose surface is coated with a corrosion-resistant resin layer by spraying or dipping (Japanese Patent Application No. 58-171907).

【0007】しかし、前者のめっき法では、永久磁石体
が焼結体の場合、該焼結体は有孔性であるため、この孔
内にめっき前処理での酸性溶液またはアルカリ溶液が残
留し、経年変化とともに腐食する恐れがあり、また磁石
体の耐薬品性が劣るため、めっき時に磁石表面が腐食さ
れて密着性・防食性が劣る問題があった。
However, in the former plating method, when the permanent magnet body is a sintered body, since the sintered body is porous, an acidic solution or an alkaline solution in the plating pretreatment remains in the holes. However, there is a problem that it may corrode with age, and the chemical resistance of the magnet body is poor, so the surface of the magnet is corroded during plating, resulting in poor adhesion and corrosion resistance.

【0008】また、後者のスプレー法による樹脂の塗装
には方向性があるため、被処理物表面全体に均一な樹脂
被膜を施すのに多大の工程、手間を要し、特に形状が困
難な異形磁石体に均一厚みの被膜を施すことは困難であ
り、また、浸漬法では樹脂被膜厚みが不均一になり、製
品寸法精度が悪い問題があった。
Further, since the latter method of coating a resin by a spray method has directionality, it takes a lot of steps and labor to form a uniform resin film on the entire surface of the object to be treated, and it is particularly difficult to form the irregular shape. It is difficult to apply a coating having a uniform thickness to the magnet body, and the dipping method causes a non-uniform resin coating thickness, resulting in poor product dimensional accuracy.

【0009】この発明は、希土類・ボロン・鉄を主成分
とする新規な永久磁石材料の耐食性の改善を目的とし、
腐食性薬品等を使用、残留させることなく、密着性、防
食性にすぐれた耐食性薄膜を、永久磁石材料表面に均一
厚みで設けることができる製造方法の提供を目的として
いる。
The present invention aims to improve the corrosion resistance of a novel permanent magnet material containing rare earths, boron and iron as main components.
It is an object of the present invention to provide a manufacturing method capable of forming a corrosion-resistant thin film having excellent adhesion and anticorrosion properties on a surface of a permanent magnet material with a uniform thickness without using or leaving a corrosive chemical or the like.

【0010】[0010]

【課題を解決するための手段】この発明は、真空容器内
で薄膜用原料の蒸発物を噴射、イオン化して加速電圧で
加速し、R(但しRはYを含む希土類元素のうち少なく
とも1種)8原子%〜30原子%、B2原子%〜28原
子%、Fe42原子%〜90原子%を主成分とし主相が
正方晶からなる永久磁石体表面に付着及びイオン照射し
て、耐食性薄膜を形成被覆することを特徴とする耐食性
のすぐれた永久磁石の製造方法である。
According to the present invention, a vaporized material of a thin film material is injected and ionized in a vacuum container and accelerated by an accelerating voltage, and R (where R is at least one of rare earth elements including Y). ) 8 atomic% to 30 atomic%, B2 atomic% to 28 atomic%, Fe42 atomic% to 90 atomic% as main components, and the main phase is tetragonal. A method for producing a permanent magnet having excellent corrosion resistance, which is characterized by forming and coating.

【0011】すなわち、この発明は、R(但しRはYを
含む希土類元素のうち少なくとも1種)8原子%〜30
原子%、B2原子%〜28原子%、Fe42原子%〜9
0原子%を主成分とし主相が正方晶からなる永久磁石体
表面に、イオン蒸着薄膜形成法(IVD:Ion Va
por Deposition)により、Al,Ni,
Cr,Cu,Co等の金属あるいはその合金、またSi
2,Al23,Cr23,TiN,AlN,TiC等
の耐食性薄膜層を形成被覆することを特徴とする耐食性
のすぐれた永久磁石の製造方法である。
That is, according to the present invention, R (where R is at least one of rare earth elements including Y) is 8 atom% to 30.
Atomic%, B2 atomic% to 28 atomic%, Fe 42 atomic% to 9
Ion vapor deposition thin film formation method (IVD: Ion Va
Por Deposition), Al, Ni,
Metals such as Cr, Cu, Co or alloys thereof, or Si
A method for producing a permanent magnet having excellent corrosion resistance, characterized by forming and coating a corrosion resistant thin film layer of O 2 , Al 2 O 3 , Cr 2 O 3 , TiN, AlN, TiC or the like.

