JPH04123306A - Magneto-resistance effect element - Google Patents

Magneto-resistance effect element

Info

Publication number
JPH04123306A
JPH04123306A JP24234190A JP24234190A JPH04123306A JP H04123306 A JPH04123306 A JP H04123306A JP 24234190 A JP24234190 A JP 24234190A JP 24234190 A JP24234190 A JP 24234190A JP H04123306 A JPH04123306 A JP H04123306A
Authority
JP
Japan
Prior art keywords
film
resistance
magnetoresistive
layer
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24234190A
Other languages
Japanese (ja)
Inventor
Ryoichi Nakatani
亮一 中谷
Masahiro Kitada
北田 正弘
Isamu Yuhito
勇 由比藤
Hidetoshi Moriwaki
森脇 英稔
Hideo Tanabe
英男 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP24234190A priority Critical patent/JPH04123306A/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to US07/710,775 priority patent/US5390061A/en
Publication of JPH04123306A publication Critical patent/JPH04123306A/en
Priority to US08/328,090 priority patent/US5726837A/en
Priority to US08/626,333 priority patent/US6011674A/en
Priority to US09/468,309 priority patent/US6278593B1/en
Priority to US09/931,897 priority patent/US6483677B2/en
Priority to US10/270,120 priority patent/US6687099B2/en
Priority to US10/700,500 priority patent/US7054120B2/en
Priority to US11/371,244 priority patent/US7159303B2/en
Priority to US11/543,210 priority patent/US7292417B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To increase the electric resistance of the whole of magneto-resistance effect elements to obtain a large resistance variation by connecting plural magneto-resistance effect elements in series. CONSTITUTION:A Cu film 11 is formed on a glass substrate, and its center part is worked by the ion milling method to form a groove, and electrodes 12, 13, 14, and 15 are formed. After this groove is filled up with an insulator like a resist, a resist 16 is formed, and a multilayered magnetic film where an Fe layer 17 and a Cr film 18 are alternately laminated is formed, and the upper face of the whole of an element is made flat and the multilayered magnetic film is worked. A conductive layer 19 is formed on this film, and multilayered magnetic films insulated by a resist 20 are electrically connected, thereby completing a magneto-resistance effect element 20. Plural magneto- resistance effect elements 20 are connected in series. Thus, the electric resistance of the whole of elements is increased to obtain a large resistance variation.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野1 本発明は高い磁気抵抗効果を有する多層磁性薄膜に関し
、特に、磁界センサ、および磁気ディスク装置などに用
いる再生用磁気ヘッドに適した磁気抵抗効果素子に関す
る。 [従来の技術] 高密度磁気記録における再生用磁気ヘッドとして、磁気
抵抗効果を用いた磁気ヘッドの研究が進められている。 高性能を有する磁気ヘッドを実用化するためには、高い
磁気抵抗効果を有する磁性薄膜を開発することが望まし
い、最近、フィジカル レビュー レターズ(Phys
ical Reviei+Letters) 、 Vo
l、61. No、21.247:’〜2475ページ
(1988年)に記載のように、抵抗変化率が50%近
くに達するF e / Cr多層膜が報告されている。 【発明が解決しようとする課題] F e / Cr多層膜のような多層構造を有する磁気
抵抗効果素子では、電子が磁性層から他の磁性層に移る
時、すなわち、非磁性中間層を通過する時の電気抵抗が
磁界によって変化する。この時、電流は膜厚方向に流れ
る。しかし、磁性膜の膜厚は数1100n以下であり、
素子′抵抗は低い、従って、抵抗変化率は高くても、抵
抗変化量は小さく、実際の磁界センサ、磁気ヘッドに応
用した時の出力は小さい。 本発明の目的は、上述の多層構造を有する磁気抵抗効果
素子での問題を解消し、高い抵抗変化量を持つ磁気抵抗
効果素子を提供することにある。 【課題を解決するための手段】 本発明者等は、Fe/Cr多層膜を用いた素子強磁性ト
ンネル素子などの多層構造に起因する磁気抵抗効果を持
つ素子について鋭意研究を重ねた結果、これらの素子の
素子抵抗が低く、このため抵抗変化率が高くても、大き
な抵抗変化量が得られないことを明らかにし、本発明を
完成するに至った・ すなわち、F e / Cr多層膜を用いた素子1強磁
性トンネル素子などの多層構造に起因する磁気抵抗効果
を持つ素子において、複数の磁気抵抗効果素子を直列に
連結することにより、素子全体の電気抵抗を高くした。 また、基板から同じ距離にある非磁性層を電子が複数回
通過するような素子構造とした。 r作用】 本発明によれば、F e / Cr多層膜を用いた素子
、強磁性トンネル素子などの多層構造に起因する磁気抵
抗効果を持つ素子において、複数の磁気抵抗効果素子を
直列に連結することにより、素子全体の電気抵抗を高く
シ、大きな抵抗変化量を得るようにすることができる。 また、基板から同じ距離にある非磁性層を電子が複数回
通過するような素子構造にすることにより、素子全体の
膜厚を増加させずに、素子全体の電気抵抗を高くシ、大
