JP2800497B2 - Magnetoresistive head - Google Patents

Magnetoresistive head

Info

Publication number
JP2800497B2
JP2800497B2 JP23064491A JP23064491A JP2800497B2 JP 2800497 B2 JP2800497 B2 JP 2800497B2 JP 23064491 A JP23064491 A JP 23064491A JP 23064491 A JP23064491 A JP 23064491A JP 2800497 B2 JP2800497 B2 JP 2800497B2
Authority
JP
Japan
Prior art keywords
layer
magnetic field
electrode
ferromagnetic magnetoresistive
sense current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23064491A
Other languages
Japanese (ja)
Other versions
JPH0573851A (en
Inventor
嘉啓 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23064491A priority Critical patent/JP2800497B2/en
Publication of JPH0573851A publication Critical patent/JPH0573851A/en
Application granted granted Critical
Publication of JP2800497B2 publication Critical patent/JP2800497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は磁気記憶媒体に書き込ま
れた磁気的情報を、強磁性磁気抵抗効果を利用して読み
出す強磁性磁気抵抗効果素子(以下、MR素子と略す)
を具備した磁気抵抗効果ヘッド(以下、MRヘッドと略
す)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferromagnetic magnetoresistive element (hereinafter abbreviated as "MR element") for reading magnetic information written in a magnetic storage medium by utilizing a ferromagnetic magnetoresistance effect.
The present invention relates to a magnetoresistive head (hereinafter, abbreviated as an MR head) having the following.

【0002】[0002]

【従来の技術】周知のごとく、MR素子は高い出力が得
られ、出力が素子と記録媒体との相対速度に依存しない
ため、小型高密度の磁気記録装置の再生用ヘッドへの応
用が期待されている。しかし、MR素子を磁気記録の信
号再生用ヘッドとして実用化するためには、2つの基本
的な要請を満足する必要がある。
2. Description of the Related Art As is well known, an MR element can obtain a high output and the output does not depend on the relative speed between the element and a recording medium. Therefore, application to a reproducing head of a small and high-density magnetic recording apparatus is expected. ing. However, in order to put the MR element into practical use as a signal reproducing head for magnetic recording, it is necessary to satisfy two basic requirements.

【0003】まず第1点は、MR素子を磁気記憶媒体に
書き込まれた磁気的状態に対して線形応答させることで
ある。このため、MRヘッドはMR素子に流すセンス電
流IとMR素子の磁化Mの成す角度θ(以下、バイアス
角度と呼ぶ)を所定の値(望ましくは45度)に設定す
るようセンス電流と直交する方向にバイアス磁界を加え
る必要がある(以下、横方向バイアス磁界と呼ぶ)。上
述のバイアス手段としては種々の方法が開示されてい
る。米国特許第3864751号明細書に軟磁性バイア
ス補助層とMR素子が絶縁層を挟んで積層された構造が
開示されている。これには、MR素子にセンス電流を供
給して軟磁性バイアス補助層を磁化するとともに、軟磁
性バイアス補助層が発生する磁界でMR素子に横方向バ
イアス磁界を印加する方法が示されている。また、他の
バイアス手段として実開昭60−159518号公報に
は、非晶質軟磁性バイアス補助層とMR素子が非磁性導
体層を挟んで積層された構造が開示されている。この構
成では、非晶質難磁性バイアス補助層の比抵抗がMR素
子の比抵抗に比較して著しく高いので、センス電流の大
部分がMR素子を流れ、実効的に非晶質軟磁性バイアス
補助層とMR素子が絶縁されている構成と同等のバイア
ス効果が得られる。更に、このバイアス方法では、非晶
質軟磁性バイアス補助層とMR素子の絶縁を保つ必要が
ないため、非磁性導体層の膜厚を薄くした、コンパクト
なMRヘッドが形成される。
The first point is that the MR element has a linear response to a magnetic state written in a magnetic storage medium. For this reason, the MR head is orthogonal to the sense current so that the angle θ (hereinafter, referred to as a bias angle) between the sense current I flowing through the MR element and the magnetization M of the MR element is set to a predetermined value (preferably 45 degrees). It is necessary to apply a bias magnetic field in the direction (hereinafter, referred to as a lateral bias magnetic field). Various methods have been disclosed as the bias means described above. U.S. Pat. No. 3,864,751 discloses a structure in which a soft magnetic bias auxiliary layer and an MR element are laminated with an insulating layer interposed therebetween. This discloses a method in which a sense current is supplied to an MR element to magnetize a soft magnetic bias auxiliary layer, and a lateral bias magnetic field is applied to the MR element by a magnetic field generated by the soft magnetic bias auxiliary layer. As another bias means, Japanese Utility Model Laid-Open No. 60-159518 discloses a structure in which an amorphous soft magnetic bias auxiliary layer and an MR element are laminated with a nonmagnetic conductor layer interposed therebetween. In this configuration, since the specific resistance of the amorphous hard magnetic bias auxiliary layer is significantly higher than the specific resistance of the MR element, most of the sense current flows through the MR element, and the amorphous soft magnetic bias auxiliary A bias effect equivalent to the configuration in which the layer and the MR element are insulated is obtained. Further, in this bias method, it is not necessary to maintain the insulation between the amorphous soft magnetic bias auxiliary layer and the MR element, so that a compact MR head having a thin nonmagnetic conductor layer is formed.

【0004】次に、第2点は、再生信号のノイズの主因
となり、再生信号の再現性を低下させるバルクハウゼン
ノイズを抑制することである。バルクハウゼンノイズの
原因は、MR素子端部での反磁界によって生じる磁壁の
移動であると考えられる。このため、MR素子部を単磁
区化して磁壁をなくす方法が数多く提案されている。特
開昭62−40610号公報には、MR素子の両端に反
強磁性材料を置いて反強磁性材料の交換相互作用によっ
てセンス電流方向にバイアス磁界(以下縦方向バイアス
磁界と呼ぶ)を加える構造が開示されている(図2)。
なお図2(a)は断面図、図2(b)は平面図であり、
これら図において、1は非磁性基板、2はバイアス補助
層、3は非磁性中間層、4は磁気抵抗効果層、5はFe
Mn層、6は電極を示している。
[0004] The second point is to suppress Barkhausen noise, which is a main cause of noise in the reproduced signal and reduces the reproducibility of the reproduced signal. It is considered that the cause of Barkhausen noise is the movement of the domain wall caused by the demagnetizing field at the end of the MR element. For this reason, many methods have been proposed for eliminating the domain wall by forming the MR element portion into a single magnetic domain. Japanese Patent Application Laid-Open No. 62-40610 discloses a structure in which an antiferromagnetic material is placed at both ends of an MR element and a bias magnetic field (hereinafter referred to as a vertical bias magnetic field) is applied in the sense current direction by exchange interaction of the antiferromagnetic material. Is disclosed (FIG. 2).
2A is a cross-sectional view, and FIG. 2B is a plan view.
In these figures, 1 is a nonmagnetic substrate, 2 is a bias auxiliary layer, 3 is a nonmagnetic intermediate layer, 4 is a magnetoresistive layer, and 5 is Fe
The Mn layer 6 is an electrode.

【0005】[0005]

【発明が解決しようとする課題】しかし、縦方向バイア
ス磁界用の反強磁性材料として広く用いられているFe
Mn膜は腐食し易いため、磁気ヘッドとして用いる時に
図2に示すようにFeMn層5が媒体走行面に露出する
構造をとると、FeMn層が急速に腐食して縦方向バイ
アスの効果が失われ、磁気ヘッドの特性が著しく劣化し
てしまうといった問題点があった。
However, Fe which is widely used as an antiferromagnetic material for a longitudinal bias magnetic field is used.
Since the Mn film is easily corroded, if the FeMn layer 5 is exposed on the medium running surface as shown in FIG. 2 when used as a magnetic head, the FeMn layer is rapidly corroded and the effect of the longitudinal bias is lost. In addition, there is a problem that the characteristics of the magnetic head are significantly deteriorated.

【0006】本発明の目的は、このような問題点を解決
した磁気抵抗効果ヘッドを提供することにある。
[0006] An object of the present invention is to provide a magnetoresistive head which solves such problems.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明のMRヘッドでは、強磁性磁気抵抗効果層
と、接続強磁性磁気抵抗効果層にセンス電流を印加する
ための電極と、前記強磁性磁気抵抗効果層との間に交換
力によってセンス電流と平行方向にバイアス磁界を生じ
させるために前記強磁性磁気抵抗効果層と直接的に接し
て設けた反強磁性層と、前記強磁性磁気抵抗効果層にセ
ンス電流と直交方向にバイアス磁界を生じさせるための
手段とを有し、前記電極に挟まれた強磁性磁気抵抗効果
層の中央部分で磁気記録媒体から生じる信号磁界を検知
する構造の磁気抵抗効果ヘッドにおいて、前記反強磁性
層が少なくとも磁界検知部分近傍では前記電極層と同一
の平面構造を有し、かつ前記磁界検知部分の先端が電極
層よりも媒体走行面側に突出していることを特徴とす
る。
In order to solve the above problems, in the MR head of the present invention, a ferromagnetic magnetoresistive layer and an electrode for applying a sense current to the connecting ferromagnetic magnetoresistive layer are provided. An antiferromagnetic layer provided in direct contact with the ferromagnetic magnetoresistive layer to generate a bias magnetic field between the ferromagnetic magnetoresistive layer and the sense current in a direction parallel to the sense current by an exchange force; Means for generating a bias magnetic field in a direction perpendicular to the sense current in the ferromagnetic magnetoresistive layer, and a signal magnetic field generated from the magnetic recording medium at a central portion of the ferromagnetic magnetoresistive layer sandwiched between the electrodes. In the magnetoresistive head having a structure for detecting, the antiferromagnetic layer has the same planar structure as the electrode layer at least in the vicinity of the magnetic field detecting portion, and the tip of the magnetic field detecting portion has an electrode.
Characterized in that it protrudes more toward the medium running surface than the layer.
You.

【0008】また、強磁性磁気抵抗効果層と、接続強磁
性磁気抵抗効果層にセンス電流を印加するための電極
と、前記強磁性磁気抵抗効果層との間に交換力によって
センス電流と平行方向にバイアス磁界を生じさせるため
に前記強磁性磁気抵抗効果層と直接的に接して設けた反
強磁性層と、前記強磁性磁気抵抗効果層にセンス電流と
直交方向にバイアス磁界を生じさせるための手段とを有
し、前記電極に挟まれた強磁性磁気抵抗効果層の中央部
分で磁気記録媒体から生じる信号磁界を検知し、前記反
強磁性層が少なくとも磁界検知部分近傍では前記電極層
と同一の平面構造を有し、かつ前記電極層が媒体走行面
から後退している構造の磁気抵抗効果ヘッドにおいて、
電極の後退角度が30度以下であることを特徴とする。
In addition , a ferromagnetic magnetoresistive layer and a connecting ferromagnetic
Electrode for applying a sense current to the magnetoresistive layer
And the ferromagnetic magnetoresistive layer by an exchange force.
To generate a bias magnetic field parallel to the sense current
The anti-magnetic layer provided directly in contact with the ferromagnetic magnetoresistive layer
A ferromagnetic layer, and a sense current applied to the ferromagnetic magnetoresistive layer.
Means for generating a bias magnetic field in the orthogonal direction.
And a central portion of the ferromagnetic magnetoresistive layer sandwiched between the electrodes.
The signal magnetic field generated from the magnetic recording medium in
When the ferromagnetic layer is at least near the magnetic field sensing portion, the electrode layer
And the electrode layer has the same plane structure as the medium running surface.
In a magnetoresistive head with a structure that recedes from
The receding angle of the electrode is 30 degrees or less.

【0009】以下に図面を参照して本発明をさらに詳細
に説明する。図1は本発明のMRヘッドの一例を示すも
のである。このヘッドの断面構造は図1(a)に示すよ
うに、表面の滑らかな絶縁性基板1上にバイアス補助層
2,非磁性中間層3,磁気抵抗効果の大きい軟磁性材料
からなるMR層4,縦方向バイアス層となるFeMn層
5を積層し、さらに電極層6が形成され、最後にAl2
3 ,SiO2 等からなる保護層を積層した構造であ
る。このとき、ヘッドの平面構造は図1(b)に示すよ
うに、反強磁性層を媒体走行面から後退した電極層の下
に配置した構造を用いる。本発明によるもう一つのヘッ
ド平面構造を図1(c)に示す。この場合は、反強磁性
層を電極層の下に配置し、かつ磁界検知部分の先端が電
極層よりも媒体走行面側に突出した構造を用いる。
Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 shows an example of the MR head of the present invention. As shown in FIG. 1A, the sectional structure of this head is such that a bias auxiliary layer 2, a non-magnetic intermediate layer 3, and an MR layer 4 made of a soft magnetic material having a large magnetoresistance effect are formed on an insulating substrate 1 having a smooth surface. , An FeMn layer 5 serving as a vertical bias layer is laminated, an electrode layer 6 is further formed, and finally, an Al 2 layer is formed.
It has a structure in which protective layers made of O 3 , SiO 2, etc. are laminated. At this time, as the planar structure of the head, as shown in FIG. 1B, a structure in which an antiferromagnetic layer is arranged below the electrode layer receded from the medium running surface is used. Another head planar structure according to the present invention is shown in FIG. In this case, a structure is used in which the antiferromagnetic layer is disposed below the electrode layer, and the tip of the magnetic field detection portion projects more toward the medium running surface than the electrode layer.

【0010】[0010]

【作用】以下に本発明の作用を簡単に説明する。図2に
示す従来構造のMRヘッドではFeMn層5が媒体走行
面に露出するため、その部分から腐食が進行し、ヘッド
特性が劣化する。これに対し、図1に示す本発明の構造
のMRヘッドでは、FeMn層5が媒体走行面に露出せ
ず、保護層に被覆されているため、長期間使用しても特
性の劣化が生じない。
The operation of the present invention will be briefly described below. In the MR head of the conventional structure shown in FIG. 2, since the FeMn layer 5 is exposed on the medium running surface, corrosion progresses from that portion, and the head characteristics deteriorate. On the other hand, in the MR head having the structure of the present invention shown in FIG. 1, the FeMn layer 5 is not exposed on the medium running surface and is covered with the protective layer. .

【0011】しかし、電極の後退や、磁界検出部分の突
き出しは、磁界検出部分の磁区構造を不安定にするた
め、これらの量には制限がある。図3,図4はトラック
幅5μm、MR素子高さ5μmのMRヘッドにおいて、
それぞれ電極後退角,磁界検出部分の突き出し量を変化
させた時の再生波形変動量を測定した結果である。電極
後退角は30度を、磁界検出部分の突き出し量は1μm
を越えると、波形変動が急激に大きくなる。
However, when the electrode is retracted or the magnetic field detecting portion protrudes, the magnetic domain structure of the magnetic field detecting portion becomes unstable. FIGS. 3 and 4 show an MR head having a track width of 5 μm and an MR element height of 5 μm.
These are the results of measuring the fluctuation amount of the reproduction waveform when the receding angle of the electrode and the protrusion amount of the magnetic field detection portion are changed, respectively. The electrode receding angle is 30 degrees, and the protrusion amount of the magnetic field detection portion is 1 μm.
, The waveform fluctuation rapidly increases.

【0012】また、図1では電極層6がFeMn層5の
上に積層曝れる構造を示したが、本発明の効果は電極層
の積層順序には依存せず、図5に示すように、電極層の
上にMR素子が形成される構造でも同様の効果が得られ
る。また、図1に示した構造のMR素子を磁気シールド
層で狭持した構造のいわゆるシールド型MRヘッドにお
いても、本発明の効果は有効である。
FIG. 1 shows a structure in which the electrode layer 6 is exposed on the FeMn layer 5. However, the effect of the present invention does not depend on the order of lamination of the electrode layers, and as shown in FIG. A similar effect can be obtained with a structure in which an MR element is formed on an electrode layer. The effect of the present invention is also effective in a so-called shield type MR head having a structure in which the MR element having the structure shown in FIG. 1 is sandwiched between magnetic shield layers.

【0013】[0013]

【実施例】表面にスパッタAl2 3 層を形成したAl
2 3 −TiC焼結体基板上に、電気メッキ法によって
厚さ1μmのNiFe層を成膜した。この後、NiFe
層上に所定のフォトレジストパターンを形成し、Arガ
ス雰囲気でイオンエッチングを行い、50μm×50μ
mの矩形にパターン加工し、下シールドとした。次に、
厚さ0.2μmのAl2 3 層を成膜し、下シールドギ
ャップ層とした。この上にCoZrMoの合金ターゲッ
トを用いたArガス中でのrfスパッタ法により、厚さ
50nmのバイアス補助層、非磁性中間層となる膜厚2
0nmのTi層、MR素子となる膜厚40nmのパーマ
ロイ(Ni82%−Fe18% 重量%)層、縦バイア
ス層となる膜厚20nmのFeMn層を順次積層した。
この後、この積層体上に所定のフォトレジストパターン
を形成し、Arガス雰囲気でイオンエッチングを行い、
FeMn層を部分的にパターン加工した。次いで、前述
の積層体にセンス電流を供給する電極層をTiとAuの
積層膜を用いて形成した。さらに、この積層体上に所定
のフォトレジストパターンを形成し、Arガス雰囲気で
イオンエッチングを行い外形形状を決定し、次いで電極
の一部を化学エッチングによって除去して磁界検出部を
形成した。このとき、図6に示すA,B,C,D4種類
の形状を用いたが、いずれもトラック幅に相当する電極
間隔は5μmとし、MR素子の高さは5μmとした。ま
た、B,Dの電極後退角は15度、C,Dの突き出し量
は1μmとした。この上に厚さ0.2μmのAl2 3
層を成膜し、上シールドギャップ層とした。さらに、フ
レームメッキ法によって厚さ1μm,50μm×50μ
mの矩形のNiFe層を形成し、上シールドとした。最
後に、3μm厚のAl2 3 保護層を成膜した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Al having a sputtered Al 2 O 3 layer formed on the surface
A NiFe layer having a thickness of 1 μm was formed on a 2 O 3 —TiC sintered body substrate by electroplating. After this, NiFe
A predetermined photoresist pattern is formed on the layer, and ion etching is performed in an Ar gas atmosphere to obtain a 50 μm × 50 μm.
m was processed into a rectangular shape to form a lower shield. next,
An Al 2 O 3 layer having a thickness of 0.2 μm was formed as a lower shield gap layer. A 50 nm thick bias auxiliary layer and a non-magnetic intermediate layer were formed thereon by rf sputtering in an Ar gas using a CoZrMo alloy target.
A 0 nm Ti layer, a 40 nm thick permalloy (Ni 82% -Fe 18% wt%) layer serving as an MR element, and a 20 nm thick FeMn layer serving as a vertical bias layer were sequentially laminated.
Thereafter, a predetermined photoresist pattern is formed on the laminate, and ion etching is performed in an Ar gas atmosphere.
The FeMn layer was partially patterned. Next, an electrode layer for supplying a sense current to the above-mentioned laminate was formed using a laminate film of Ti and Au. Further, a predetermined photoresist pattern was formed on the laminate, ion etching was performed in an Ar gas atmosphere to determine the outer shape, and then a part of the electrode was removed by chemical etching to form a magnetic field detecting portion. At this time, four types of shapes A, B, C, and D shown in FIG. 6 were used. In each case, the electrode interval corresponding to the track width was 5 μm, and the height of the MR element was 5 μm. The receding angles of the electrodes B and D were 15 degrees, and the protrusion amounts of C and D were 1 μm. On top of this, 0.2 μm thick Al 2 O 3
A layer was formed to form an upper shield gap layer. Further, the thickness is 1 μm, 50 μm × 50 μm by frame plating.
An m-rectangular NiFe layer was formed and used as an upper shield. Finally, an Al 2 O 3 protective layer having a thickness of 3 μm was formed.

【0014】以上のようなMRヘッドを、温度80℃,
相対湿度80%の高温高湿環境中に10日間保持して環
境試験を行い、試験前後での再生特性を評価し、表1に
まとめた。
The above MR head is heated at a temperature of 80.degree.
An environmental test was performed by maintaining the device in a high-temperature, high-humidity environment with a relative humidity of 80% for 10 days, and the regenerating characteristics before and after the test were evaluated.

【0015】表1から明らかなように、本発明の構造の
MRヘッドでは環境試験後もバルクハウゼンノイズが見
られず、優れた性能を有している。
As is clear from Table 1, the MR head having the structure of the present invention shows no Barkhausen noise even after the environmental test, and has excellent performance.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】本発明の磁気抵抗効果ヘッドは、強磁性
磁気抵抗効果層と、接続強磁性磁気抵抗効果層にセンス
電流を印加するための電極と、前記強磁性磁気抵抗効果
層との間に交換力によってセンス電流と平行方向にバイ
アス磁界を生じさせるために前記強磁性磁気抵抗効果層
と直接的に接して設けた反強磁性層と、前記強磁性磁気
抵抗効果層にセンス電流と直交方向にバイアス磁界を生
じさせるための手段とを有し、前記電極に挟まれた強磁
性磁気抵抗効果層の中央部分で磁気記録媒体から生じる
信号磁界を検知する構造の磁気抵抗効果ヘッドにおい
て、前記反強磁性層が少なくとも磁界検知部分近傍では
前記電極層と同一の平面構造を有し、かつ前記磁界検知
部分の先端が電極層よりも媒体走行面側に突出している
構造を用いることによって、対環境性に優れ、バルクハ
ウゼンノイズを無くすことができるという効果がある。
また、強磁性磁気抵抗効果層と、接続強磁性磁気抵抗効
果層にセンス電流を印加するための電極と、前記強磁性
磁気抵抗効果層との間に交換力によってセンス電流と平
行方向にバイアス磁界を生じさせるために前記強磁性磁
気抵抗効果層と直接的に接して設けた反強磁性層と、前
記強磁性磁気抵抗効果層にセンス電流と直交方向にバイ
アス磁界を生じさせるための手段とを有し、前記電極に
挟まれた強磁性磁気抵抗効果層の中央部分で磁気記録媒
体から生じる信号磁界を検知し、前記反強磁性層が少な
くとも磁界検知部分近傍では前記電極層と同一の平面構
造を有し、かつ前記電極層が媒体走行面から後退してい
る構造の磁気抵抗効果ヘッドにおいて、電極の後退角度
が30度以下である構造を用いることによっても、同様
の効果を得ることができる。
According to the present invention, there is provided a magnetoresistive head including a ferromagnetic magnetoresistive layer, an electrode for applying a sense current to the connecting ferromagnetic magnetoresistive layer, and the ferromagnetic magnetoresistive layer. An antiferromagnetic layer provided in direct contact with the ferromagnetic magnetoresistive layer to generate a bias magnetic field in a direction parallel to the sense current by the exchange force; Means for generating a bias magnetic field in a direction, wherein the magnetoresistive head has a structure for detecting a signal magnetic field generated from a magnetic recording medium at a central portion of the ferromagnetic magnetoresistive layer sandwiched between the electrodes. the antiferromagnetic layer has the same planar structure as that of the electrode layer is at least a magnetic field sensing portion near and the magnetic field sensing
The tip of the part protrudes more toward the medium running surface than the electrode layer
The use of the structure has an effect of being excellent in environmental protection and eliminating Barkhausen noise.
In addition, the ferromagnetic magnetoresistive layer and the connecting ferromagnetic magnetoresistive effect
An electrode for applying a sense current to the fruit layer;
The sense current and the flat current are exchanged between the magnetoresistive layer and the magnetoresistive layer.
To generate a bias magnetic field in the row direction, the ferromagnetic
An antiferromagnetic layer provided directly in contact with the resistance layer;
The ferromagnetic magnetoresistive layer is biased in the direction orthogonal to the sense current.
Means for generating an assembling magnetic field.
The magnetic recording medium is located at the center of the sandwiched ferromagnetic magnetoresistive layer.
A signal magnetic field generated from the body, and the antiferromagnetic layer
At least in the vicinity of the magnetic field detection portion, the same planar structure as the electrode layer is used.
And the electrode layer is recessed from the medium running surface.
Angle of the electrode in a magnetoresistive head
By using a structure in which is not more than 30 degrees.
The effect of can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気抵抗効果ヘッドの構造を示す図で
ある。
FIG. 1 is a diagram showing the structure of a magnetoresistive head according to the present invention.

【図2】従来の磁気抵抗効果ヘッドの構造を示す図であ
る。
FIG. 2 is a diagram showing a structure of a conventional magnetoresistive head.

【図3】電極後退角を変化させた時のヘッドの出力変動
を示す図である。
FIG. 3 is a diagram showing output fluctuations of a head when an electrode sweep angle is changed.

【図4】磁界検出部分の突き出し量を変化させた時のヘ
ッドの出力変動を示す図である。
FIG. 4 is a diagram illustrating output fluctuations of a head when the amount of protrusion of a magnetic field detection portion is changed.

【図5】本発明の磁気抵抗効果ヘッドの構造を示す図で
ある。
FIG. 5 is a diagram showing a structure of a magnetoresistive head according to the present invention.

【図6】本発明の実施例の磁気抵抗効果ヘッドの構造を
示す図である。
FIG. 6 is a diagram showing a structure of a magnetoresistive head according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 非磁性基板 2 バイアス補助層 3 非磁性中間層 4 磁気抵抗効果層 5 FeMn層 6 電極 DESCRIPTION OF SYMBOLS 1 Non-magnetic substrate 2 Bias auxiliary layer 3 Non-magnetic intermediate layer 4 Magnetoresistive layer 5 FeMn layer 6 Electrode

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】強磁性磁気抵抗効果層と、接続強磁性磁気
抵抗効果層にセンス電流を印加するための電極と、前記
強磁性磁気抵抗効果層との間に交換力によってセンス電
流と平行方向にバイアス磁界を生じさせるために前記強
磁性磁気抵抗効果層と直接的に接して設けた反強磁性層
と、前記強磁性磁気抵抗効果層にセンス電流と直交方向
にバイアス磁界を生じさせるための手段とを有し、前記
電極に挟まれた強磁性磁気抵抗効果層の中央部分で磁気
記録媒体から生じる信号磁界を検知する構造の磁気抵抗
効果ヘッドにおいて、前記反強磁性層が少なくとも磁界
検知部分近傍では前記電極層と同一の平面構造を有し、
かつ前記磁界検知部分の先端が電極層よりも媒体走行面
側に突出していることを特徴とする磁気抵抗効果ヘッ
ド。
1. An exchange force between a ferromagnetic magnetoresistive layer, an electrode for applying a sense current to a connection ferromagnetic magnetoresistive layer, and the ferromagnetic magnetoresistive layer in a direction parallel to the sense current. An antiferromagnetic layer provided in direct contact with the ferromagnetic magnetoresistive layer to generate a bias magnetic field, and a bias magnetic field generated in the ferromagnetic magnetoresistive layer in a direction orthogonal to a sense current. Means for detecting a signal magnetic field generated from a magnetic recording medium at a central portion of the ferromagnetic magnetoresistive layer sandwiched between the electrodes, wherein the antiferromagnetic layer has at least a magnetic field detecting portion. In the vicinity, it has the same planar structure as the electrode layer,
And a tip of the magnetic field detecting portion protrudes to the medium running surface side from the electrode layer.
【請求項2】強磁性磁気抵抗効果層と、接続強磁性磁気
抵抗効果層にセンス電流を印加するための電極と、前記
強磁性磁気抵抗効果層との間に交換力によってセンス電
流と平行方向にバイアス磁界を生じさせるために前記強
磁性磁気抵抗効果層と直接的に接して設けた反強磁性層
と、前記強磁性磁気抵抗効果層にセンス電流と直交方向
にバイアス磁界を生じさせるための手段とを有し、前記
電極に挟まれた強磁性磁気抵抗効果層の中央部分で磁気
記録媒体から生じる信号磁界を検知し、前記反強磁性層
が少なくとも磁界検知部分近傍では前記電極層と同一の
平面構造を有し、かつ前記電極層が媒体走行面から後退
している構造の磁気抵抗効果ヘッドにおいて、電極の後
退角度が30度以下であることを特徴とする磁気抵抗効
果ヘッド。
2. A ferromagnetic magnetoresistive layer, an electrode for applying a sense current to the connection ferromagnetic magnetoresistive layer, and a direction parallel to the sense current by an exchange force between the ferromagnetic magnetoresistive layer. An antiferromagnetic layer provided in direct contact with the ferromagnetic magnetoresistive layer to generate a bias magnetic field, and a bias magnetic field generated in the ferromagnetic magnetoresistive layer in a direction orthogonal to a sense current. Means for detecting a signal magnetic field generated from a magnetic recording medium at a central portion of the ferromagnetic magnetoresistive layer sandwiched between the electrodes, wherein the antiferromagnetic layer is at least the same as the electrode layer at least in the vicinity of the magnetic field detection portion. A magnetoresistive head, wherein the electrode layer is receded from the medium running surface, wherein the receding angle of the electrode is 30 degrees or less.
【請求項3】請求項1記載の磁気抵抗効果ヘッドにおい
て、磁界検知部分先端の突き出し量が1.0μm以下で
あることを特徴とする磁気抵抗効果ヘッド。
3. The magnetoresistive head according to claim 1, wherein the amount of protrusion of the tip of the magnetic field detecting portion is 1.0 μm or less.
JP23064491A 1991-09-11 1991-09-11 Magnetoresistive head Expired - Fee Related JP2800497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23064491A JP2800497B2 (en) 1991-09-11 1991-09-11 Magnetoresistive head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23064491A JP2800497B2 (en) 1991-09-11 1991-09-11 Magnetoresistive head

Publications (2)

Publication Number Publication Date
JPH0573851A JPH0573851A (en) 1993-03-26
JP2800497B2 true JP2800497B2 (en) 1998-09-21

Family

ID=16911022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23064491A Expired - Fee Related JP2800497B2 (en) 1991-09-11 1991-09-11 Magnetoresistive head

Country Status (1)

Country Link
JP (1) JP2800497B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5909822B2 (en) * 2012-02-27 2016-04-27 アルプス・グリーンデバイス株式会社 Current sensor and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0573851A (en) 1993-03-26

Similar Documents

Publication Publication Date Title
KR100271142B1 (en) Magnetic tunnel junction magnetoresistive read head with sensing layer as flux guide
US6198378B1 (en) Magnetoresisitive sensor and manufacturing method therefor
US5768066A (en) Magnetoresistive head having an antiferromagnetic layer interposed between first and second magnetoresistive elements
JP2003045011A (en) Spin valve type magneto-resistance effect reproducing head and its manufacturing method
US6483674B1 (en) Spin valve head, production process thereof and magnetic disk device
JPH0991629A (en) Thin film magnetic head
JP3524341B2 (en) Magnetoresistive element, and magnetic head, magnetic recording / reproducing head and magnetic storage device using the same
US6120920A (en) Magneto-resistive effect magnetic head
JP2000113421A (en) Magnetic tunnel junction magneto-resistive head
JP2800497B2 (en) Magnetoresistive head
JPH09282616A (en) Magnetic head and magnetic recorder
JPH08235542A (en) Magnetic reluctance effect element
JP2838942B2 (en) Magnetoresistive head
JPH0447890B2 (en)
JP3120012B2 (en) Magnetic sensor, magnetic recording / reproducing head and magnetic recording / reproducing apparatus using the same
JPH0473210B2 (en)
JP2800555B2 (en) Magnetoresistive head
JPH03108112A (en) Production of magneto-resistance effect head
US6851179B2 (en) Magnetic head producing method
JP2861714B2 (en) Magnetoresistive head and magnetic disk drive
JP3036587B2 (en) Magnetoresistive head and method of manufacturing the same
JPH07176020A (en) Magneto-resistance effect head and its production
JP3083090B2 (en) Magnetoresistive sensor
JP2001084531A (en) Magnetoresistance effect type thin film magnetic head
JPH09231523A (en) Magneto-resistive head

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees