JPH05196714A - Laminated ceramic superconducting magnetoresistance element - Google Patents

Laminated ceramic superconducting magnetoresistance element

Info

Publication number
JPH05196714A
JPH05196714A JP3338402A JP33840291A JPH05196714A JP H05196714 A JPH05196714 A JP H05196714A JP 3338402 A JP3338402 A JP 3338402A JP 33840291 A JP33840291 A JP 33840291A JP H05196714 A JPH05196714 A JP H05196714A
Authority
JP
Japan
Prior art keywords
superconducting
ceramic
laminated
series
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3338402A
Other languages
Japanese (ja)
Inventor
Manabu Fujimoto
学 藤本
Hideo Nojima
秀雄 野島
Hidetaka Shintaku
英隆 新宅
Masaya Osada
昌也 長田
Masayoshi Koba
正義 木場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3338402A priority Critical patent/JPH05196714A/en
Publication of JPH05196714A publication Critical patent/JPH05196714A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve magnetism detecting sensitivity without increasing an occupying area. CONSTITUTION:On one surface of a substrate 2, on which copper is formed by vapor deposition, YBa2C3O7-x is provided by electrodeposition, and a superconductor wire 3 is formed. A starting terminal 4 is provided at one end of each substrate. Meanwhile, a terminating terminal 5 is provided at the other end. Thus, a superconductive resistor element 1 is formed. Four superconductive resistor elements 1a, 1b, 1c and 1d are laminated so that the sides of superconductor wires 3a, 3b, 3c and 3d are aligned in the same direction. Electrodes 6a and 7a are attached to the starting terminal 4a of the uppermost superconductive resistor element 1a. Meaxawhile, electrodes 6d and 7d are attached to the terminating terminal 5d of the lowermost superconductive resistor element 1d. The terminating terminals 5a, 5b and 5c of the upper superconductive resistor elements 1a, 1b and 1c are sequentially connected to the starting terminals 4b, 4c and 4d of the lower superconductive resistor layers 1b, 1c and 16 with copper wires 8, 9 and 10. Thus, the length of the conductor wire is quadrpled with the same occupying area as with the superconductive resistor element 1a, and the magnetism detecting sensitivity with is improved to about twice is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、微小な磁界を精度良
く高感度で測定するセラミック超電導磁気センサに使用
される積層型セラミック超電導磁気抵抗素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated ceramic superconducting magnetoresistive element used in a ceramic superconducting magnetic sensor for measuring a minute magnetic field with high accuracy and high sensitivity.

【0002】[0002]

【従来の技術】従来、磁界の検出や測定には半導体ある
いは磁性体の磁気抵抗効果による磁気センサが使用され
ている。上記半導体磁気センサとしては、InSbあるい
はInAs等の形状効果を用いた磁気センサが実用化され
ている。また、磁性体磁気センサとしては、Fe−パー
マアロイあるいはCoNiの配向効果を用いた磁気センサ
が実用化されている。
2. Description of the Related Art Conventionally, a magnetic sensor based on a magnetoresistive effect of a semiconductor or a magnetic material has been used for detecting and measuring a magnetic field. As the semiconductor magnetic sensor, a magnetic sensor using a shape effect such as InSb or InAs has been put into practical use. Further, as a magnetic substance magnetic sensor, a magnetic sensor using an orientation effect of Fe-perm alloy or CoNi has been put into practical use.

【0003】また、特に高感度の磁気センサとしは、超
電導量子干渉素子(以下、SQUIDと略称する)があ
る。さらには、セラミック超電導体の結晶粒界に起因す
る磁気抵抗効果を利用したセラミック超電導磁気センサ
が提案されている。
Further, as a magnetic sensor having a particularly high sensitivity, there is a superconducting quantum interference device (hereinafter abbreviated as SQUID). Furthermore, a ceramic superconducting magnetic sensor that utilizes the magnetoresistive effect caused by the crystal grain boundaries of the ceramic superconductor has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来のセラミック超電導磁気センサは、測定する磁界が弱
い場合には磁界の変化に対する素子の抵抗の変化率が小
さいために測定精度が悪いという問題がある。また、上
記SQUIDは、10-10ガウス程度の弱磁界をも測定
できる極めて高い感度を有している。ところが、このS
QUIDの構成は、超電導体に極薄絶縁膜を介在させた
ジョセフソン素子を組み込んだ構成である。したがっ
て、ジョセフソン素子の製作に高度な技術を必要とする
ためSQUIDの製作には困難が伴うという問題があ
る。さらに、上記SQUIDは出力レベルが低いために
大掛かりな出力検出システムが必要となり、その操作も
簡単にはできないという問題もある。
However, the above-mentioned conventional ceramic superconducting magnetic sensor has a problem that the measurement accuracy is poor when the magnetic field to be measured is weak because the rate of change of the resistance of the element with respect to the change of the magnetic field is small. .. Further, the SQUID has an extremely high sensitivity capable of measuring a weak magnetic field of about 10 −10 Gauss. However, this S
The structure of the QUID is a structure in which a Josephson element having an ultrathin insulating film interposed is incorporated in a superconductor. Therefore, there is a problem in that it is difficult to manufacture the SQUID because a sophisticated technique is required to manufacture the Josephson device. Further, since the SQUID has a low output level, it requires a large-scale output detection system, and there is also a problem that its operation cannot be performed easily.

【0005】上記セラミック超電導磁気センサは、上述
のようにセラミック超電導体の粒界の特性を利用するも
のであり、粒界が極薄い絶縁膜あるいは常電導膜を介在
して接合したり、粒界がポイント状で弱結合したりして
いるセラミック超電導体粒子の集合を用いる。したがっ
て、上述のようなセラミック超電導磁気センサにおいて
は、弱い磁界の印加によってもその粒界部分から超電導
状態が壊れて常電導状態になって、急激に大きな電気抵
抗を持つようになるという特徴がある。
The above-described ceramic superconducting magnetic sensor utilizes the characteristics of the grain boundaries of the ceramic superconductor as described above. The grain boundaries are joined together by interposing an extremely thin insulating film or normal conducting film, or the grain boundaries. A set of ceramic superconducting particles in which points are weakly bonded is used. Therefore, the ceramic superconducting magnetic sensor as described above is characterized in that even if a weak magnetic field is applied, the superconducting state is broken from the grain boundary portion to the normal conducting state, and the electric resistance suddenly becomes large. ..

【0006】このように、上記セラミック超電導磁気セ
ンサは優れた磁気特性を示すのであるが、これまでに製
作されたセラミック超電導磁気センサにおいては10-5
〜10-6ガウス/Hz-1/2程度の磁気検出感度しか得るこ
とができなかった。そこで、さらに広く応用展開を図っ
て生体磁気(特に心臓からの磁気)を検出可能にするため
には10-7〜10-8ガウス/Hz-1/2程度の磁気検出感度
が必要であり、セラミック超電導磁気センサに使用され
るセラミック超電導磁気抵抗素子の感度を更に上げるこ
とが望まれている。
As described above, the above-mentioned ceramic superconducting magnetic sensor exhibits excellent magnetic characteristics. However, the ceramic superconducting magnetic sensors manufactured up to now have 10 -5.
Only a magnetic detection sensitivity of about 10 -6 Gauss / Hz -1/2 could be obtained. Therefore, in order to broaden the application and detect biomagnetism (especially magnetism from the heart), a magnetic detection sensitivity of about 10 -7 to 10 -8 Gauss / Hz -1/2 is required. It is desired to further increase the sensitivity of the ceramic superconducting magnetoresistive element used in the ceramic superconducting magnetic sensor.

【0007】そこで、この発明の目的は、占有面積を増
加させることなく磁気検出感度を向上させることができ
る積層型セラミック超電導磁気抵抗素子を提供すること
にある。
Therefore, an object of the present invention is to provide a laminated ceramic superconducting magnetoresistive element capable of improving the magnetic detection sensitivity without increasing the occupied area.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、第1の発明の積層型セラミック超電導磁気抵抗素子
は、外部から印加された磁界によってセラミック超電導
体の粒界部分から超電導状態が破壊されて抵抗値が変化
する複数のセラミック超電導体膜間を電気的に絶縁して
積層すると共に、この積層された各セラミック超電導体
膜を電気的に直列に接続して両端に電極を設けたことを
特徴としている。
In order to achieve the above object, in the multilayer ceramic superconducting magnetoresistive element of the first invention, the superconducting state is destroyed from the grain boundary portion of the ceramic superconductor by a magnetic field applied from the outside. The electrical resistance between the ceramic superconducting films is changed so that the ceramic superconducting films are electrically insulated and laminated, and the laminated ceramic superconducting films are electrically connected in series to provide electrodes at both ends. It has a feature.

【0009】また、第2の発明の積層型セラミック超電
導磁気抵抗素子は、上記セラミック超電導体膜が片面に
堆積された複数の基板を上記セラミック超電導体膜が堆
積されている面を同一方向にして積層し、上記積層され
た総ての基板に堆積されたセラミック超電導体膜を電気
的に直列に接続し、上記直列に接続されたセラミック超
電導体膜の両端に電極を設けたことを特徴としている。
In the multilayer ceramic superconducting magnetoresistive element according to the second aspect of the invention, a plurality of substrates having the ceramic superconducting film deposited on one surface thereof have the same surface with the ceramic superconducting film deposited thereon. It is characterized in that the ceramic superconducting films laminated and laminated on all the substrates are electrically connected in series, and electrodes are provided at both ends of the ceramic superconducting films connected in series. .

【0010】また、第3の発明の積層型セラミック超電
導磁気抵抗素子は、上記セラミック超電導体膜が片面に
堆積された2枚の基板を上記セラミック超電導体膜側を
向かい合わせて絶縁膜を介して積層し、上記積層された
総ての基板に堆積されたセラミック超電導体膜を電気的
に直列に接続し、上記直列に接続されたセラミック超電
導体膜の両端に電極を設けたことを特徴としている。
In the multilayer ceramic superconducting magnetoresistive element according to the third aspect of the invention, the two substrates having the ceramic superconducting film deposited on one surface thereof face each other with the ceramic superconducting film side facing each other and an insulating film interposed therebetween. It is characterized in that the ceramic superconducting films laminated and laminated on all the substrates are electrically connected in series, and electrodes are provided at both ends of the ceramic superconducting films connected in series. ..

【0011】また、第4の発明の積層型セラミック超電
導磁気抵抗素子は、上記セラミック超電導体膜を同一基
板の両面に堆積し、上記同一基板の両面に堆積された両
セラミック超電導体膜を電気的に直列に接続し、上記直
列に接続されたセラミック超電導体膜の両端に電極を設
けたことを特徴としている。
In the multilayer ceramic superconducting magnetoresistive element of the fourth invention, the ceramic superconductor films are deposited on both sides of the same substrate, and both ceramic superconductor films deposited on both sides of the same substrate are electrically connected. In series, and electrodes are provided at both ends of the ceramic superconductor film connected in series.

【0012】また、第5の発明の積層型セラミック超電
導磁気抵抗素子は、上記セラミック超電導体膜が両面に
堆積された複数の基板を絶縁膜を介して積層し、上記積
層された総ての基板の両面に堆積されたセラミック超電
導体膜を電気的に直列に接続し、上記直列に接続された
セラミック超電導体膜の両端に電極を設けたことを特徴
としている。
Further, in the multilayer ceramic superconducting magnetoresistive element of the fifth invention, a plurality of substrates having the ceramic superconducting films deposited on both surfaces are laminated through an insulating film, and all the laminated substrates are laminated. The ceramic superconducting films deposited on both surfaces of are electrically connected in series, and electrodes are provided at both ends of the ceramic superconducting films connected in series.

【0013】[0013]

【作用】第1の発明では、電気的に絶縁されて積層され
た複数のセラミック超電導体膜に外部から磁界が印加さ
れると、上記セラミック超電導体膜は印加された磁界に
よって粒界部分から超電導状態が破壊されて抵抗値が変
化する。その際に、上記積層された複数のセラミック超
電導体膜は電気的に直列に接続されて更に大面積のセラ
ミック超電導体膜を形成しているので、微弱な磁界によ
っても大きな抵抗変化を呈する。その結果、上記接続さ
れたセラミック超電導体膜の両端に設けられた電極間の
電圧あるいは上記接続されたセラミック超電導体膜を流
れる電流が、微弱な磁界によっても大きく変化する。
In the first aspect of the invention, when a magnetic field is externally applied to the plurality of ceramic superconductor films which are electrically insulated and laminated, the ceramic superconductor film is superconducted from the grain boundary portion by the applied magnetic field. The state is destroyed and the resistance value changes. At this time, since the plurality of laminated ceramic superconductor films are electrically connected in series to form a larger area ceramic superconductor film, a large resistance change is exhibited even by a weak magnetic field. As a result, the voltage between the electrodes provided at both ends of the connected ceramic superconducting film or the current flowing through the connected ceramic superconducting film changes greatly even by a weak magnetic field.

【0014】また、第2の発明では、積層された複数の
基板の同一側の面に堆積された上記セラミック超電導体
膜が電気的に直列に接続されて容易に大面積のセラミッ
ク超電導体膜を形成している。したがって、この直列に
接続されたセラミック超電導体膜は、外部から微弱な磁
界が印加されても大きな抵抗変化を呈する。
In the second aspect of the invention, the ceramic superconductor films deposited on the same side surface of a plurality of laminated substrates are electrically connected in series to easily form a large area ceramic superconductor film. Is forming. Therefore, the ceramic superconductor films connected in series exhibit a large resistance change even if a weak magnetic field is applied from the outside.

【0015】また、第3の発明では、絶縁膜を介して上
記セラミック超電導体膜側を向かい合わせにして積層さ
れた2枚の基板の片面に堆積された上記セラミック超電
導体膜が電気的に直列に接続されて、大きな面積のセラ
ミック超電導体膜を形成している。したがって、この直
列に接続されたセラミック超電導体膜は、外部から微弱
な磁界が印加されても大きな抵抗変化を呈する。
In the third aspect of the invention, the ceramic superconductor film deposited on one surface of two substrates laminated with the ceramic superconductor film sides facing each other with an insulating film interposed therebetween is electrically connected in series. To form a large area ceramic superconductor film. Therefore, the ceramic superconductor films connected in series exhibit a large resistance change even if a weak magnetic field is applied from the outside.

【0016】また、第4の発明では、同一基板の両面に
堆積された上記セラミック超電導体膜が電気的に直列に
接続されて、1枚の基板で2倍の面積を有するセラミッ
ク超電導体膜を形成している。したがって、この直列に
接続されたセラミック超電導体膜は、外部から微弱な磁
界が印加されても大きな抵抗変化を呈する。
In the fourth invention, the ceramic superconductor films deposited on both surfaces of the same substrate are electrically connected in series to form a ceramic superconductor film having a double area on one substrate. Is forming. Therefore, the ceramic superconductor films connected in series exhibit a large resistance change even if a weak magnetic field is applied from the outside.

【0017】また、第5の発明では、絶縁膜を介して積
層された複数の基板の両面に堆積された上記セラミック
超電導体膜が電気的に直列に接続されて、厚さが薄く且
つ大面積のセラミック超電導体膜を形成している。した
がって、この直列に接続されたセラミック超電導体膜
は、外部から微弱な磁界が印加されても非常に大きな抵
抗変化を呈する。
According to the fifth aspect of the invention, the ceramic superconductor films deposited on both surfaces of a plurality of substrates laminated via insulating films are electrically connected in series, and the thickness is small and the area is large. The ceramic superconductor film of is formed. Therefore, the ceramic superconductor films connected in series exhibit a very large resistance change even if a weak magnetic field is applied from the outside.

【0018】[0018]

【実施例】以下、この発明を図示の実施例により詳細に
説明する。この発明は、セラミック超電導体の薄膜を簡
単に形成できる電気泳動電着法によって基板上にセラミ
ック超電導体膜が形成された超電導抵抗素子を形成し、
この超電導抵抗素子を積層することによって高感度を得
るものである。
The present invention will be described in detail below with reference to the embodiments shown in the drawings. This invention forms a superconducting resistance element in which a ceramic superconductor film is formed on a substrate by an electrophoretic electrodeposition method capable of easily forming a thin film of a ceramic superconductor,
High sensitivity is obtained by stacking the superconducting resistance elements.

【0019】<第1実施例>イットリュウム安定化ジル
コニウム(以下、YSZと略称する)基板上に銅を真空蒸
着する。そして、得られた銅蒸着YSZ基板上には、Y
Ba2Cu37-x粉末(以下、YBCO粉末と略称する)が
電着される線幅500μm,線長251mmの電極(以下、
電着電極と言う)と線幅100μm,線長251mmの対向
電極とをホトリソグラフィによって同時にミアンダ形状
にパターンニングする。
First Embodiment Copper is vacuum-deposited on a yttrium-stabilized zirconium (hereinafter abbreviated as YSZ) substrate. And, on the obtained copper vapor deposition YSZ substrate, Y
An electrode having a line width of 500 μm and a line length of 251 mm (hereinafter, referred to as “Ba 2 Cu 3 O 7-x powder” (hereinafter abbreviated as YBCO powder)) is electrodeposited.
An electrodeposition electrode) and a counter electrode having a line width of 100 μm and a line length of 251 mm are simultaneously patterned into a meander shape by photolithography.

【0020】次に、上記銅蒸着YSZ基板をYBCO粉
末を分散させたアセトン中に入れ、上記電着電極にはマ
イナスの電位を与える一方、対向電極にはプラスの電位
を与えて、電気泳動法によってYBCO粉末を銅蒸着Y
SZ基板に電着させる。そして、このYBCO粉末が電
着された銅蒸着YSZ基板を900℃で3時間アニール
して超電導抵抗素子を形成する。
Next, the copper-deposited YSZ substrate is placed in acetone in which YBCO powder is dispersed, and a negative potential is applied to the electrodeposition electrode, while a positive potential is applied to the counter electrode to perform electrophoresis. YBCO powder by copper deposition Y
Electrodeposit on SZ substrate. Then, the copper-deposited YSZ substrate on which the YBCO powder is electrodeposited is annealed at 900 ° C. for 3 hours to form a superconducting resistance element.

【0021】本実施例においては、上述のようにして形
成された超電導抵抗素子を4枚用いて、図1に示すよう
な構造を有する積層型セラミック超電導磁気抵抗素子を
形成するのである。図1において、上記4枚の超電導抵
抗素子1a,1b,1c,1dを、YBCO粉末が電着されて
成る超電導線3a,3b,3c,3d側を同じ方向に向けて積
層する。
In this embodiment, four superconducting resistance elements formed as described above are used to form a laminated ceramic superconducting magnetoresistive element having a structure as shown in FIG. In FIG. 1, the four superconducting resistance elements 1a, 1b, 1c and 1d are laminated with the superconducting wires 3a, 3b, 3c and 3d side formed by electrodepositing YBCO powder facing the same direction.

【0022】そして、最上層に位置する超電導抵抗素子
1aの銅蒸着YSZ基板2aの一辺に設けられた超電導線
3aの始端子4aには、電流端子6aおよび電圧端子7aを
銀ペーストによって取り付ける。また、最下層に位置す
る超電導抵抗素子1dの銅蒸着YSZ基板2dの一辺に設
けられた超電導線3dの終端子5dには、電流端子6dお
よび電圧端子7dを取り付ける。
Then, a current terminal 6a and a voltage terminal 7a are attached by silver paste to the starting terminal 4a of the superconducting wire 3a provided on one side of the copper-deposited YSZ substrate 2a of the superconducting resistance element 1a located at the uppermost layer. Further, a current terminal 6d and a voltage terminal 7d are attached to the terminator 5d of the superconducting wire 3d provided on one side of the copper-deposited YSZ substrate 2d of the superconducting resistance element 1d located in the lowermost layer.

【0023】さらに、最上層に位置する超電導抵抗素子
1aの銅蒸着YSZ基板2aの上記一辺に設けられた終端
子5aと上から2番目に位置する超電導抵抗素子1bの銅
蒸着YSZ基板2bの一辺に設けられた始端子4bとを、
銅線8で接続する。以下同様に、上側に位置する超電導
抵抗素子1b,1cの銅蒸着YSZ基板2b,2cの一辺に設
けられた終端子5b,5cと下側に位置する超電導素子1
c,1dの銅蒸着YSZ基板2c,2dの一辺に設けられた始
端子4c,4dとを、銅線9,10で順次接続するのであ
る。
Furthermore, a terminator 5a provided on the above-mentioned one side of the copper-deposited YSZ substrate 2a of the superconducting resistance element 1a located at the uppermost layer and one side of the copper-deposited YSZ substrate 2b of the superconducting resistance element 1b located second from the top. The start terminal 4b provided in
Connect with copper wire 8. Similarly, the terminators 5b and 5c provided on one side of the copper-deposited YSZ substrates 2b and 2c of the superconducting resistance elements 1b and 1c located on the upper side and the superconducting element 1 located on the lower side are similarly formed.
Copper wires 9 and 10 are sequentially connected to the start terminals 4c and 4d provided on one side of the c, 1d copper-deposited YSZ substrates 2c and 2d.

【0024】こうして形成された積層型セラミック超電
導磁気抵抗素子は、1枚の超電導抵抗素子の占有面積と
同じ占有面積で、1枚の超電導素子に形成されている超
電導線の長さの4倍の長さを有する超電導線を形成する
ことができるのである。
The monolithic ceramic superconducting magnetoresistive element thus formed has the same occupying area as one superconducting resistive element and is four times as long as the length of the superconducting wire formed in one superconducting element. It is possible to form a superconducting wire having a length.

【0025】上記形成された積層型セラミック超電導磁
気抵抗素子を用いてセラミック超電導磁気センサを作製
し、上記1枚の超電導抵抗素子を用いて作製したセラミ
ック超電導磁気センサと磁気特性を比較した。まず、1
枚の超電導抵抗素子から成るセラミック超電導磁気セン
サに20mAの電流を流して測定した磁気変換率は12
5mV/ガウスであり、ノイズレベルは82.0nV/Hz
-1/2であり、磁気検出感度は8.3×10-7ガウス/Hz
-1/2である。
A ceramic superconducting magnetic sensor was manufactured using the laminated ceramic superconducting magnetoresistive element formed as described above, and the magnetic characteristics were compared with the ceramic superconducting magnetic sensor manufactured using the one superconducting resistive element. First, 1
The magnetic conversion rate measured by applying a current of 20 mA to a ceramic superconducting magnetic sensor consisting of one superconducting resistance element is 12
5 mV / gauss, noise level 82.0 nV / Hz
-1/2 , magnetic detection sensitivity is 8.3 × 10 -7 gauss / Hz
-1/2 .

【0026】次に、上記4枚の超電導抵抗素子1a,1b,
1c,1dから成るセラミック超電導磁気センサに関して
同様にして測定した磁気変換率は500mV/ガウスであ
り、ノイズレベルは164nV/Hz-1/2であり、磁気検
出感度は3.3×10-7ガウス/Hz-1/2である。すなわ
ち、上述のように、8.3×10-7ガウス/Hz-1/2の磁
気検出感度を有する超電導抵抗素子を4枚積層して直列
に接続することによって、約2倍の磁気検出感度が得ら
れるのである。
Next, the four superconducting resistance elements 1a, 1b,
Similarly, the magnetic conversion rate of the ceramic superconducting magnetic sensor consisting of 1c and 1d was 500 mV / gauss, the noise level was 164 nV / Hz -1/2 , and the magnetic detection sensitivity was 3.3 × 10 -7 gauss. / Hz- 1 / 2 . That is, as described above, by stacking four superconducting resistance elements having a magnetic detection sensitivity of 8.3 × 10 −7 Gauss / Hz −1/2 and connecting them in series, the magnetic detection sensitivity of about twice is obtained. Is obtained.

【0027】このように、本実施例においては、上記銅
蒸着YSZ基板2a,2b,2c,2dに上記YBCO粉末を
蒸着して成る超電導線3a,3b,3c,3dを形成し、この
超電導線3a,3b,3c,3dの一端には始端子4a,4b,4
c,4dを設ける一方他端には終端子5a,5b,5c,5dを設
けて、超電導抵抗素子1a,1b,1c,1dを形成する。こ
うして得られた4枚の超電導抵抗素子1a,1b,1c,1d
を超電導線3a,3b,3c,3d側を同方向にして積層して
各超電導線3a,3b,3c,3d同士を直列に接続する。そ
して、最上層の超電導抵抗素子1aの始端子4aには電流
端子6aおよび電圧端子7aを取り付ける一方、最下層の
超電導抵抗素子1dの終端子5dには電流端子6dおよび
電圧端子7dを取り付けて、積層型セラミック超電導磁
気抵抗素子を作製する。
As described above, in this embodiment, the superconducting wires 3a, 3b, 3c, 3d formed by evaporating the YBCO powder on the copper-deposited YSZ substrates 2a, 2b, 2c, 2d are formed. At one end of 3a, 3b, 3c, 3d, start terminals 4a, 4b, 4
c and 4d are provided, while terminators 5a, 5b, 5c and 5d are provided at the other end to form superconducting resistance elements 1a, 1b, 1c and 1d. The four superconducting resistance elements 1a, 1b, 1c, 1d thus obtained
Are stacked with the superconducting wires 3a, 3b, 3c, 3d side in the same direction, and the respective superconducting wires 3a, 3b, 3c, 3d are connected in series. Then, while the current terminal 6a and the voltage terminal 7a are attached to the starting terminal 4a of the superconducting resistance element 1a in the uppermost layer, the current terminal 6d and the voltage terminal 7d are attached to the terminator 5d of the superconducting resistance element 1d in the lowermost layer, A multilayer ceramic superconducting magnetoresistive element is manufactured.

【0028】その結果、上記積層型セラミック超電導磁
気抵抗素子においては、1枚の超電導抵抗素子1aと同
じ占有面積で、1枚の超電導抵抗素子1aの4倍の長さ
の超電導線を有することになる。したがって、上記積層
型セラミック超電導磁気抵抗素子を使用したセラミック
超電導磁気センサは、1枚の超電導抵抗素子を使用した
従来のセラミック超電導磁気センサの約2倍の磁気検出
感度を呈し、素子の占有面積を増加させることなく磁気
検出感度を向上できる。
As a result, in the above-mentioned laminated ceramic superconducting magnetoresistive element, the superconducting wire has the same occupying area as one superconducting resistive element 1a and four times as long as one superconducting resistive element 1a. Become. Therefore, a ceramic superconducting magnetic sensor using the above-mentioned laminated ceramic superconducting magnetoresistive element exhibits a magnetic detection sensitivity about twice that of a conventional ceramic superconducting magnetic sensor using one superconducting resistive element, and occupies an area occupied by the element. The magnetic detection sensitivity can be improved without increasing it.

【0029】<第2実施例>上記第1実施例と同じよう
にして超電導抵抗素子を2枚形成する。但し、本実施例
の場合には、図2に示すように、両超電導抵抗素子1e,
1fにおける超電導線3e,3fのパターンが向かい合わせ
になるように形成する。次に、得られた2枚の超電導抵
抗素子1e,1fを絶縁膜12を挟んで向かい合わせに貼
り合わせて積層する。そして、超電導抵抗素子1eの始
端子4eには電流端子6eおよび電圧端子7eを取り付け
る一方、超電導抵抗素子1fの終端子5fには電流端子6
fおよび電圧端子7fを取り付ける。また、超電導抵抗素
子1eの終端子5eと超電導抵抗素子1fの始端子4fとを
銅線11によって接続する。こうして、積層型セラミッ
ク超電導磁気抵抗素子を形成する。
<Second Embodiment> Two superconducting resistance elements are formed in the same manner as in the first embodiment. However, in the case of this embodiment, as shown in FIG. 2, both superconducting resistance elements 1e,
The superconducting wires 3e and 3f in 1f are formed so that the patterns thereof face each other. Next, the obtained two superconducting resistance elements 1e and 1f are laminated facing each other with the insulating film 12 interposed therebetween. The current terminal 6e and the voltage terminal 7e are attached to the start terminal 4e of the superconducting resistance element 1e, while the current terminal 6e is attached to the terminator 5f of the superconducting resistance element 1f.
Attach f and voltage terminal 7f. Further, the terminal element 5e of the superconducting resistance element 1e and the starting terminal 4f of the superconducting resistance element 1f are connected by the copper wire 11. Thus, the multilayer ceramic superconducting magnetoresistive element is formed.

【0030】上述のようにして形成された積層型セラミ
ック超電導磁気抵抗素子を用いてセラミック超電導磁気
センサを作製し、第1実施例の場合と同じ20mAの電
流を流して磁気特性を測定した。その結果、磁気変換率
は250mV/ガウスであり、ノイズレベルは116nV/
Hz-1/2であり、磁気検出感度が上記1枚の超電導抵抗
素子を用いて作製されたセラミック超電導磁気センサよ
りも高まって約0.71倍の最小磁束分解能を呈した。
A ceramic superconducting magnetic sensor was produced using the laminated ceramic superconducting magnetoresistive element formed as described above, and the same 20 mA current as in the first embodiment was passed to measure the magnetic characteristics. As a result, the magnetic conversion rate was 250 mV / gauss and the noise level was 116 nV /
The magnetic field sensitivity was Hz -1/2 , which was higher than that of the ceramic superconducting magnetic sensor manufactured by using the single superconducting resistance element described above, and exhibited a minimum magnetic flux resolution of 0.71 times.

【0031】<第3実施例>上記第1実施例と同じ方法
によって、1枚の銅蒸着YSZ基板の両面に超電導線,
始端子および終端子を設ける。その際に、図3(b)およ
び図3(c)に示すように、銅蒸着YSZ基板22の一側
面に設けられる超電導線231,始端子241および終端
子251と、他側面に設けられる超電導線232,始端子
242および終端子252とは、対象のパターンになるよ
うに形成するのである。つまり、上記各超電導線231,
232、始端子241,242、および、終端子251,25
2の各対は、図3(a)に示すように1枚の銅蒸着YSZ基
板22の同じ箇所における表裏に形成されるのである。
<Third Embodiment> In the same manner as in the first embodiment, a superconducting wire is formed on both surfaces of a single copper-deposited YSZ substrate.
Provide a start terminal and terminator. At that time, as shown in FIGS. 3 (b) and 3 (c), the superconducting wire 23 1 , the start terminal 24 1 and the terminator 25 1 provided on one side surface of the copper-deposited YSZ substrate 22 and the other side surface are provided. The superconducting wire 23 2 , the start terminal 24 2 and the terminator 25 2 provided are formed so as to have a target pattern. That is, each of the superconducting wires 23 1 ,
23 2 , start terminals 24 1 and 24 2 , and terminators 25 1 and 25
As shown in FIG. 3A, each pair of 2 is formed on the front and back sides at the same location on one copper-deposited YSZ substrate 22.

【0032】そして、上記銅蒸着YSZ基板22におけ
る表側に設けられた始端子241には電流端子261およ
び電圧端子271を設ける一方、裏側に設けられた終端
子252には電流端子262および電圧端子272を設け
る。また、銅蒸着YSZ基板22における表側に設けら
れた終端子251と裏側に設けられた始端子242とを銅
線28によって接続する。こうして、積層型セラミック
超電導磁気抵抗素子21を形成するのである。その場合
に、上記終端子251と始端子242とは上述のように銅
蒸着YSZ基板22の同じ箇所における表裏に形成され
ているので、両者を接続する銅線28の長さを最短にで
きるのである。
A current terminal 26 1 and a voltage terminal 27 1 are provided on the front terminal 24 1 provided on the front side of the copper vapor-deposited YSZ substrate 22, while a current terminal 26 1 is provided on the terminator 25 2 provided on the back side. 2 and a voltage terminal 27 2 . Further, the termination 25 1 provided on the front side and the start terminal 24 2 provided on the back side of the copper vapor deposition YSZ substrate 22 are connected by the copper wire 28. Thus, the multilayer ceramic superconducting magnetoresistive element 21 is formed. In that case, since the terminator 25 1 and the start terminal 24 2 are formed on the front and back sides at the same location of the copper-deposited YSZ substrate 22 as described above, the length of the copper wire 28 connecting them is minimized. You can do it.

【0033】上述のようにして形成された積層型セラミ
ック超電導磁気抵抗素子21を用いて作製したセラミッ
ク超電導磁気センサは、第1実施例における上記1枚の
超電導抵抗素子を用いて作製されたセラミック超電導磁
気センサの約0.71倍の最小磁束分解能を呈した。
A ceramic superconducting magnetic sensor manufactured by using the laminated ceramic superconducting magnetoresistive element 21 formed as described above is a ceramic superconducting manufactured by using the above-mentioned one superconducting resistive element in the first embodiment. The minimum magnetic flux resolution was 0.71 times that of the magnetic sensor.

【0034】<第4実施例>上記第3実施例と同様にし
て、1枚の銅蒸着YSZ基板22の同一箇所の表裏に、
超電導線231,232、始端子241,終端子252、およ
び、終端子251,始端子242を設け、終端子251と始
端子242とを銅線28によって接続することによっ
て、積層型超電導抵抗素子21を形成する。
<Fourth Embodiment> In the same manner as the third embodiment, one copper vapor-deposited YSZ substrate 22 has the same location on both sides.
Superconducting wire 23 1, 23 2, beginning terminals 24 1, terminator 25 2, and, terminator 25 1, providing the start terminal 24 2, be connected by the terminator 25 1 and start terminal 24 2 and the copper 28 Thus, the laminated superconducting resistance element 21 is formed.

【0035】本実施例においては、上述のようにして作
製された4枚の積層型超電導抵抗素子21を用いて、図
4に示すような構造を有する積層型セラミック超電導磁
気抵抗素子を形成するのである。尚、図4(b)は図4(a)
を矢印(イ)の方向から見た図である。図4(a)に示すよ
うに、4枚の積層型超電導抵抗素子21g,21h,21i,
21jを表側の超電導線23g1,23h1,23i1,23j1
が同一方向になるようして、図4(b)に示すように絶縁
膜29,30,31を挟んで積層する。そして、最上層に
位置する積層型超電導抵抗素子21gの表側に設けられ
た始端子24g1に電流端子26gおよび電圧端子27gを
銀ペーストによって取り付ける一方、最下層に位置する
積層型超電導抵抗素子21jの裏側に設けられた終端子
25j2に電流端子26jおよび電圧端子27jを取り付け
る。
In the present embodiment, the laminated ceramic superconducting magnetoresistive element having the structure shown in FIG. 4 is formed by using the four laminated superconducting resistive elements 21 manufactured as described above. is there. 4 (b) is shown in FIG. 4 (a).
FIG. 6 is a view of FIG. 6 viewed from the direction of the arrow (a). As shown in FIG. 4 (a), four stacked superconducting resistance elements 21g, 21h, 21i,
21j is laminated so that the superconducting wires 23g 1 , 23h 1 , 23i 1 , 23j 1 on the front side are oriented in the same direction with the insulating films 29, 30, 31 sandwiched therebetween, as shown in FIG. 4B. Then, while the current terminal 26g and the voltage terminal 27g are attached to the starting terminal 24g 1 provided on the front side of the laminated superconducting resistance element 21g located in the uppermost layer by silver paste, the laminated superconducting resistance element 21j located in the lowermost layer is The current terminal 26j and the voltage terminal 27j are attached to the terminator 25j 2 provided on the back side.

【0036】さらに、最上層に位置する積層型超電導抵
抗素子21gの裏側に設けられた終端子25g2と上から
2番目に位置する積層型超電導抵抗素子21hの表側に
設けられた始端子24h1とを、銅線32で接続する。以
下、同様にして、上側に位置する積層型超電導抵抗素子
21h,21iの裏側に設けられた終端子25h2,25i2
下側に位置する積層型超電導素子21i,21jの表側に
設けられた始端子24i1,24j1とを、銅線33,34で
順次接続するのである。
Furthermore, a terminator 25g 2 provided on the back side of the laminated superconducting resistance element 21g located at the uppermost layer and a start terminal 24h 1 provided on the front side of the laminated superconducting resistance element 21h located second from the top. And are connected by a copper wire 32. In the same manner, the terminators 25h 2 and 25i 2 provided on the back side of the laminated superconducting resistance elements 21h and 21i located on the upper side and the front sides of the laminated superconducting elements 21i and 21j located on the lower side are similarly provided. start terminal 24i 1, and 24j 1, is to sequentially connected with copper wire 33.

【0037】こうして形成された積層型セラミック超電
導磁気抵抗素子は、第1実施例に示した1枚の超電導抵
抗素子の占有面積を拡大することなく、且つ第1実施例
の積層型セラミック超電導磁気抵抗素子と大略同じ厚さ
で、上記1枚の超電導素子に形成されている超電導線の
長さの8倍(第1実施例の積層型セラミック超電導磁気
抵抗素子における超電導線の2倍)の長さを有する超電
導線を得ることができるのである。
The multi-layer ceramic superconducting magnetoresistive element thus formed has the monolithic ceramic superconducting magnetoresistive element of the first embodiment without enlarging the area occupied by one superconducting resistive element shown in the first embodiment. 8 times the length of the superconducting wire formed in the above-mentioned one superconducting element (twice the length of the superconducting wire in the multilayer ceramic superconducting magnetoresistive element of the first embodiment), which is approximately the same thickness as the element. It is possible to obtain a superconducting wire having

【0038】上述のようにして形成された積層型セラミ
ック超電導磁気抵抗素子を用いて作製したセラミック超
電導磁気センサの磁気特性を、第1実施例の場合と同じ
20mAの電流を流して測定した。その結果、磁気変換
率は1V/ガウスであり、ノイズレベルは232nV/Hz
-1/2であり、最小磁束分解能は第1実施例における片側
のみに超電導線を設けた4枚の超電導抵抗素子を用いて
作製されたセラミック超電導磁気センサの約0.7倍を
呈した。すなわち、第1実施例における上記1枚の超電
導抵抗素子を用いて作製されたセラミック超電導磁気セ
ンサにおける最小磁気分解能の約0.35倍になるので
ある。
The magnetic characteristics of the ceramic superconducting magnetic sensor manufactured by using the laminated ceramic superconducting magnetoresistive element formed as described above were measured by applying the same current of 20 mA as in the first embodiment. As a result, the magnetic conversion rate was 1 V / Gauss and the noise level was 232 nV / Hz.
It was -1/2 , and the minimum magnetic flux resolution was about 0.7 times that of the ceramic superconducting magnetic sensor manufactured by using the four superconducting resistance elements in which the superconducting wires were provided on only one side in the first embodiment. That is, the minimum magnetic resolution in the ceramic superconducting magnetic sensor manufactured by using the one superconducting resistance element in the first embodiment is about 0.35 times.

【0039】この発明における積層型セラミック超電導
磁気抵抗素子の形成方法は、上記各実施例における形成
方法に限定されるものではない。すなわち、上記超電導
線の形成方法や超電導抵抗素子の枚数や各超電導抵抗素
子間の接続方法等は適宜最適化しても何等差し支えな
い。
The method of forming the multilayer ceramic superconducting magnetoresistive element in the present invention is not limited to the method of forming in each of the above embodiments. That is, the method of forming the superconducting wire, the number of superconducting resistance elements, the method of connecting the superconducting resistance elements, and the like may be optimized as appropriate.

【0040】[0040]

【発明の効果】以上より明らかなように、第1の発明の
積層型セラミック超電導磁気抵抗素子は、外部から印加
された磁界によってセラミック超電導体の粒界部分から
超電導状態が破壊されて抵抗値が変化する複数のセラミ
ック超電導体膜を電気的に絶縁して積層すると共に、こ
の積層された各セラミック超電導体膜を電気的に直列に
接続して両端に電極を設けたので、素子の占有面積を増
加させることなく磁気検出感度を向上させることができ
る。
As is clear from the above, the multilayer ceramic superconducting magnetoresistive element of the first invention has a resistance value that is destroyed by the magnetic field applied from the outside from the grain boundary portion of the ceramic superconductor to break the superconducting state. A plurality of changing ceramic superconducting films are electrically insulated and laminated, and the laminated ceramic superconducting films are electrically connected in series and electrodes are provided at both ends. The magnetic detection sensitivity can be improved without increasing it.

【0041】また、第2の発明の積層型セラミック超電
導磁気抵抗素子は、上記セラミック超電導体膜が片面に
堆積された複数の基板を上記セラミック超電導体膜が堆
積されている面を同一方向にして積層し、上記積層され
た総ての基板に堆積されたセラミック超電導体膜を電気
的に直列に接続し、上記直列に接続されたセラミック超
電導体膜の両端に電極を設けたので、簡単な構成によっ
て素子の占有面積を増加させることなく磁気検出感度を
向上させることができる。
Further, in the multilayer ceramic superconducting magnetoresistive element of the second invention, a plurality of substrates having the above-mentioned ceramic superconductor film deposited on one surface thereof are arranged such that the surfaces on which the ceramic superconductor film is deposited are in the same direction. The ceramic superconducting films deposited on all the laminated substrates are electrically connected in series, and electrodes are provided at both ends of the ceramic superconducting films connected in series. Thus, the magnetic detection sensitivity can be improved without increasing the area occupied by the element.

【0042】また、第3の発明の積層型セラミック超電
導磁気抵抗素子は、上記セラミック超電導体膜が片面に
堆積された2数の基板を上記セラミック超電導体膜を向
かい合わせて絶縁膜を介して積層し、上記積層された総
ての基板に堆積されたセラミック超電導体膜を電気的に
直列に接続し、上記直列に接続されたセラミック超電導
体膜の両端に電極を設けたので、素子の占有面積を増加
させることなく磁気検出感度を向上させることができ
る。
Further, in the multilayer ceramic superconducting magnetoresistive element of the third invention, two substrates having the ceramic superconducting film deposited on one surface thereof are laminated with the ceramic superconducting film facing each other with an insulating film interposed therebetween. Then, the ceramic superconducting films deposited on all the laminated substrates are electrically connected in series, and electrodes are provided at both ends of the ceramic superconducting films connected in series. The magnetic detection sensitivity can be improved without increasing

【0043】また、第4の発明の積層型セラミック超電
導磁気抵抗素子は、上記セラミック超電導体膜を同一基
板の両面に堆積し、上記同一基板の両面に堆積された両
セラミック超電導体膜を電気的に直列に接続し、上記直
列に接続されたセラミック超電導体膜の両端に電極を設
けたので、磁気検出感度の高いセラミック超電導磁気抵
抗素子をその占有面積を増加させることなく薄く形成で
きる。
In the multilayer ceramic superconducting magnetoresistive element according to the fourth aspect of the invention, the ceramic superconductor film is deposited on both sides of the same substrate, and both ceramic superconductor films deposited on both sides of the same substrate are electrically connected. , And the electrodes are provided at both ends of the ceramic superconducting film connected in series, the ceramic superconducting magnetoresistive element having high magnetic detection sensitivity can be formed thin without increasing its occupied area.

【0044】また、第5の発明の積層型セラミック超電
導磁気抵抗素子は、上記セラミック超電導体膜が両面に
堆積された基板を絶縁膜を介して複数枚積層し、上記積
層された総ての基板の両面に堆積されたセラミック超電
導体膜を電気的に直列に接続し、上記直列に接続された
セラミック超電導体膜の両端に電極を設けたので、磁気
検出感度のより高いセラミック超電導磁気抵抗素子をそ
の占有面積を増加させることなく薄く形成できる。
In the laminated ceramic superconducting magnetoresistive element according to the fifth aspect of the invention, a plurality of substrates having the ceramic superconducting films deposited on both sides are laminated with an insulating film interposed therebetween, and all the laminated substrates are laminated. Since the ceramic superconducting films deposited on both sides of the are electrically connected in series, and electrodes are provided at both ends of the ceramic superconducting films connected in series, a ceramic superconducting magnetoresistive element having higher magnetic detection sensitivity can be provided. It can be formed thin without increasing its occupied area.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の積層型セラミック超電導磁気抵抗素
子の第1実施例に係る構造の説明図である。
FIG. 1 is an explanatory diagram of a structure according to a first embodiment of a multilayer ceramic superconducting magnetoresistive element of the present invention.

【図2】第2実施例に係る構造の説明図である。FIG. 2 is an explanatory diagram of a structure according to a second embodiment.

【図3】第3実施例に係る構造の説明図である。FIG. 3 is an explanatory diagram of a structure according to a third embodiment.

【図4】第4実施例に係る構造の説明図である。FIG. 4 is an explanatory diagram of a structure according to a fourth embodiment.

【符号の説明】[Explanation of symbols]

1a〜1f…超電導抵抗素子、 2a〜2d,22,22g,〜22j…銅蒸着YSZ基板、 3a〜3f,231,232,23g1〜23j1…超電導線、 4a〜4f,241,242,24g1〜24j1…始端子、 5a〜5f,251,252,25g2〜25j2…終端子、 6a,6d,6e,6f,261,262,26g,26j…電流端
子、 7a,7d,7e,7f,271,272,27g,27j…電圧端
子、 8〜11,28,28g〜28j,32〜34…銅線、 12,29,30,31…絶縁膜、 21…積層型セラミック超電導磁気抵抗素子、 21g〜21j…積層型超電導抵抗素子。
1 a - 1 f ... superconducting resistive element, 2a~2d, 22,22g, ~22j ... copper deposition YSZ substrate, 3a~3f, 23 1, 23 2 , 23g 1 ~23j 1 ... superconducting wire, 4a~4f, 24 1, 24 2 , 24g 1 to 24j 1 ... Start terminal, 5a to 5f, 25 1 , 25 2 , 25g 2 to 25j 2 ... Terminator, 6a, 6d, 6e, 6f, 26 1 , 26 2 , 26g, 26j ... Current Terminals, 7a, 7d, 7e, 7f, 27 1 , 27 2 , 27g, 27j ... Voltage terminals, 8-11, 28, 28g-28j, 32-34 ... Copper wires, 12, 29, 30, 31 ... Insulating film , 21 ... Multilayer ceramic superconducting magnetoresistive element, 21g to 21j ... Multilayer superconducting resistive element.

フロントページの続き (72)発明者 長田 昌也 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 木場 正義 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内Front page continuation (72) Inventor Masaya Nagata 22-22 Nagaike-cho Naganocho, Abeno-ku, Osaka, Osaka Prefecture (72) Masayoshi Kiba 22-22 Nagaike-cho, Abeno-ku, Osaka, Osaka Prefecture

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 外部から印加された磁界によってセラミ
ック超電導体の粒界部分から超電導状態が破壊されて抵
抗値が変化する複数のセラミック超電導体膜間を電気的
に絶縁して積層すると共に、この積層された各セラミッ
ク超電導体膜を電気的に直列に接続して両端に電極を設
けたことを特徴とする積層型セラミック超電導磁気抵抗
素子。
1. A plurality of ceramic superconducting films, in which a superconducting state is destroyed from a grain boundary portion of the ceramic superconductor by an externally applied magnetic field to change a resistance value, are electrically insulated and laminated. A laminated ceramic superconducting magnetoresistive element, characterized in that each laminated ceramic superconducting film is electrically connected in series and electrodes are provided at both ends.
【請求項2】 外部から印加された磁界によってセラミ
ック超電導体の粒界部分から超電導状態が破壊されて抵
抗値が変化するセラミック超電導体膜が片面に堆積され
た複数の基板を、上記セラミック超電導体膜が堆積され
ている面を同一方向にして積層し、 上記積層された総ての基板に堆積されたセラミック超電
導体膜を電気的に直列に接続し、 上記直列に接続されたセラミック超電導体膜の両端に電
極を設けたことを特徴とする積層型セラミック超電導磁
気抵抗素子。
2. A plurality of substrates, each having a ceramic superconductor film on one side of which a superconducting state is destroyed from a grain boundary portion of the ceramic superconductor by an externally applied magnetic field and whose resistance value changes, The surfaces on which the films are deposited are stacked in the same direction, the ceramic superconductor films deposited on all the stacked substrates are electrically connected in series, and the ceramic superconductor films connected in series are connected. A multilayer ceramic superconducting magnetoresistive element, characterized in that electrodes are provided at both ends of the.
【請求項3】 外部から印加された磁界によってセラミ
ック超電導体の粒界部分から超電導状態が破壊されて抵
抗値が変化するセラミック超電導体膜が片面に堆積され
た2枚の基板を、上記セラミック超電導体膜側を向かい
合わせて絶縁膜を介して積層し、 上記積層された総ての基板に堆積されたセラミック超電
導体膜を電気的に直列に接続し、 上記直列に接続されたセラミック超電導体膜の両端に電
極を設けたことを特徴とする積層型セラミック超電導磁
気抵抗素子。
3. A ceramic superconducting film, wherein a superconducting state is destroyed from a grain boundary portion of the ceramic superconductor by an externally applied magnetic field to change a resistance value, and the two substrates having the ceramic superconducting film deposited on one surface are The body film sides are faced to each other and laminated via an insulating film, the ceramic superconductor films deposited on all the laminated substrates are electrically connected in series, and the ceramic superconductor films connected in series are connected. A multilayer ceramic superconducting magnetoresistive element, characterized in that electrodes are provided at both ends of the.
【請求項4】 外部から印加された磁界によってセラミ
ック超電導体の粒界部分から超電導状態が破壊されて抵
抗値が変化するセラミック超電導体膜を同一基板の両面
に堆積し、 上記同一基板の両面に堆積された両セラミック超電導体
膜を電気的に直列に接続し、 上記直列に接続されたセラミック超電導体膜の両端に電
極を設けたことを特徴とする積層型セラミック超電導磁
気抵抗素子。
4. A ceramic superconducting film in which the superconducting state is destroyed from the grain boundary portion of the ceramic superconductor by an externally applied magnetic field and the resistance value changes, is deposited on both sides of the same substrate, and both sides of the same substrate are deposited. A laminated ceramic superconducting magnetoresistive element, characterized in that both deposited ceramic superconducting films are electrically connected in series, and electrodes are provided at both ends of the ceramic superconducting films connected in series.
【請求項5】 外部から印加された磁界によってセラミ
ック超電導体の粒界部分から超電導状態が破壊されて抵
抗値が変化するセラミック超電導体膜が両面に堆積され
た複数の基板を、絶縁膜を介して積層し、 上記積層された総ての基板の両面に堆積されたセラミッ
ク超電導体膜を電気的に直列に接続し、 上記直列に接続されたセラミック超電導体膜の両端に電
極を設けたことを特徴とする積層型セラミック超電導磁
気抵抗素子。
5. A plurality of substrates, each having a ceramic superconducting film whose resistance is changed by destroying a superconducting state from a grain boundary portion of the ceramic superconductor by an externally applied magnetic field, through an insulating film. The ceramic superconductor films deposited on both surfaces of all the laminated substrates are electrically connected in series, and electrodes are provided at both ends of the ceramic superconductor films connected in series. Characteristic multilayer ceramic superconducting magnetoresistive element.
JP3338402A 1991-12-20 1991-12-20 Laminated ceramic superconducting magnetoresistance element Pending JPH05196714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3338402A JPH05196714A (en) 1991-12-20 1991-12-20 Laminated ceramic superconducting magnetoresistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3338402A JPH05196714A (en) 1991-12-20 1991-12-20 Laminated ceramic superconducting magnetoresistance element

Publications (1)

Publication Number Publication Date
JPH05196714A true JPH05196714A (en) 1993-08-06

Family

ID=18317825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3338402A Pending JPH05196714A (en) 1991-12-20 1991-12-20 Laminated ceramic superconducting magnetoresistance element

Country Status (1)

Country Link
JP (1) JPH05196714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517260A (en) * 2021-07-09 2021-10-19 长鑫存储技术有限公司 Wafer test structure, manufacturing method thereof and wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517260A (en) * 2021-07-09 2021-10-19 长鑫存储技术有限公司 Wafer test structure, manufacturing method thereof and wafer
CN113517260B (en) * 2021-07-09 2023-09-15 长鑫存储技术有限公司 Wafer test structure, manufacturing method thereof and wafer

Similar Documents

Publication Publication Date Title
CN1211873C (en) Magnetic resistance element and magnetic device using same
JPH0510979A (en) Micro current sensor
JPH05196714A (en) Laminated ceramic superconducting magnetoresistance element
US6573526B1 (en) Single electron tunneling transistor having multilayer structure
JPH05196715A (en) Superconductive magnetism sensor
JPH1197762A (en) Magnetoresistive element
JP2698642B2 (en) Superconducting magnetoresistive element
JP2801462B2 (en) Superconducting magnetic sensor and method of manufacturing the same
JP2001091611A (en) High magnetic field resolution fluxmeter
JPH03167463A (en) Moisture sensitive element
JP2829173B2 (en) Superconducting element
JP2656364B2 (en) Superconducting element manufacturing method
JP3016566B2 (en) Superconducting switch element
JP2933681B2 (en) Magnetic field measurement method
JPH04123306A (en) Magneto-resistance effect element
JP4027504B2 (en) Single-electron tunnel device having a laminated structure and manufacturing method thereof
JPH03215768A (en) Magnetic sensor
JP2768276B2 (en) Oxide superconducting junction element
JP3267352B2 (en) Superconducting quantum interference device and method of manufacturing the same
CN115407108A (en) First-order gradient parallel SQUID current sensor array and preparation method thereof
JPH05297093A (en) Magnetic sensor
JP2001124837A (en) Magnetic field measurement device
JPH08186300A (en) Pickup coil for oxide squid
JPH11312830A (en) Plane type gradiometer
RU2051445C1 (en) Superconductor current amplifier using josephson effect