きな抵抗変化量を得るようにすることができる。 さらに本発明によれば、素子全体の膜厚を変化させない
ため、磁気ヘッドに用いた時の波長方向の磁界分布に対
する分解能は減少しない。
INDUSTRIAL APPLICATION FIELD 1 The present invention relates to a multilayer magnetic thin film having a high magnetoresistive effect, and particularly to a magnetoresistive element suitable for a magnetic field sensor and a reproducing magnetic head used in a magnetic disk device. [Prior Art] Research is progressing on magnetic heads that use magnetoresistive effects as magnetic heads for reproduction in high-density magnetic recording. In order to put a magnetic head with high performance into practical use, it is desirable to develop a magnetic thin film with a high magnetoresistive effect.
ical Revie + Letters), Vo
l, 61. As described in No. 21.247:'-2475 pages (1988), an Fe/Cr multilayer film with a resistance change rate of nearly 50% has been reported. [Problems to be Solved by the Invention] In a magnetoresistive element having a multilayer structure such as a Fe/Cr multilayer film, when electrons move from one magnetic layer to another, that is, they pass through a nonmagnetic intermediate layer. The electrical resistance changes depending on the magnetic field. At this time, current flows in the film thickness direction. However, the thickness of the magnetic film is several 1100 nanometers or less,
The element's resistance is low, so even if the rate of resistance change is high, the amount of resistance change is small, and the output when applied to an actual magnetic field sensor or magnetic head is small. An object of the present invention is to solve the problems with the magnetoresistive element having the above-mentioned multilayer structure and to provide a magnetoresistive element having a high resistance change amount. [Means for Solving the Problems] The present inventors have conducted intensive research on elements having a magnetoresistive effect due to multilayer structures, such as ferromagnetic tunnel elements using Fe/Cr multilayer films, and have found that these The present invention was completed by clarifying that the element resistance of the element is low, so even if the resistance change rate is high, a large amount of resistance change cannot be obtained. Element 1 In an element having a magnetoresistive effect due to a multilayer structure, such as a ferromagnetic tunnel element, the electrical resistance of the entire element was increased by connecting a plurality of magnetoresistive elements in series. In addition, the device structure was such that electrons pass multiple times through the nonmagnetic layer located at the same distance from the substrate. r Effect] According to the present invention, in an element having a magnetoresistive effect due to a multilayer structure such as an element using an Fe/Cr multilayer film or a ferromagnetic tunnel element, a plurality of magnetoresistive elements are connected in series. By doing so, it is possible to increase the electrical resistance of the entire element and obtain a large amount of resistance change. In addition, by creating an element structure in which electrons pass multiple times through the nonmagnetic layer located at the same distance from the substrate, we can increase the electrical resistance of the entire element without increasing the film thickness of the entire element, resulting in large resistance changes. You can try to get the amount. Further, according to the present invention, since the film thickness of the entire element is not changed, the resolution of the magnetic field distribution in the wavelength direction when used in a magnetic head does not decrease.