【0012】この発明によるイオン蒸着薄膜形成法(I
VD)は、真空容器内で、所要の金属や合金、セラミッ
クスの薄膜用原料を電子銃やアーク放電等によって蒸発
させた蒸発物を噴射しイオン化し、あるいはさらに他イ
オン源から引出されたイオンとともに高加速電圧で加速
し、加速されないものが永久磁石体表面に付着したり、
イオンビーム照射されたものが衝突付着することによ
り、永久磁石体表面に該耐食性薄膜を形成被覆させるも
のである。例えば、クラスターイオンビーム装置などの
公知の装置を利用できる。この発明において、上述した
イオン蒸着薄膜形成法(IVD)により、永久磁石表面
に形成される耐食性薄膜の厚みは、磁気特性や耐食性な
どを考慮すると30μm以下の厚みが好ましい。
The ion vapor deposition thin film forming method (I
VD) injects ionization by injecting an evaporated material obtained by evaporating a raw material for a thin film of a required metal, alloy, or ceramic by an electron gun or arc discharge in a vacuum container, or together with ions extracted from another ion source. It accelerates with a high accelerating voltage, something that is not accelerated adheres to the surface of the permanent magnet body,
The surface of the permanent magnet body is coated with the corrosion-resistant thin film by collision and adhesion of the material irradiated with the ion beam. For example, a known device such as a cluster ion beam device can be used. In the present invention, the thickness of the corrosion resistant thin film formed on the surface of the permanent magnet by the above-mentioned ion vapor deposition thin film forming method (IVD) is preferably 30 μm or less in consideration of magnetic properties and corrosion resistance.

【0013】また、この発明における永久磁石は、体積
比で1%〜50%の非磁性相(酸化物を除く)を含むこ
とを特徴とし、焼結磁石の場合には、結晶粒径が1〜1
00μmの範囲にある正方晶系の結晶構造を有する化合
物を主相とする。
The permanent magnet according to the present invention is characterized by containing a non-magnetic phase (excluding oxides) in a volume ratio of 1% to 50%. In the case of a sintered magnet, the crystal grain size is 1%. ~ 1
The main phase is a compound having a tetragonal crystal structure in the range of 00 μm.

【0014】永久磁石の限定理由この発明において、永
久磁石に用いる希土類元素Rは、8原子%〜30原子%
のNd,Pr,Dy,Ho,Tbのうち少なくとも1
種、あるいはさらに、La,Sm,Ce,Gd,Er,
Eu,Pm,Tm,Yb,Lu,Yのうち少なくとも1
種を含むものが好ましい。また、通例Rのうち1種をも
って足りるが、実用上は2種以上の混合物(ミッシュメ
タル、ジジム等)を入手上の便宜等の理由により用いる
ことができる。なお、このRは純希土類元素でなくても
よく、工業上入手可能な範囲で製造上不可避的な不純物
を含有するものでも差し支えない。R(Yを含む希土類
元素のうち少なくとも1種)は、新規な上記系永久磁石
における必須元素であって、8原子%未満では結晶構造
がα−鉄と同一構造の立方晶組織となるため、高磁気特
性、特に高保磁力が得られず、30原子%を越えるとR
リッチな非磁性相が多くなり、残留磁束密度(Br)が
低下してすぐれた特性の永久磁石が得られない。よっ
て、Rは8原子%〜30原子%の範囲とする。
Reason for limiting permanent magnet In the present invention, the rare earth element R used in the permanent magnet is 8 atom% to 30 atom%.
At least 1 of Nd, Pr, Dy, Ho, Tb of
Seed, or even La, Sm, Ce, Gd, Er,
At least one of Eu, Pm, Tm, Yb, Lu, Y
Those containing seeds are preferred. Further, although one of R is usually sufficient, a mixture of two or more kinds (Misch metal, didymium, etc.) can be practically used for the convenience of availability. It should be noted that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in manufacturing within the industrially available range. R (at least one of rare earth elements including Y) is an essential element in the novel permanent magnet, and if it is less than 8 atomic%, the crystal structure becomes a cubic crystal structure having the same structure as α-iron. If high magnetic properties, especially high coercive force cannot be obtained and it exceeds 30 atom%, R
The rich non-magnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, R is in the range of 8 atom% to 30 atom%.

