JP2768276B2 - Oxide superconducting junction element - Google Patents

Oxide superconducting junction element

Info

Publication number
JP2768276B2
JP2768276B2 JP6226238A JP22623894A JP2768276B2 JP 2768276 B2 JP2768276 B2 JP 2768276B2 JP 6226238 A JP6226238 A JP 6226238A JP 22623894 A JP22623894 A JP 22623894A JP 2768276 B2 JP2768276 B2 JP 2768276B2
Authority
JP
Japan
Prior art keywords
superconducting
oxide
oxide superconducting
junction element
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6226238A
Other languages
Japanese (ja)
Other versions
JPH0897474A (en
Inventor
一正 高木
良信 樽谷
維▲禮▼ 丘
徳海 深沢
塚本  晃
正一 赤松
宇紀 樺沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6226238A priority Critical patent/JP2768276B2/en
Publication of JPH0897474A publication Critical patent/JPH0897474A/en
Application granted granted Critical
Publication of JP2768276B2 publication Critical patent/JP2768276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は酸化物超電導体を用いた
エレクトロニクス素子に係り、特に磁束量子を情報の担
体とする磁束量子超電導素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic device using an oxide superconductor, and more particularly to a magnetic flux quantum superconducting device using magnetic flux quanta as an information carrier.

【0002】[0002]

【従来の技術】超電導体からなるエレクトロニクス素子
の多くはジョセフソン効果を利用しており、ジョセフソ
ン接合の設計と作製は素子作製上極めて重要である。ジ
ョセフソン接合にはトンネル型と弱結合型がある。トン
ネル型接合は図2に示すように超電導体薄膜20で極め
て薄い絶縁体21を挾んだ構造であり、電流−電圧特性
には(b)に示すようにヒステリシスが見られる。一
方、弱結合型接合は図3に示すように常伝導体や半導体
30を超電導体31で挾んだものであり、電流−電圧特
性にはヒステリシスはない。PbやNbのような金属系
超電導体を用いて、これまで多くの超電導素子が作られ
てきた。いずれも厚み方向に各層を形成して、ジョセフ
ソン接合、抵抗や配線を作製している。ヒステリシスが
ない電流−電圧特性を必要とする接合を作製する場合、
多くはトンネル接合を抵抗でシャントした構造が使われ
ている。
2. Description of the Related Art Many electronic devices made of superconductors utilize the Josephson effect, and the design and fabrication of Josephson junctions are extremely important in device fabrication. There are two types of Josephson junctions: tunnel type and weak coupling type. The tunnel junction has a structure in which an extremely thin insulator 21 is sandwiched between superconducting thin films 20 as shown in FIG. 2, and a hysteresis is seen in the current-voltage characteristics as shown in FIG. On the other hand, the weak-coupling type junction has a normal conductor or semiconductor 30 sandwiched between superconductors 31 as shown in FIG. 3, and has no hysteresis in current-voltage characteristics. Many superconducting elements have been made using metal-based superconductors such as Pb and Nb. In each case, each layer is formed in the thickness direction to produce a Josephson junction, a resistor, and a wiring. When manufacturing a junction that requires current-voltage characteristics without hysteresis,
In many cases, a structure in which a tunnel junction is shunted by a resistor is used.

【0003】一方、近年発見された酸化物超電導体は超
電導になる臨界温度が液体窒素温度を超えるものが多
く、超電導エレクトロニクス素子の応用分野を大きく広
げるものと期待されている。
On the other hand, many oxide superconductors discovered in recent years have a critical temperature at which superconductivity becomes higher than the temperature of liquid nitrogen, and are expected to greatly expand the field of application of superconducting electronic elements.

【0004】酸化物超電導体をエレクトロニクス素子に
応用する試みが多くなされてきたが、多くは微弱な磁場
を検出するSQUID(超電導量子干渉素子)で論理素
子作製の試みは少ない。SQUIDの場合、接合は基板
に段差を設けたり、基板の面方位を違えることで、その
界面上にできた超電導薄膜の結晶粒界を利用している。
Many attempts have been made to apply oxide superconductors to electronic devices, but in many cases there are few attempts to fabricate logic devices using SQUIDs (superconducting quantum interference devices) that detect weak magnetic fields. In the case of the SQUID, the bonding utilizes the crystal grain boundary of the superconducting thin film formed on the interface by providing a step on the substrate or changing the plane orientation of the substrate.

【0005】[0005]

【発明が解決しようとする課題】上記記載のとおり、従
来の超電導素子にはジョセフソン集積回路に見られるよ
うにトンネル型接合が多く用いられてきた。しかしなが
ら、酸化物超電導体を用いた理想的なトンネル型接合の
作製は、酸化物超電導体のコヒーレンス長が数nmと短
く、トンネル障壁層の厚さを極めて薄く(〜1nm)し
なければならないため、酸化物で均質なこのような薄い
絶縁層を作製することが困難であった。そのため、酸化
物超電導論理集積回路を作るにはマイクロブリッジ、結
晶粒界や金属を常伝導層にした超電導/常伝導/超電導
(SNS)接合などの弱結合型接合を用いる必要があ
る。また、論理素子の設計に当たっては、このタイプの
接合で作製できる素子を採用することが必要である。こ
れまで作製された多くの弱結合型接合は、基板に段差を
設けたり、結晶方位の異なる基板を貼り合わせ、その上
に超電導薄膜をエピタキシャル成長させることで膜中に
生じさせた結晶粒界を用いている。このように基板を加
工する方法は素子作製上大きな制約を受け、とくに集積
化を必要とする論理回路では採用できない方法である。
そのため、論理素子ではプレナー型で集積化可能な弱結
合型接合が望まれる。また、弱結合型接合でできる論理
回路は、超電導状態と電圧状態で情報の1、0を決める
通常の電圧伝達型ジョセフソン素子ではなく、量子磁束
を情報の担体とする素子が適切である。
As described above, a tunnel type junction has been often used in a conventional superconducting element as seen in a Josephson integrated circuit. However, in manufacturing an ideal tunnel junction using an oxide superconductor, the coherence length of the oxide superconductor is as short as several nm, and the thickness of the tunnel barrier layer must be extremely thin (up to 1 nm). It has been difficult to produce such a thin insulating layer that is homogeneous with an oxide. Therefore, in order to form an oxide superconducting logic integrated circuit, it is necessary to use a weak coupling type junction such as a microbridge, a superconducting / normal conducting / superconducting (SNS) junction using a crystal grain boundary or a metal as a normal conducting layer. In designing a logic element, it is necessary to employ an element which can be manufactured by this type of junction. Many weak-coupling junctions manufactured so far use a crystal grain boundary created in the film by providing a step on the substrate or bonding substrates with different crystal orientations and epitaxially growing a superconducting thin film on it. ing. As described above, the method of processing a substrate is greatly restricted in element fabrication, and cannot be adopted particularly in a logic circuit requiring integration.
Therefore, in a logic element, a weak coupling type junction which can be integrated in a planar type is desired. Also, as a logic circuit formed by a weak-coupling type junction, an element using quantum flux as a carrier of information is appropriate instead of a normal voltage transfer type Josephson element which determines 1,0 of information in a superconducting state and a voltage state.

【0006】さらに、回路に適用可能な超電導素子を作
製する上で、解決すべき課題には以下のようなものがあ
る。電極層、配線層、層間絶縁層などからなる素子は数
種類の材料からなる積層構造を有する。酸化物超電導体
と他の酸化物材料を積層する場合、膜形成温度が650
℃以上と高いこともあり、その層数が増し、高温に曝さ
れる時間が長くなるほど、下部の超電導層の超電導特性
が劣化する恐れがある。そのため、金属系超電導素子が
10層以上の積層構造でできているのに対して、酸化物
超電導素子ではできるだけ層数を減らすことが望まれ
る。磁束を利用する素子では磁束が超電導体にトラップ
されないように超電導グランドプレーンは必須である。
層数低減の要求とグランドプレーンの必要性は相反する
ものである。
Further, there are the following problems to be solved in manufacturing a superconducting element applicable to a circuit. An element including an electrode layer, a wiring layer, an interlayer insulating layer, and the like has a laminated structure including several types of materials. When an oxide superconductor and another oxide material are stacked, the film formation temperature is 650.
° C or higher, and the superconducting properties of the lower superconducting layer may be degraded as the number of layers increases and the time for exposure to high temperatures increases. Therefore, while the metal-based superconducting element has a laminated structure of ten or more layers, it is desired to reduce the number of layers in the oxide superconducting element as much as possible. In an element utilizing magnetic flux, a superconducting ground plane is essential so that the magnetic flux is not trapped by the superconductor.
The need to reduce the number of layers and the need for a ground plane are contradictory.