【実施例1 以下に本発明の詳細な説明する。 [実施例1] 本発明の磁気抵抗効果素子の作製方法を以下の述べる。 第1図(a)のようにガラス基板(図示路)上に、幅1
0μm、厚さ1100nのCu膜11を形成し、第1図
(b)のように、その中央部を、イオンミリング法で加
工し、溝を形成し、電極12、電極13、電極14およ
び電極15を形成する。溝の幅は2μmである。その溝
をレジスト等の絶縁体で埋めた後、第1図(c)のよう
に、2pmX10pmX高さ300nmのレジスト16
をフォトリソグラフィによって形成する0次に、第1図
(d)のように、イオンビームスパッタリング法によっ
て、膜厚3nmのFe層17、膜厚lnmのCr層18
を交互に積層した多層磁性膜を形成し、さらに、素子全
体の上面の平坦化および多層磁性膜の加工した。 なお、上記イオンビームスパッタリングは以下の条件で
行った。 イオンガス・・・Ar 装置内Arガス圧力・・・2.5×1O−1Pa蒸着用
イオンガン加速電圧・・・400V蒸着用イオンガンイ
オン電流・・・60mAターゲット基板間距離・・・1
27mmF e / Cr多層磁性膜の全体の膜厚は約
2o。 nmとなるようにした。また、F e / Cr多層磁
性膜の幅は、それぞれ、4μm、長さは、10μmであ
る。さらに、その上に、第1図(e)のように、Cuか
らなる膜厚500nmの導電層19を形成し、レジスト
16で絶縁されている多層磁性膜を電気的につなげ、磁
気抵抗効果素子2oを完成させた。 また、比較例として、第2図に示すような磁気抵抗効果
素子も形成した。この磁気抵抗効果素子の作製法は、以
下のとおりである。これは、幅10μm、厚さ1100
nのCuからなる下部電極21の上に、膜厚3nmのF
e層22、膜厚1nmのCr層23を交互に積層し、1
0μmX10μmX200nmの多層磁性膜を形成した
。さらに、幅10μm、厚さ1100nのCuからなる
上部電極24を形成し、磁気抵抗効果素子25を完成さ
せた。 本発明の磁気抵抗効果素子20および比較例の磁気抵抗
効果素子25の素子抵抗を測定した。測定には、それぞ
れ、電極12、電極13.電極14、電極15および下
部電極21.上部電極24を電圧、電流端子とし、4端
子法で測定した。その結果、従来の比較例の磁気抵抗効
果素子25の素子抵抗は、2.0XIO−’Ωであり、
本発明の磁気抵抗効果素子20の素子抵抗は、3.5X
1o−2Ωであった。 また1本発明の磁気抵抗効果素子20および比較例の磁
気抵抗効果素子25の印加磁界による抵抗変化量を測定
した。測定は、室温で行った。測定結果を第3図に示す
。同図に示すように1本発明の磁気抵抗効果素子20の
抵抗変化量31は、比較例の磁気抵抗効果素子25の抵
抗変化量32の約5倍である。 以上、述べたように、F e / Cr多層膜を用いた
素子において、基板から同じ距離にある非磁性層を電子
が複数回通過するような素子構造にすることにより、素
子全体の膜厚を増加させずに、素子全体の電気抵抗を高
くし、大きな抵抗変化量を得るようにすることができる
。素子全体の膜厚を変化させないため、磁気ヘッドに用
いた時の波長方向の磁界分布に対する分解能は減少しな
い。 [実施例2] 実施例1と同様の素子形状で、強磁性トンネル効果を用
いた磁気抵抗効果素子を作製した。素子の構造を第4図
に示す、磁性層としては、膜厚1100nのFe−1,
7at%Ru合金層45および膜厚1100nのFe−
2,Oat%C合金層44を用いた。また、非磁性層4
6は、膜厚10nmのAl2O,である。電極41、導
電層47にはCuを用いた。絶縁体としては、レジスト
42、レジスト43を用いた。 ヘルムホルツコイルを用いて、磁気抵抗効果素子に磁界
を印加し、電気抵抗の変化を調べた。磁界の強さによっ
て、素子の電気抵抗が変化した。 電気抵抗の変化する原因は以下のように考えられる。 磁化曲線の測定より、Fe−1,7at%Ru合金層の
保磁力は250e、Fe−2,Oat%C合金層の保磁
力は80eであることがわかった。 磁界の大きさを変化させた場合、80eのところで、F
e−2,Oat%C合金層の磁化の向きは変化するが、
Fe−1,7at%Ru合金層の磁化の向きは変化しな
い。250e以上の磁界を印加した時に、Fe−1,7
at%Ru合金層の磁化の向きは変化する。従って、±
8〜250eの磁界では、Fe−2,Oat%C合金層
の磁化の向きとFe−1,7at%Ru合金層の磁化の
向きは、互いに1反平行である。また、この磁界の範囲
以外では、磁化の向きは平行である。Al□o□層をト
ンネル電流がながれる場合、上記磁性層の磁化の向きが
、互いに、反平行である時より、磁化の向きが平行であ
る時の方が、コンダクタンスは高い。このため、磁界の
大きさによって、素子の電気抵抗が変化するものと考え
られる。 また、電子がA1□O1層を一回しか通らない構造の磁
気抵抗効果素子の電気抵抗変化を測定したところ、本発
明の磁気抵抗効果素子の抵抗変化量の1/2の変化量を
示した。以上述べたように、基板から同じ距離にある非
磁性層を電子が複数回通過するような素子構造にするこ
とにより、素子全体の膜厚を増加させずに、素子全体の
電気抵抗を高くシ、大きな抵抗変化量を得るようにする
ことができる。素子全体の膜厚を変化させないため、磁
気ヘッドに用いた時の波長方向の磁界分布に対する分解
能は減少しない。 [実施例3] 強磁性トンネル効果を用いた磁気抵抗効果素子を作製し
た。素子の断面構造を第5図に示す、基板51としては
、コーニング社製ホトセラム基板を用いた。絶縁体52
としては、樹脂を用いた。 導電層53、導電層54には、Cuを用いた。磁性層と
しては、膜厚1100nのFe−2,Oat%C合金層
55および膜厚1100nのFe−1,7at%Ru合
金層56を用いた。また、非磁性層は膜厚10nmのA
1□01層57である。 第5図に示すように、本実施例の磁気抵抗効果素子は、
複数の強磁性トンネル素子が直列に連結している。この
ため、素子全体の電気抵抗は大きくなるが、抵抗変化量
は大きくなり、高感度の磁界センサとなる。 強磁性トンネル素子の直列連結は、どのような形状で行
われても良いが、素子が大きくなると、磁界分布に対す
る分解能が減少し、磁気ヘッドには向かなくなる。しか
し、磁界分布に対する分解能を要求しない磁界センサに
は、本実施例のような多数の強磁性トンネル素子が直列
に連結した磁気抵抗効果素子が好ましい。 【発明の効果】 以上詳細に説明したごとく、F e / Cr多層膜を
用いた素子、強磁性トンネル素子などの多層構造に起因
する磁気抵抗効果を持つ素子において、複数の磁気抵抗
効果素子を直列に連結することにより、素子全体の電気
抵抗を高くし、大きな抵抗変化量を得るようにすること
ができる。また、基板から同じ距離にある非磁性層を電
子が複数回通過するような素子構造にすることにより、
素子全体の膜厚を増加させずに、素子全体の電気抵抗を
高くし、大きな抵抗変化量を得るようにすることができ
る。素子全体の膜厚を変化させないため、磁気ヘッドに
用いた時の波長方向の磁界分布に対する分解能は減少し
ない。
Example 1 The present invention will be described in detail below. [Example 1] A method for manufacturing the magnetoresistive element of the present invention will be described below. As shown in Figure 1(a), on a glass substrate (path shown),
A Cu film 11 with a thickness of 0 μm and a thickness of 1100 nm is formed, and as shown in FIG. form 15. The width of the groove is 2 μm. After filling the groove with an insulator such as a resist, as shown in FIG.
Next, as shown in FIG. 1(d), an Fe layer 17 with a thickness of 3 nm and a Cr layer 18 with a thickness of 1 nm are formed by an ion beam sputtering method.
A multilayer magnetic film was formed by alternately laminating layers, and the upper surface of the entire device was flattened and the multilayer magnetic film was processed. Note that the above ion beam sputtering was performed under the following conditions. Ion gas...Ar Ar gas pressure in the device...2.5 x 1O-1Pa Ion gun acceleration voltage for deposition...400V Ion gun ion current for deposition...60mA Distance between target substrates...1
The total thickness of the 27mm Fe/Cr multilayer magnetic film is approximately 2o. nm. Further, each of the Fe/Cr multilayer magnetic films has a width of 4 μm and a length of 10 μm. Furthermore, as shown in FIG. 1(e), a conductive layer 19 made of Cu and having a thickness of 500 nm is formed thereon, and the multilayer magnetic film insulated by the resist 16 is electrically connected to form a magnetoresistive effect element. Completed 2o. Furthermore, as a comparative example, a magnetoresistive element as shown in FIG. 2 was also formed. The method for manufacturing this magnetoresistive element is as follows. This has a width of 10 μm and a thickness of 1100 μm.
On the lower electrode 21 made of Cu with a thickness of 3 nm,
E layers 22 and Cr layers 23 with a film thickness of 1 nm are alternately laminated, and 1
A multilayer magnetic film of 0 μm×10 μm×200 nm was formed. Further, an upper electrode 24 made of Cu and having a width of 10 μm and a thickness of 1100 nm was formed to complete the magnetoresistive element 25. The element resistances of the magnetoresistive element 20 of the present invention and the magnetoresistive element 25 of the comparative example were measured. For the measurement, electrodes 12, 13. Electrode 14, electrode 15 and lower electrode 21. The upper electrode 24 was used as a voltage and current terminal, and measurements were made using a four-terminal method. As a result, the element resistance of the conventional magnetoresistive element 25 of the comparative example was 2.0XIO-'Ω,
The element resistance of the magnetoresistive element 20 of the present invention is 3.5X
It was 10-2Ω. In addition, the amount of resistance change due to the applied magnetic field of the magnetoresistive element 20 of the present invention and the magnetoresistive element 25 of the comparative example was measured. Measurements were performed at room temperature. The measurement results are shown in Figure 3. As shown in the figure, the amount of resistance change 31 of the magnetoresistive element 20 of the present invention is about five times the amount of resistance change 32 of the magnetoresistive element 25 of the comparative example. As mentioned above, in an element using a Fe/Cr multilayer film, by creating an element structure in which electrons pass multiple times through the nonmagnetic layer located at the same distance from the substrate, the overall film thickness of the element can be reduced. It is possible to increase the electrical resistance of the entire element and obtain a large amount of resistance change without increasing it. Since the film thickness of the entire element does not change, the resolution of the magnetic field distribution in the wavelength direction when used in a magnetic head does not decrease. [Example 2] A magnetoresistive element using a ferromagnetic tunneling effect was manufactured with the same element shape as in Example 1. The structure of the device is shown in FIG. 4. The magnetic layer is made of Fe-1, 1100 nm thick,
7at% Ru alloy layer 45 and 1100n thick Fe-
2. Oat%C alloy layer 44 was used. In addition, the nonmagnetic layer 4
6 is Al2O with a film thickness of 10 nm. Cu was used for the electrode 41 and the conductive layer 47. Resist 42 and resist 43 were used as the insulators. A magnetic field was applied to the magnetoresistive element using a Helmholtz coil, and changes in electrical resistance were investigated. The electrical resistance of the element changed depending on the strength of the magnetic field. The cause of the change in electrical resistance is thought to be as follows. Measurement of the magnetization curve revealed that the coercive force of the Fe-1, 7 at% Ru alloy layer was 250e, and the coercive force of the Fe-2, Oat% C alloy layer was 80e. When the magnitude of the magnetic field is changed, at 80e, F
e-2, Oat% Although the direction of magnetization of the C alloy layer changes,
The magnetization direction of the Fe-1,7at%Ru alloy layer does not change. When a magnetic field of 250e or more is applied, Fe-1,7
The direction of magnetization of the at% Ru alloy layer changes. Therefore, ±
In a magnetic field of 8 to 250 e, the magnetization direction of the Fe-2, Oat% C alloy layer and the magnetization direction of the Fe-1, 7 at% Ru alloy layer are 1 antiparallel to each other. Further, outside the range of this magnetic field, the direction of magnetization is parallel. When a tunneling current flows through the Al□o□ layer, the conductance is higher when the magnetization directions of the magnetic layers are parallel to each other than when the magnetization directions are antiparallel to each other. Therefore, it is thought that the electrical resistance of the element changes depending on the magnitude of the magnetic field. Furthermore, when we measured the change in electrical resistance of a magnetoresistive element with a structure in which electrons pass through the A1□O1 layer only once, we found that the change in resistance was 1/2 of that of the magnetoresistive element of the present invention. . As mentioned above, by creating an element structure in which electrons pass multiple times through the nonmagnetic layer located at the same distance from the substrate, the electrical resistance of the entire element can be increased without increasing the film thickness of the entire element. , it is possible to obtain a large amount of resistance change. Since the film thickness of the entire element does not change, the resolution of the magnetic field distribution in the wavelength direction when used in a magnetic head does not decrease. [Example 3] A magnetoresistive element using ferromagnetic tunneling effect was manufactured. As the substrate 51 whose cross-sectional structure of the element is shown in FIG. 5, a photoceram substrate manufactured by Corning was used. Insulator 52
For this purpose, resin was used. Cu was used for the conductive layer 53 and the conductive layer 54. As the magnetic layer, an Fe-2, Oat% C alloy layer 55 with a thickness of 1100 nm and an Fe-1, 7 at% Ru alloy layer 56 with a thickness of 1100 nm were used. In addition, the nonmagnetic layer has a film thickness of 10 nm.
1□01 layer 57. As shown in FIG. 5, the magnetoresistive element of this example is
A plurality of ferromagnetic tunnel elements are connected in series. Therefore, although the electrical resistance of the entire element increases, the amount of change in resistance increases, resulting in a highly sensitive magnetic field sensor. Ferromagnetic tunneling elements may be connected in series in any shape, but as the elements become larger, the resolution of the magnetic field distribution decreases, making them unsuitable for magnetic heads. However, for a magnetic field sensor that does not require resolution for magnetic field distribution, a magnetoresistive element in which a large number of ferromagnetic tunnel elements are connected in series as in this embodiment is preferable. Effects of the Invention As explained in detail above, in an element having a magnetoresistive effect due to a multilayer structure such as an element using an Fe/Cr multilayer film or a ferromagnetic tunnel element, it is possible to connect a plurality of magnetoresistive elements in series. By connecting it to , it is possible to increase the electrical resistance of the entire element and obtain a large amount of resistance change. In addition, by creating an element structure in which electrons pass multiple times through the nonmagnetic layer located at the same distance from the substrate,
The electrical resistance of the entire element can be increased and a large amount of resistance change can be obtained without increasing the film thickness of the entire element. Since the film thickness of the entire element does not change, the resolution of the magnetic field distribution in the wavelength direction when used in a magnetic head does not decrease.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のF e / Cr多層膜を用いた磁気
抵抗効果素子の作製工程を示す斜視図5第2図は比較例
とした従来のF e / Cr多層膜を用いた磁気抵抗
効果素子の構造を示す斜視図、第3図は本発明および比
較例の磁気抵抗効果素子の磁界による抵抗変化を示すグ
ラフ、第4図は本発明の強磁性トンネル素子を用いた磁
気抵抗効果素子の構造を示す斜視図、第5図は本発明の
強磁性トンネル素子を用いた磁気抵抗効果素子の構造を
示す断面図である。 符号の説明 1l−Cu膜、12.13.14.15−・・電極16
・・・レジスト、17・・Fe層、18・Cr層19・
・・導電層、20・・・磁気抵抗効果素子21・・・下
部電極、22・・・Fe層、23・・・Cr層24・・
・上部電極、25・・・磁気抵抗効果素子31・・・磁
気抵抗効果素子2oの抵抗変化量32・・・磁気抵抗効
果素子25の抵抗変化量41・・・電極、42.43・
・レジスト44=Fe−2,Oat%C合金層 45−Fe−1,7at%Ru合金層 46・・・非磁性層、47・・・導電層51・・・基板
、52・・・絶縁体、53.54・・・導電層55=F
e−2,Oa t%C合金層 56=Fe−1,7at%Ru合金層 (C) /1 cb
Figure 1 is a perspective view showing the manufacturing process of a magnetoresistive element using the Fe/Cr multilayer film of the present invention. Figure 2 is a comparative example of the magnetoresistive effect using a conventional Fe/Cr multilayer film. A perspective view showing the structure of the device, FIG. 3 is a graph showing resistance changes due to magnetic fields of magnetoresistive elements of the present invention and comparative examples, and FIG. 4 is a graph of a magnetoresistive element using the ferromagnetic tunnel element of the present invention. FIG. 5 is a perspective view showing the structure, and FIG. 5 is a sectional view showing the structure of a magnetoresistive element using the ferromagnetic tunnel element of the present invention. Explanation of symbols 1l-Cu film, 12.13.14.15--electrode 16
...Resist, 17..Fe layer, 18.Cr layer 19.
... Conductive layer, 20... Magnetoresistive element 21... Lower electrode, 22... Fe layer, 23... Cr layer 24...
- Upper electrode, 25... Magnetoresistive element 31... Resistance change amount 32 of magnetoresistive element 2o... Resistance change amount 41 of magnetoresistive element 25... Electrode, 42.43.
・Resist 44 = Fe-2, Oat% C alloy layer 45 - Fe-1, 7at% Ru alloy layer 46... Nonmagnetic layer, 47... Conductive layer 51... Substrate, 52... Insulator , 53.54...conductive layer 55=F
e-2, Oat% C alloy layer 56 = Fe-1,7 at% Ru alloy layer (C) /1 cb

Claims (1)

【特許請求の範囲】 1、多層構造に起因する磁気抵抗効果を有する磁気抵抗
効果素子において、複数の磁気抵抗効果素子が直列に連
結していることを特徴とする磁気抵抗効果素子。 2、多層構造に起因する磁気抵抗効果を有する磁気抵抗
効果素子において、基板から同じ距離にある非磁性層を
電子が複数回通過することを特徴とする磁気抵抗効果素
子。
[Scope of Claims] 1. A magnetoresistive element having a magnetoresistive effect due to a multilayer structure, characterized in that a plurality of magnetoresistive elements are connected in series. 2. A magnetoresistive element having a magnetoresistive effect due to a multilayer structure, characterized in that electrons pass multiple times through a nonmagnetic layer located at the same distance from a substrate.
JP24234190A 1990-06-08 1990-09-14 Magneto-resistance effect element Pending JPH04123306A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP24234190A JPH04123306A (en) 1990-09-14 1990-09-14 Magneto-resistance effect element
US07/710,775 US5390061A (en) 1990-06-08 1991-06-05 Multilayer magnetoresistance effect-type magnetic head
US08/328,090 US5726837A (en) 1990-06-08 1994-10-24 Multilayer magnetoresistance effect-type magnetic head
US08/626,333 US6011674A (en) 1990-06-08 1996-04-02 Magnetoresistance effect multilayer film with ferromagnetic film sublayers of different ferromagnetic material compositions
US09/468,309 US6278593B1 (en) 1990-06-08 1999-12-21 Magnetoresistance effect elements and magnetic heads using the tunneling magnetoresistive effect
US09/931,897 US6483677B2 (en) 1990-06-08 2001-08-20 Magnetic disk apparatus including magnetic head having multilayered reproducing element using tunneling effect
US10/270,120 US6687099B2 (en) 1990-06-08 2002-10-15 Magnetic head with conductors formed on endlayers of a multilayer film having magnetic layer coercive force difference
US10/700,500 US7054120B2 (en) 1990-06-08 2003-11-05 Magnetic apparatus with perpendicular recording medium and head having multilayered reproducing element using tunneling effect
US11/371,244 US7159303B2 (en) 1990-06-08 2006-03-09 Method for manufacturing magnetic head device
US11/543,210 US7292417B2 (en) 1990-06-08 2006-10-05 Magnetic apparatus with perpendicular recording medium and head having multilayered reproducing element using tunneling effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24234190A JPH04123306A (en) 1990-09-14 1990-09-14 Magneto-resistance effect element

Publications (1)

Publication Number Publication Date
JPH04123306A true JPH04123306A (en) 1992-04-23

Family

ID=17087757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24234190A Pending JPH04123306A (en) 1990-06-08 1990-09-14 Magneto-resistance effect element

Country Status (1)

Country Link
JP (1) JPH04123306A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943327A (en) * 1995-08-03 1997-02-14 Nec Corp Magneto-resistive current sensor
WO2000003387A1 (en) * 1998-07-08 2000-01-20 Fujitsu Limited Magnetic sensor
US6707648B2 (en) * 2000-05-19 2004-03-16 Nih N University Magnetic device, magnetic head and magnetic adjustment method
JP2015078906A (en) * 2013-10-17 2015-04-23 三菱電機株式会社 Magnetic sensor and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943327A (en) * 1995-08-03 1997-02-14 Nec Corp Magneto-resistive current sensor
WO2000003387A1 (en) * 1998-07-08 2000-01-20 Fujitsu Limited Magnetic sensor
US6441611B2 (en) 1998-07-08 2002-08-27 Fujitsu Limited Magnetic sensor having a GMR layer
US6707648B2 (en) * 2000-05-19 2004-03-16 Nih N University Magnetic device, magnetic head and magnetic adjustment method
JP2015078906A (en) * 2013-10-17 2015-04-23 三菱電機株式会社 Magnetic sensor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6352621B1 (en) Method of manufacturing film laminate having exchange anisotropic magnetic field
US6525532B2 (en) Magnetic device
US6828039B2 (en) Magnetoresistive sensor and manufacturing method therefor
US20040042127A1 (en) Spin-valve head containing partial current-screen-layer, product method of said head, and current-screen method
JPS649649B2 (en)
JPH11175920A (en) Magneto-resistance effect type combined head and its manufacture
WO2001035112A1 (en) Uniform sense condition magnetic field sensor
JP6951454B2 (en) Exchange bond film and magnetoresistive element and magnetic detector using this
JP3456204B2 (en) Magnetic encoder
KR100795492B1 (en) Magnetic sensor and magnetic head
KR20010030439A (en) Magnetic sensor, magnetic head and magnetic disc apparatus
JPH07221363A (en) Magnetoresistive element
JPH04123306A (en) Magneto-resistance effect element
US5886523A (en) Magnetic field responsive device having giant magnetoresistive material and method for forming the same
JP3382866B2 (en) Method of manufacturing magnetoresistive element
JP3766944B2 (en) Magnetoresistive effect element
JP3634997B2 (en) Manufacturing method of magnetic head
WO2000003387A1 (en) Magnetic sensor
EP1424688A2 (en) Spin valve head and magnetic recording device using the same
JP2806549B2 (en) Magnetoresistance effect element
JP2504234B2 (en) Magnetoresistive thin film and method of manufacturing the same
JP2001274478A (en) Magnetoresistive sensor
JP2800497B2 (en) Magnetoresistive head
KR0174447B1 (en) Method for fabricating a multi-layered thin film magneto-resistant head of the shunt bias type
JPH08111010A (en) Multilayered magneto-resistance effect film and magnetic head