【0015】Bは、新規な上記系永久磁石における必須
元素であって、2原子%未満では菱面体組織となり、高
い保磁力(iHc)が得られず、28原子%を越えると
Bリッチな非磁性相が多くなり、残留磁束密度(Br)
が低下するため、すぐれた永久磁石が得られない。よっ
て、Bは2原子%〜28原子%の範囲とする。
B is an essential element in the novel permanent magnet, and if it is less than 2 atomic%, a rhombohedral structure is formed and a high coercive force (iHc) cannot be obtained. The magnetic phase increases and the residual magnetic flux density (Br)
, The excellent permanent magnet cannot be obtained. Therefore, B is in the range of 2 at% to 28 at%.

【0016】Feは、新規な上記系永久磁石において必
須元素であり、42原子%未満では残留磁束密度(B
r)が低下し、90原子%を越えると高い保磁力が得ら
れないので、Feは42原子%〜90原子%の含有とす
る。また、この発明による永久磁石において、Feの一
部をCoで置換することは、得られる磁石の磁気特性を
損なうことなく、温度特性を改善することができるが、
Coの置換量がFeの50%を越えると、逆に磁気特性
が劣化するため、好ましくない。
Fe is an essential element in the novel permanent magnets, and if the content is less than 42 atomic%, the residual magnetic flux density (B
Since r) decreases and a high coercive force cannot be obtained if it exceeds 90 atom%, Fe is contained in the range of 42 atom% to 90 atom%. Further, in the permanent magnet according to the present invention, substituting a part of Fe with Co can improve temperature characteristics without impairing the magnetic characteristics of the obtained magnet.
When the substitution amount of Co exceeds 50% of Fe, the magnetic characteristics are deteriorated, which is not preferable.

【0017】また、この発明による永久磁石は、R、
B、Feの他、工業的生産上不可避的不純物の存在を許
容できるが、Bの一部を4.0原子%以下のC、3.5
原子%以下のP、2.5原子%以下のS、3.5原子%
以下のCuのうち少なくとも1種、合計量で4.0原子
%以下で置換することにより、永久磁石の製造性の改
善、低価格化が可能である。下記添加元素のうち少なく
とも1種は、R−B−Fe系永久磁石に対してその保磁
力等を改善あるいは製造性の改善、低価格化に効果があ
るため添加する。しかし、保磁力改善のための添加に伴
い残留磁束密度(Br)の低下を招来するので、従来の
ハードフェライト磁石の残留磁束密度と同等以上となる
範囲での添加が望ましい。9.5原子%以下のAl、
4.5原子%以下のTi、9.5原子%以下のV、8.
5原子%以下のCr、8.0原子%以下のMn、5.0
原子%以下のBi、12.5原子%以下のNb、10.
5原子%以下のTa、9.5原子%以下のMo、9.5
原子%以下のW、2.5原子%以下のSb、7.0原子
%以下のGe、3.5原子%以下のSn、5.5原子%
以下のZr、5.5原子%以下のHfのうち少なくとも
1種を添加含有、但し、2種以上含有する場合は、その
最大含有量は当該添加元素のうち最大値を有するものの
原子%以下を含有させることにより、永久磁石の高保磁
力化が可能になる。
The permanent magnet according to the present invention has R,
In addition to B and Fe, the presence of impurities that are unavoidable in industrial production can be tolerated, but a part of B is 4.0 atomic% or less of C and 3.5.
P of atomic% or less, S of 2.5 atomic% or less, 3.5 atomic%
By substituting at least one of the following Cu with a total amount of 4.0 atomic% or less, it is possible to improve the productivity of the permanent magnet and reduce the cost. At least one of the following additional elements is added to the RB-Fe based permanent magnet because it is effective in improving the coercive force, improving the manufacturability, and reducing the cost. However, since the residual magnetic flux density (Br) is lowered with the addition for improving the coercive force, it is desirable to add the magnetic flux density in the range equal to or more than the residual magnetic flux density of the conventional hard ferrite magnet. 9.5 atomic% or less Al,
4.5 atomic% or less Ti, 9.5 atomic% or less V, 8.
5 atomic% or less Cr, 8.0 atomic% or less Mn, 5.0
Bi of atomic% or less, Nb of 12.5 atomic% or less, 10.
5 atomic% or less Ta, 9.5 atomic% or less Mo, 9.5
W of atomic% or less, Sb of 2.5 atomic% or less, Ge of 7.0 atomic% or less, Sn of 3.5 atomic% or less, 5.5 atomic%
At least one of the following Zr and 5.5 at% or less of Hf is added and contained. However, in the case of containing two or more of them, the maximum content is the atomic% or less of that of the additional elements having the maximum value. By including it, it becomes possible to increase the coercive force of the permanent magnet.

【0018】結晶相は主相が正方晶であることが、すぐ
れた磁気特性を有する焼結永久磁石と作製するのに不可
欠である。また、この発明による永久磁石は、磁場中プ
レス成形することにより磁気的異方性磁石が得られ、ま
た、無磁界中でプレス成形することにより、磁気的等方
性磁石を得ることができる。
The main phase of the crystal phase is a tetragonal system, which is essential for producing a sintered permanent magnet having excellent magnetic properties. Further, the permanent magnet according to the present invention can be magnetically anisotropic magnet obtained by press molding in a magnetic field, and can be magnetically isotropic magnet by press molding in a non-magnetic field.

【0019】この発明による永久磁石は、保磁力iHc
≧1kOe、残留磁束密度Br>4kGを示し、最大エ
ネルギー積(BH)maxはハードフェライトと同等以
上となり、最も好ましい組成範囲では、(BH)max
≧10MGOeを示し、最大値は25MGOe以上に達
する。また、この発明による永久磁石のRの主成分がそ
の50%以上を軽希土類金属が占める場合で、R12原
子%〜20原子%、B4原子%〜24原子%、Fe65
原子%〜82原子%を主成分とするとき、磁気的異方性
焼結磁石の場合最もすぐれた磁気特性を示し、特に軽希
土類金属がNdの場合には、(BH)maxはその最大
値が35MGOe以上に達する。
The permanent magnet according to the present invention has a coercive force iHc.
≧ 1 kOe, residual magnetic flux density Br> 4 kG, the maximum energy product (BH) max is equal to or greater than that of hard ferrite, and in the most preferable composition range, (BH) max
≧ 10 MGOe, and the maximum value reaches 25 MGOe or more. Further, when the main component of R of the permanent magnet according to the present invention occupies 50% or more of the light rare earth metal, R 12 atom% to 20 atom%, B 4 atom% to 24 atom%, Fe65
When the main component is atomic% to 82 atomic%, the magnetically anisotropic sintered magnet exhibits the best magnetic properties, and particularly when the light rare earth metal is Nd, (BH) max is the maximum value. Reaches over 35 MGOe.

【0020】[0020]

【作用】この発明は、本系永久磁石材料表面に生成する
酸化物を抑制するため、該表面に膜厚が均一で、強固か
つ安定な耐食性薄膜層を形成する製造方法であり、この
発明により形成された耐食性薄膜層により、磁石体表面
の酸化が抑制され、磁気特性が劣化することなく、ま
た、腐食性の薬品等を使用、残留させることがないた
め、かつ長期にわたって安定する利点がある。さらに、
この発明における永久磁石は、RとしてNdやPrを中
心とする資源的に豊富な軽希土類を主に用い、Fe、
B、Rを主成分とすることにより、25MGOe以上の
極めて高いエネルギー系並びに、高残留磁束密度、高保
磁力を有し、かつ高い耐食性を有する、すぐれた永久磁
石を安価に得ることができる。
The present invention is a manufacturing method for forming a strong and stable corrosion-resistant thin film layer having a uniform film thickness on the surface of the present permanent magnet material in order to suppress oxides formed on the surface. The formed corrosion-resistant thin film layer suppresses oxidation of the surface of the magnet body, does not deteriorate magnetic properties, and does not use or leave corrosive chemicals, etc., and has the advantage of being stable for a long period of time. .. further,
The permanent magnet in the present invention mainly uses light rare earths rich in resources centered on Nd and Pr as R, Fe,
By using B and R as the main components, it is possible to inexpensively obtain an excellent permanent magnet having an extremely high energy system of 25 MGOe or more, a high residual magnetic flux density, a high coercive force, and a high corrosion resistance.

【0021】[0021]

【実施例】【Example】

実施例 出発原料として、純度99.9%の電解鉄、B19.4
%を含有し残部はFe及びAl,Si,C等の不純物か
らなるフェロボロン合金、純度99.7%以上のNd及
びDy金属を使用し、それらを高周波溶解し、その後水
冷銅鋳型に鋳造し、15Nd1.5Dy8B75.5F
e(原子%)なる組成の鋳塊を得た。
Example As a starting material, electrolytic iron having a purity of 99.9%, B19.4
%, With the balance being Fe and Al, Si, C and other ferroboron alloys made of Nd and Dy metals with a purity of 99.7% or more, and high-frequency melting them, then casting in a water-cooled copper mold, 15Nd1.5Dy8B75.5F
An ingot having a composition of e (atomic%) was obtained.

【0022】その後インゴットを、スタンプミルにより
粗粉砕し、次にボールミルにより粉砕し、粒度3μmの
微粉末を得た。この微粉末を金型に挿入し、12kOe
の磁界中で配向し、磁界と直角方向に、1.5t/cm
2の圧力で成形した。得られた成形体を、1100°
C、1時間、Ar中の条件で焼結し、その後放冷し、さ
らにAr中で600°C、2時間の時効処理を施して、
永久磁石を作製した。
Then, the ingot was roughly crushed by a stamp mill and then crushed by a ball mill to obtain a fine powder having a particle size of 3 μm. Insert this fine powder into the mold and press at 12 kOe
Oriented in a magnetic field of 1.5 t / cm in the direction perpendicular to the magnetic field
Molded at a pressure of 2 . The obtained molded body is 1100 °
Sintered under the conditions of C for 1 hour in Ar, then allowed to cool, and then subjected to aging treatment in Ar at 600 ° C. for 2 hours,
A permanent magnet was produced.

【0023】得られた永久磁石から外径20mm×内径
10mm×厚み1.5mm寸法に試験片を切り出した。
上記試験片を挿入した真空容器内の真空度1×10-2
orr以下で、コーティング材のTi薄片をアーク放電
により蒸発させると共に、N2ガスを引出電圧40k
V、イオン化電流100mA、ビームサイズ4×10c
2でN2ガスイオンとして加速し、Ti蒸発とN2ガス
イオン照射を3時間行ない、試験片表面にTiN薄膜を
形成した。このときのTiN薄膜の厚みは5μmであっ
た。
From the obtained permanent magnet, a test piece was cut into a size of 20 mm outer diameter × 10 mm inner diameter × 1.5 mm thickness.
Degree of vacuum in the vacuum vessel in which the above test piece is inserted 1 × 10 -2 T
At or or less, Ti flakes of the coating material are vaporized by arc discharge, and N 2 gas is pulled out at a voltage of 40 k.
V, ionization current 100mA, beam size 4x10c
The TiN thin film was formed on the surface of the test piece by accelerating as N 2 gas ions at m 2 and performing Ti evaporation and N 2 gas ion irradiation for 3 hours. The thickness of the TiN thin film at this time was 5 μm.

【0024】この試験片に耐食性試験と耐食性試験後の
TiN薄膜の密着強度試験を行なった。また、耐食性試
験前後の磁気特性を測定した。試験結果及び測定結果を
表1に示す。
The test piece was subjected to a corrosion resistance test and a TiN thin film adhesion strength test after the corrosion resistance test. In addition, the magnetic characteristics before and after the corrosion resistance test were measured. The test results and measurement results are shown in Table 1.

【0025】比較例 また、比較例として、上記試験片に、トリクレンにて3
分間溶剤脱脂し、5%、NaOHにて60°C、3分間
のアルカリ脱脂したのち、2%Hclにて室温、10秒
間の酸洗をし、ワット浴にて電流密度4A/dm2、浴
温度60°C、20分間の条件にて電気ニッケルめっき
を行ない、表面に10μm厚みのニッケルめっき層を有
する比較試験片(比較例1)を得た。この比較試験片に
実施例と同一の試験及び測定を行ない、その結果を表1
に示す。
Comparative Example Further, as a comparative example, the above test piece was treated with trichlene 3
After solvent degreasing for 5 minutes, 5% NaOH at 60 ° C for 3 minutes, and alkaline degreasing for 3 minutes, pickling with 2% Hcl at room temperature for 10 seconds, current density 4A / dm 2 in Watt bath, bath Electrolytic nickel plating was performed at a temperature of 60 ° C. for 20 minutes to obtain a comparative test piece (Comparative Example 1) having a nickel plating layer with a thickness of 10 μm on the surface. This comparative test piece was subjected to the same tests and measurements as in the example, and the results are shown in Table 1.
Shown in.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】表1の試験及び測定結果に明らかなよう
に、この発明のイオン蒸着薄膜形成法(IVD)による
耐食性薄膜層は、比較例に対して、膜厚が所要厚みで格
段にすぐれた均一度が得られているため、永久磁石体の
酸化が確実に防止されており、磁気特性の劣化がなく、
比較例に対して磁気特性の向上が著しいことがわかる。
As is apparent from the test and measurement results of Table 1, the corrosion-resistant thin film layer according to the ion deposition thin film forming method (IVD) of the present invention has a remarkably excellent film thickness as compared with the comparative example. Because of the high uniformity, the oxidation of the permanent magnet body is reliably prevented, and the magnetic characteristics do not deteriorate.
It can be seen that the magnetic properties are remarkably improved as compared with the comparative example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 真空容器内で薄膜用原料の蒸発物を噴
射、イオン化して加速電圧で加速し、R(但しRはYを
含む希土類元素のうち少なくとも1種)8原子%〜30
原子%、B2原子%〜28原子%、Fe42原子%〜9
0原子%を主成分とし主相が正方晶からなる永久磁石体
表面に付着及びイオン照射して、耐食性薄膜を形成被覆
することを特徴とする耐食性のすぐれた永久磁石の製造
方法。
1. An atomized material vapor for a thin film is jetted and ionized in a vacuum vessel and accelerated by an accelerating voltage, and R (where R is at least one of rare earth elements including Y) is 8 atomic% to 30.
Atomic%, B2 atomic% to 28 atomic%, Fe 42 atomic% to 9
A method for producing a permanent magnet having excellent corrosion resistance, which comprises depositing and ion-irradiating a surface of a permanent magnet having a main phase of tetragonal with 0 atomic% as a main component to form and coat a corrosion-resistant thin film.
JP4179077A 1992-06-12 1992-06-12 Method of manufacturing permanent magnet with excellent corrosion resistance Expired - Lifetime JPH0644525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4179077A JPH0644525B2 (en) 1992-06-12 1992-06-12 Method of manufacturing permanent magnet with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4179077A JPH0644525B2 (en) 1992-06-12 1992-06-12 Method of manufacturing permanent magnet with excellent corrosion resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59278489A Division JPS61150201A (en) 1984-12-24 1984-12-24 Permanent magnet with excellent anticorrosion property

Publications (2)

Publication Number Publication Date
JPH05205923A true JPH05205923A (en) 1993-08-13
JPH0644525B2 JPH0644525B2 (en) 1994-06-08

Family

ID=16059686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4179077A Expired - Lifetime JPH0644525B2 (en) 1992-06-12 1992-06-12 Method of manufacturing permanent magnet with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JPH0644525B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023884A1 (en) * 1995-12-25 1997-07-03 Sumitomo Special Metals Company Limited Permanent magnet for ultrahigh vacuum application and method for manufacturing the same
EP0923087A1 (en) * 1996-08-30 1999-06-16 Sumitomo Special Metals Company Limited Corrosion-resistant permanent magnet and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023884A1 (en) * 1995-12-25 1997-07-03 Sumitomo Special Metals Company Limited Permanent magnet for ultrahigh vacuum application and method for manufacturing the same
EP0811994A1 (en) * 1995-12-25 1997-12-10 Sumitomo Special Metals Company Limited Permanent magnet for ultrahigh vacuum application and method for manufacturing the same
EP0811994A4 (en) * 1995-12-25 1999-03-31 Sumitomo Spec Metals Permanent magnet for ultrahigh vacuum application and method for manufacturing the same
EP0923087A1 (en) * 1996-08-30 1999-06-16 Sumitomo Special Metals Company Limited Corrosion-resistant permanent magnet and method for manufacturing the same
EP0923087A4 (en) * 1996-08-30 2000-04-26 Sumitomo Spec Metals Corrosion-resistant permanent magnet and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0644525B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US4837114A (en) Process for producing magnets having improved corrosion resistance
JPH0283905A (en) Corrosion-resistant permanent magnet and manufacture thereof
JPH0515043B2 (en)
JPH053722B2 (en)
JPH0569282B2 (en)
JPH05205923A (en) Manufacture of permanent magnet having excellent corrosion-proof property
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JPH0821511B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JPS61185910A (en) Manufacture of permanent magnet with excellent corrosion-resisting property
JPH0682574B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JP3108400B2 (en) Permanent magnet with excellent corrosion resistance
JPH0535216B2 (en)
JPH05205922A (en) Manufacture of permanent magnet having excellent corrosion resistant property
JPH10340823A (en) Manufacture of r-iron-boron permanent magnet having excellent salt water resistance
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP3676513B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH0646603B2 (en) Permanent magnet having excellent corrosion resistance and method of manufacturing the same
JPH0831363B2 (en) Method for manufacturing corrosion-resistant permanent magnet
JPH0545045B2 (en)
JPS63255376A (en) Production of corrosion resistant permanent magnet
JP3652818B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH08264310A (en) Manufacture of rare earth-iron-boron permanent magnet
JPH0576521B2 (en)
JPH0569283B2 (en)
JPH0752685B2 (en) Corrosion resistant permanent magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term