【0007】もう1つの課題には超電導層の膜厚があ
る。酸化物超電導体の磁場侵入長はおおよそ140nm
と金属系超電導体の80nmに比べて長いことが特徴で
ある。量子磁束を情報の担体とする素子は、一般にSQ
UIDを構成要素としている。SQUIDには超電導ル
ープが必要であり、それを実現するには配線層も含めて
膜厚は磁場侵入長より厚くする必要がある。
Another problem is the thickness of the superconducting layer. The magnetic penetration depth of the oxide superconductor is approximately 140 nm
It is characterized in that it is longer than 80 nm of the metallic superconductor. Devices using quantum flux as a carrier of information are generally SQ
UID is a constituent element. The SQUID requires a superconducting loop, and to achieve this, the film thickness, including the wiring layer, must be greater than the magnetic field penetration length.

【0008】集積化に適したプレーナ型の弱結合型接合
を作製するには超電導電極間を繋ぐ超電導ブリッジや常
伝導層の長さや幅(超電導電極間距離)は0.1μmオ
ーダであることが条件である。このような微細加工(一
般に溝形状のエッチング加工)を超電導膜に施す場合、
加工時のアスペクト比を小さくするために、超電導電極
層の膜厚は0.1μm以下にしなければならない。これ
は上に記した配線層を含む超電導層の膜厚条件と一致し
ない。
In order to fabricate a planar-type weak-coupling junction suitable for integration, the length and width (distance between superconducting electrodes) of a superconducting bridge and a normal conductive layer connecting superconducting electrodes must be on the order of 0.1 μm. Condition. When such a fine processing (generally groove-shaped etching processing) is performed on the superconducting film,
In order to reduce the aspect ratio during processing, the thickness of the superconducting electrode layer must be 0.1 μm or less. This is inconsistent with the thickness condition of the superconducting layer including the wiring layer described above.

【0009】本発明の目的は、上記問題点を解決し酸化
物超電導体を用いた集積化可能な論理素子を作製するこ
とにある。
An object of the present invention is to solve the above-mentioned problems and to manufacture an integrable logic element using an oxide superconductor.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明では、超電導層の厚さを場所により変化させ
る。すなわち、接合部分を薄く、超電導ループ部分およ
び配線部分を厚く(理想的には磁場侵入長よりも厚く)
するものである。その膜厚比は1:10と大きいため
に、エッチングでは精度よく膜厚を制御することは困難
である。そのために本発明では超電導層の形成は2段階
で行い、膜厚の大きな層で全体のパターンを加工し、接
合部分を除去する。その後、接合作製に必要な極めて薄
い膜を厚い超電導層の上に形成、下地の厚い超電導層部
分を結合し、この部分に0.1μmオーダの微細加工を
施して接合とするのが特徴である。
In order to achieve the above object, according to the present invention, the thickness of the superconducting layer is changed depending on the location. That is, the junction portion is thin, and the superconducting loop portion and the wiring portion are thick (ideally, thicker than the magnetic field penetration length).
Is what you do. Since the film thickness ratio is as large as 1:10, it is difficult to control the film thickness accurately by etching. For this purpose, in the present invention, the formation of the superconducting layer is performed in two stages, the entire pattern is processed with a layer having a large thickness, and the joint is removed. Thereafter, an extremely thin film required for the production of the junction is formed on the thick superconducting layer, and the thick portion of the underlying superconducting layer is joined, and this portion is subjected to fine processing on the order of 0.1 μm to form a junction. .

【0011】一方、積層すべき層数を減らすためにグラ
ンドプレーンと超電導電極層を共通化し、共通化した電
極と他の電極との間隔は磁場侵入長以下の距離にした。
On the other hand, in order to reduce the number of layers to be stacked, the ground plane and the superconducting electrode layer are shared, and the distance between the shared electrode and the other electrode is set to a distance equal to or less than the magnetic field penetration length.

【0012】[0012]

【作用】磁場侵入長よりも厚い超電導膜で配線、電極を
作製することにより、磁束量子超電導素子に必要な超電
導状態を維持することが可能となる。一方、接合部分の
膜厚は0.1μm以下にするため、平面型弱結合を作製
するために必要な電極間距離(〜0.1μm)の加工が
同時に可能となる。その結果、SQUIDを構成要素と
する超電導論理素子が作製できる。
The superconducting state required for the magnetic flux quantum superconducting element can be maintained by forming the wiring and the electrode with a superconducting film thicker than the magnetic field penetration length. On the other hand, since the thickness of the bonding portion is set to 0.1 μm or less, it is possible to simultaneously process the inter-electrode distance (up to 0.1 μm) required for producing a planar weak coupling. As a result, a superconducting logic element including the SQUID as a component can be manufactured.

【0013】[0013]

【実施例】本発明の内容を実施例でもって説明する。EXAMPLES The contents of the present invention will be described with reference to examples.

【0014】(実施例1)酸化物超電導体を用いて磁束
量子パラメトロン(QFP)を作製した。作製プロセス
を 図4の側面図と上面図で説明する。側面図は上面図
の一点破線で示した個所A−A´の断面である。(1)
面方位が(110)であるチタン酸ストロンチウム(S
rTiO3)基板上40に300nmの膜厚を有するY
Ba2Cu3X薄膜41をレーザ蒸着法で作製した。こ
の薄膜形成時の基板温度は700℃、酸素分圧は0.2
Torrであった。薄膜は形成した状態で超電導特性を
示した。(2)この薄膜を加工し、素子パターンを形成
した。その方法は電子線レジストを塗布した後、電子線
描画とイオンビームエッチング法で比較的大きなパター
ンを作製するものである。パターン作製に電子線描画法
を採用したのは微細化が可能であることと、使用する電
子線レジストが水を用いないプロセスが採用できるため
である。これは超電導薄膜の特性劣化防止に効果があ
る。接合部に該当する箇所の薄膜には幅1μmにわたっ
て堀42を作製した。(3)次に絶縁膜のSrTiO3
薄膜を層間絶縁膜として同じくレーザ蒸着法で作製し
た。膜厚は300nmであった。その後、超電導膜と同
じように電子線描画とイオンビームエッチング法によ
り、絶縁膜43にパターンを形成した。(4)この上に
QFPの2本の励振線44と入出力線45用の膜厚30
0nmのYBa2Cu3X薄膜をレーザ蒸着法で作製し
た。パターン加工プロセスは上記プロセスと同じであ
る。(5)次に25nmの膜厚を有するYBa2Cu3
X薄膜46をレーザ蒸着法で作製した。作製条件は下層
の超電導膜と同じである。(6)この薄い超電導膜に電
子線描画とイオンビームエッチング法により幅0.1μ
m、長さ0.1μmのブリッジ図4の(4)において丸
印で示した4ヵ所46に作製、接合47とした。このよ
うにして作製した接合部分の断面構造は図1に示すよう
に膜厚が異なった形状となっている。
(Example 1) A magnetic flux quantum parametron (QFP) was manufactured using an oxide superconductor. The manufacturing process will be described with reference to a side view and a top view in FIG. The side view is a cross section taken along the line AA 'indicated by a dashed line in the top view. (1)
Strontium titanate having a plane orientation of (110) (S
rTiO 3 ) Y having a thickness of 300 nm on a substrate 40
A Ba 2 Cu 3 O X thin film 41 was produced by a laser deposition method. The substrate temperature during the formation of this thin film was 700 ° C., and the oxygen partial pressure was 0.2.
Torr. The thin film showed superconducting properties when formed. (2) This thin film was processed to form an element pattern. In this method, after applying an electron beam resist, a relatively large pattern is formed by electron beam drawing and ion beam etching. The electron beam lithography method was used for the pattern production because the miniaturization was possible and a process in which the electron beam resist used did not use water could be adopted. This is effective in preventing the characteristic deterioration of the superconducting thin film. The moat 42 was formed over the width of 1 μm on the thin film corresponding to the joint. (3) Next, SrTiO 3 of the insulating film
The thin film was similarly formed by a laser deposition method as an interlayer insulating film. The thickness was 300 nm. Thereafter, a pattern was formed on the insulating film 43 by electron beam lithography and ion beam etching as in the case of the superconducting film. (4) On top of this, the film thickness 30 for the two excitation lines 44 and the input / output lines 45 of the QFP
A 0 nm YBa 2 Cu 3 O X thin film was formed by a laser deposition method. The pattern processing process is the same as the above process. (5) Next, YBa 2 Cu 3 O having a thickness of 25 nm
The X thin film 46 was produced by a laser deposition method. The manufacturing conditions are the same as those of the lower superconducting film. (6) The thin superconducting film has a width of 0.1 μm by electron beam lithography and ion beam etching.
m, a bridge having a length of 0.1 μm. As shown in FIG. 1, the cross-sectional structure of the joint portion manufactured in this manner has a different thickness.

【0015】このようにして作製した磁束量子パラメト
ロンは77Kの液体窒素中で低速ではあるが、動作する
ことを確認した。
The flux quantum parametron produced in this way was confirmed to operate in liquid nitrogen at 77 K, although at a low speed.

【0016】(実施例2)実施例1と同様の作製プロセ
スによりマイクロブリッジ型接合を作製したが、接合の
幅を0.1μm、接合の長さを0.2μmにした。接合の
寸法を変更したが、超電導接合としての特性を示し、論
理素子への応用が可能であった。
Example 2 A microbridge type junction was manufactured by the same manufacturing process as in Example 1, except that the width of the junction was 0.1 μm and the length of the junction was 0.2 μm. Although the dimensions of the junction were changed, it exhibited characteristics as a superconducting junction and could be applied to a logic element.

【0017】(実施例3)実施例1で作製したものと同
じ磁束量子パラメトロン51を4個組合せ、1/2分周
回路を作製した。その回路構成を図5に示す。出力信号
の検出には本実施例の接合を利用した直流SQUID5
2を用いた。1/2分周回路では配線交差部が多く必要
となり、図6にような構造の交差部を作製した。図では
超電導配線61とグランドプレーンを兼ねる超電導層6
2のみを表示しており、絶縁層の記載は省略した。その
結果、液体ヘリウム中ではあるが1GHzのクロック
(励振電源の周波数)で動作していることが、スペクト
ルアナライザによる出力分析に500MHzのピークが
存在することから確認できた。交差部にはグランドプレ
ーンが存在しないが、磁束トラップによる動作障害は生
じなかった。
(Embodiment 3) The same flux quantum parametrons 51 as those manufactured in Embodiment 1 were combined to form a 1/2 frequency dividing circuit. FIG. 5 shows the circuit configuration. DC SQUID5 using the junction of the present embodiment for detecting the output signal
2 was used. In the 1/2 frequency dividing circuit, many wiring intersections are required, and an intersection having a structure as shown in FIG. 6 was manufactured. In the figure, the superconducting wiring 6 and the superconducting layer 6 serving also as a ground plane are shown.
Only 2 is shown, and the description of the insulating layer is omitted. As a result, it was confirmed that the liquid helium was operating at a clock of 1 GHz (frequency of the excitation power supply) from the presence of a peak of 500 MHz in the output analysis by the spectrum analyzer. Although there was no ground plane at the intersection, no operational failure was caused by the magnetic flux trap.

【0018】(実施例4)実施例の1から3では基板に
直接、超電導電極を形成したが、本実施例では基板直上
に膜厚300nmのYBa2Cu3X超電導薄膜を最初
に形成し、これをグランドプレーンとした。この上に実
施例1と同じ方法でQFPを作製した。積層層数が増加
したため、グランドプレーンに使用した超電導薄膜及び
積層した超電導薄膜の特性が劣化しており、QFPの動
作は20Kで可能となった。
(Embodiment 4) In Embodiments 1 to 3, the superconducting electrode is formed directly on the substrate. In this embodiment, a YBa 2 Cu 3 O X superconducting thin film having a thickness of 300 nm is first formed directly on the substrate. This was used as a ground plane. A QFP was formed thereon in the same manner as in Example 1. Since the number of laminated layers increased, the characteristics of the superconducting thin film used for the ground plane and the laminated superconducting thin film were deteriorated, and the operation of the QFP became possible at 20K.

【0019】基板に面方位(100)の酸化マグネシウ
ム(MgO)を用い、実施例1の方法によりマイクロブ
リッジ型接合を作製した。基板の影響を受け、超電導薄
膜の面方位は(001)すなわちc軸が基板に垂直な結
晶方位関係を示した。この場合、接合の幅を0.1μm
と0.2μmにした場合に超電導電流の大きさに大きな
変化が生じず、接合の寸法を変えることによる素子設計
に困難さが生じた。そのため、結晶のc軸を基板に対し
て傾ける必要がある。
Using a magnesium oxide (MgO) having a plane orientation of (100) as a substrate, a microbridge type junction was produced by the method of Example 1. Under the influence of the substrate, the plane orientation of the superconducting thin film was (001), that is, the crystal orientation was such that the c-axis was perpendicular to the substrate. In this case, the width of the junction is 0.1 μm
When the thickness is set to 0.2 μm, there is no large change in the magnitude of the superconducting current, and it is difficult to design the device by changing the size of the junction. Therefore, it is necessary to incline the c-axis of the crystal with respect to the substrate.

【0020】上記実施例ではYBa2Cu3X超電導薄
膜を超電導体として用いたが、本発明はY系、すなわち
1−2−3系材料以外のBi系材料にも適用できること
は明らかである。また、磁束量子素子として、QFPを
作製したが、QFPの他に同じくSQUIDから構成さ
れ、磁束量子を情報の担体とするRSFQ(Rapid
Single Flux Quantum)にも適用で
きる。
In the above embodiment, the YBa 2 Cu 3 O X superconducting thin film is used as the superconductor. However, it is clear that the present invention can be applied to Bi-based materials other than Y-based, ie, 1-2-3-based materials. . In addition, although QFP was manufactured as a magnetic flux quantum element, an RSFQ (Rapid), which is also composed of SQUID in addition to QFP and uses magnetic flux quantum as an information carrier,
It is also applicable to Single Flux Quantum.

【0021】[0021]

【発明の効果】以上、説明したように接合部分と配線部
分の膜厚を変えることによって、接合部分では幅及び長
さが0.1μmオーダの加工が可能になり、マイクロブ
リッジ型接合が作製できた。マイクロブリッジ型接合は
段差を利用した接合とは異なり、平面構造であるため、
集積化に適している。このことは本実施例で示したQF
Pとしての応用ばかりでなく、弱結合型超電導接合を利
用する素子に広く適用できることを意味する。一方、配
線部分の膜厚を磁場侵入長よりも厚くしたためSQUI
D用超電導ループを形成することができた。
As described above, by changing the film thickness of the bonding portion and the wiring portion as described above, the width and length of the bonding portion can be processed on the order of 0.1 μm, and the microbridge type bonding can be manufactured. Was. Micro-bridge type bonding is different from bonding using steps, because it has a planar structure,
Suitable for integration. This means that the QF shown in this embodiment
This means that it can be widely applied not only to the application as P but also to an element utilizing a weakly-coupled superconducting junction. On the other hand, since the thickness of the wiring portion was made larger than the magnetic field penetration length, the SQUID
A superconducting loop for D could be formed.

【0022】酸化物超電導体を用いる際に問題であった
素子作製時の積層化による超電導特性の劣化は、グラン
ドプレーンを一方の電極で肩代わりさせることにより解
決することができた。
Deterioration of superconducting characteristics due to lamination during device fabrication, which was a problem when using an oxide superconductor, could be solved by substituting the ground plane with one electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のマイクロブリッジ型接合のを示す断面
図と上面図で、断面図は上面図の中央部の断面を示す図
である。
FIG. 1 is a cross-sectional view and a top view showing a micro-bridge type junction of the present invention, and the cross-sectional view is a view showing a cross section of a central portion of the top view.

【図2】トンネル型接合の構造をその場合の電流−電圧
特性を示す図である。
FIG. 2 is a diagram showing a current-voltage characteristic in the case of a tunnel junction structure.

【図3】弱結合型接合の構造をその場合の電流−電圧特
性を示す図である。
FIG. 3 is a diagram showing current-voltage characteristics in the case of a weak-coupling junction structure.

【図4】本発明の作製プロセスを示す概略図であり、各
プロセスにおける素子の断面(上面図の記号A−A´で
示す箇所)と上面を示す図である。
FIG. 4 is a schematic diagram illustrating a manufacturing process of the present invention, and is a diagram illustrating a cross section (a portion indicated by a symbol AA ′ in a top view) and a top surface of an element in each process.

【図5】磁束量子パラメトロンを4個組合せた1/2分
周回路の回路構成を示す図である。
FIG. 5 is a diagram illustrating a circuit configuration of a 1/2 frequency divider circuit in which four flux quantum parametrons are combined.

【図6】超電導配線の交差部を示す図である。FIG. 6 is a diagram showing an intersection of superconducting wiring.

【符号の説明】[Explanation of symbols]

20・・超電導体薄膜、21・・絶縁体、30・・半導
体、31・・超電導体、40・・チタン酸ストロンチウ
ム基板、41・・YBa2Cu3X薄膜、42・・堀、
43・・絶縁膜、44・・励振線、45・・入出力線、
46・・YBa2Cu3X薄膜、47・・接合、51・
・磁束量子パラメトロン、52・・直流SQUID、6
1・・超電導配線、62・・超電導層。
20 ... superconducting thin film, 21 ... insulator, 30 ... semiconductor, 31 ... superconductor, 40 ... strontium titanate substrate, 41 ·· YBa 2 Cu 3 O X film, 42 ... Hori,
43 ·· insulating film, 44 ·· excitation line, 45 ·· input / output line,
46 ・ ・ YBa 2 Cu 3 O X thin film, 47 ・ ・ Junction, 51 ・
・ Flux quantum parametron, 52 ・ ・ DC SQUID, 6
1. superconducting wiring, 62 superconducting layer.

フロントページの続き (72)発明者 深沢 徳海 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 塚本 晃 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 赤松 正一 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 樺沢 宇紀 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭63−263780(JP,A) 特開 平4−162577(JP,A) 特開 平1−293581(JP,A) 特開 平1−205481(JP,A) 特開 昭58−23391(JP,A) 電子材料、第26巻1月号(昭62−1) PP.83−89 (58)調査した分野(Int.Cl.6,DB名) H01L 39/00 ZAA H01L 39/22 - 39/24 ZAA G01R 33/035 ZAAContinuing on the front page (72) Inventor Tokukai Fukasawa 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside the Hitachi, Ltd. Central Research Laboratory (72) Inventor Akira Tsukamoto 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Hitachi, Ltd. In-house (72) Inventor Shoichi Akamatsu 1-280 Higashi-Koikekubo, Kokubunji-shi, Tokyo Inside the Hitachi, Ltd.Central Research Laboratories (72) Inventor Uki Kabazawa 1-280, Higashi-Koikekubo, Kokubunji-shi, Tokyo In-house Hitachi Research Center (56 References JP-A-63-263780 (JP, A) JP-A-4-162577 (JP, A) JP-A-1-293581 (JP, A) JP-A-1-205481 (JP, A) 58-23391 (JP, A) Electronic Materials, Vol. 26, January Issue (Showa 62-1) PP. 83-89 (58) Field surveyed (Int.Cl. 6 , DB name) H01L 39/00 ZAA H01L 39/22-39/24 ZAA G01R 33/035 ZAA

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】対向する1対の超電導電極と、上記1対の
超電導電極の上と上記1対の超電導電極の間とに形成さ
れた酸化物超電導膜と、を有し、上記1対の超電導電極
の間に形成された上記酸化物超電導膜がくびれ部を具備
することを特徴とする酸化物超電導接合素子。
And 1. A pair of opposing superconducting electrodes, have a, an oxide superconductor film formed and between the superconducting electrodes on the top and the pair of the pair of superconducting electrodes, the pair of Superconducting electrode
The oxide superconducting junction element, characterized in that the oxide superconducting film formed therebetween has a constricted portion .
【請求項2】請求項1に記載の酸化物超電導接合素子に
おいて、上記超電導電極は、ペロブスカイト型酸化物高
温超電導体のY−Ba−Cu系酸化物、またはBi−S
r−Ca−Cu系酸化物からなることを特徴とする酸化
物超電導接合素子。
2. The oxide superconducting junction device according to claim 1, wherein the superconducting electrode is a Y-Ba-Cu-based oxide of a perovskite-type oxide high-temperature superconductor or Bi-S
An oxide superconducting junction element comprising an r-Ca-Cu-based oxide.
【請求項3】請求項1または2に記載の酸化物超電導接
合素子において、上記酸化物超電導膜の内で上記1対の
超電導電極の間に形成された酸化物超電導膜部分を流れ
る電流の方向は、上記酸化物超電導膜部分のc軸に垂直
なa−b面に平行であることを特徴とする酸化物超電導
接合素子。
3. The oxide superconducting junction element according to claim 1, wherein a direction of a current flowing through a portion of the oxide superconducting film formed between the pair of superconducting electrodes in the oxide superconducting film. Is an oxide superconducting junction element parallel to the ab plane perpendicular to the c-axis of the oxide superconducting film portion.
【請求項4】請求項1乃至3のいずれかに記載の酸化物
超電導接合素子において、上記酸化物超電導接合素子を
用いることにより、磁束量子パラメトロンまたは磁束量
子の情報の担体を構成することを特徴とする酸化物超電
導接合素子。
4. The oxide superconducting junction element according to claim 1, wherein said oxide superconducting junction element is used to constitute a flux quantum parametron or a carrier of flux quantum information. Oxide superconducting junction element.
JP6226238A 1994-09-21 1994-09-21 Oxide superconducting junction element Expired - Fee Related JP2768276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6226238A JP2768276B2 (en) 1994-09-21 1994-09-21 Oxide superconducting junction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6226238A JP2768276B2 (en) 1994-09-21 1994-09-21 Oxide superconducting junction element

Publications (2)

Publication Number Publication Date
JPH0897474A JPH0897474A (en) 1996-04-12
JP2768276B2 true JP2768276B2 (en) 1998-06-25

Family

ID=16842063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6226238A Expired - Fee Related JP2768276B2 (en) 1994-09-21 1994-09-21 Oxide superconducting junction element

Country Status (1)

Country Link
JP (1) JP2768276B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560189A (en) * 2017-09-26 2019-04-02 中国科学院上海微系统与信息技术研究所 A kind of magnetic flux superconductor detector and preparation method and detection method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823391A (en) * 1981-08-03 1983-02-12 Mitsubishi Electric Corp Josephson memory device
JPH01205481A (en) * 1988-02-10 1989-08-17 Sanyo Electric Co Ltd Manufacture of dc-squid
JPH01293581A (en) * 1988-05-20 1989-11-27 Sanyo Electric Co Ltd Manufacture of superconductive element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
電子材料、第26巻1月号(昭62−1)PP.83−89

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560189A (en) * 2017-09-26 2019-04-02 中国科学院上海微系统与信息技术研究所 A kind of magnetic flux superconductor detector and preparation method and detection method
CN109560189B (en) * 2017-09-26 2021-04-13 中国科学院上海微系统与信息技术研究所 Magnetic flux superconducting detector, preparation method and detection method

Also Published As

Publication number Publication date
JPH0897474A (en) 1996-04-12

Similar Documents

Publication Publication Date Title
JP3221403B2 (en) Oxide superconductor
KR0175359B1 (en) Method for fabricating superconductor-insulator-superconductor josephson tunnel junction structure
US5627139A (en) High-temperature superconducting josephson devices having a barrier layer of a doped, cubic crystalline, conductive oxide material
US5250506A (en) Superconductive switching element with semiconductor channel
US5380704A (en) Superconducting field effect transistor with increased channel length
JP2674680B2 (en) Superconducting superlattice crystal device
JP2641447B2 (en) Superconducting switching element
Forrester et al. Inductance measurements in multilevel high T c step‐edge grain boundary SQUIDS
JP2768276B2 (en) Oxide superconducting junction element
JP2955407B2 (en) Superconducting element
JP2679610B2 (en) Superconducting element manufacturing method
JP2539584B2 (en) Superconducting quantum interference device
JPH02391A (en) Superconductive field-effect transistor
JPH01300575A (en) Superconducting element
JP3379533B2 (en) Method for manufacturing superconducting device
JPH02194667A (en) Superconducting transistor and manufacture thereof
JP2909455B1 (en) Superconducting element
JP3076503B2 (en) Superconducting element and method of manufacturing the same
JPH02181983A (en) Superconducting tunnel junction element
JPH05291632A (en) Superconductive junction structure
Track et al. Fabrication and characterization of hybrid Nb-YBCO DC SQUIDs
JPH05251769A (en) Connection structure of superconducting current path
JPH1174574A (en) Manufacture of oxide superconducting thin film and superconducting device
JPH0249481A (en) Oxide josephson junction device
JPH0758366A (en) Tunnel-type josephson junction device and its manufacture

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees