JP2806549B2 - Magnetoresistance effect element - Google Patents

Magnetoresistance effect element

Info

Publication number
JP2806549B2
JP2806549B2 JP1087108A JP8710889A JP2806549B2 JP 2806549 B2 JP2806549 B2 JP 2806549B2 JP 1087108 A JP1087108 A JP 1087108A JP 8710889 A JP8710889 A JP 8710889A JP 2806549 B2 JP2806549 B2 JP 2806549B2
Authority
JP
Japan
Prior art keywords
layer
magnetoresistive element
amorphous soft
soft magnetic
ferromagnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1087108A
Other languages
Japanese (ja)
Other versions
JPH02266580A (en
Inventor
富彦 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1087108A priority Critical patent/JP2806549B2/en
Publication of JPH02266580A publication Critical patent/JPH02266580A/en
Application granted granted Critical
Publication of JP2806549B2 publication Critical patent/JP2806549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は強磁性磁気抵抗効果を利用して磁界を検出し
その磁界に対して線形応答性を有する磁気抵抗効果素子
に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive element which detects a magnetic field using a ferromagnetic magnetoresistance effect and has a linear response to the magnetic field.

〔従来の技術〕[Conventional technology]

一般に、磁気抵抗効果素子を線形応答性を呈する高感
度の磁気センサとして使用する場合には、磁気抵抗効果
素子に流すセンス電流Iと磁気抵抗効果素子の磁化Mの
成す角度θ(バイアス角度)を所定の値(望ましくは45
度)に設定するバイアス手段を具備しなければならな
い。
In general, when a magnetoresistive element is used as a high-sensitivity magnetic sensor exhibiting a linear response, an angle θ (bias angle) between a sense current I flowing through the magnetoresistive element and magnetization M of the magnetoresistive element is determined. Predetermined value (preferably 45
(Degree).

このバイアス手段として種々の方法が開示されてい
る。
Various methods have been disclosed as the bias means.

例えば実願昭59−48201号明細書に開示されている磁
気抵抗ヘッド(磁気抵抗効果素子を具備した磁気ヘッ
ド)は、基板上に形成された磁気抵抗効果を有する強磁
性体層上に非磁性導体層と非晶質軟磁性体層とを順次積
層した構造をとり、これにより良好なバイアス角度θ
を、線形応答性に優れた磁気抵抗効果素子を実現してい
る。
For example, a magnetoresistive head (a magnetic head having a magnetoresistive effect element) disclosed in Japanese Utility Model Application No. 59-48201 discloses a nonmagnetic layer formed on a ferromagnetic layer having a magnetoresistive effect formed on a substrate. A structure in which a conductor layer and an amorphous soft magnetic material layer are sequentially laminated has a good bias angle θ.
To realize a magnetoresistive element having excellent linear response.

即ち第5図に示すように、ガラス、フェライト等から
なり表面の滑らかな絶縁性基板51上に、スパッタ法ある
いは蒸着法により、強磁性体層52(例えば膜厚200〜500
ÅのNi−Fe合金)を形成し、この強磁性体層52上にTi,M
o,Cr,Ta等の非磁性導体層53を同様の方法で形成し、更
にこの非磁性導体層53上に非晶質軟磁性体層54を同様な
方法で形成した構造を有する磁気抵抗効果素子を開示し
ている。ここで、電流端子55は強磁性体層52,非磁性導
体層53及び非晶質軟磁性体層54の積層体に通電するため
の電流端子である。
That is, as shown in FIG. 5, a ferromagnetic layer 52 (for example, having a film thickness of 200 to 500) is formed on an insulating substrate 51 made of glass, ferrite or the like and having a smooth surface by sputtering or vapor deposition.
Ni Ni-Fe alloy) is formed, and Ti, M
A magnetoresistive effect having a structure in which a nonmagnetic conductor layer 53 of o, Cr, Ta, etc. is formed by the same method, and an amorphous soft magnetic layer 54 is formed on the nonmagnetic conductor layer 53 by the same method. An element is disclosed. Here, the current terminal 55 is a current terminal for supplying a current to the laminate of the ferromagnetic layer 52, the nonmagnetic conductor layer 53, and the amorphous soft magnetic layer 54.

また、特願昭62−312859号明細書においては、第5図
において、三層の積層順序を、非晶質軟磁性体層54,非
磁性導体層53,強磁性体層52とした磁気抵抗効果素子が
開示されているが、バイアス印加の原理は上記の磁気抵
抗効果素子と全く同様である。
In the specification of Japanese Patent Application No. 62-312859, the order of lamination of the three layers in FIG. 5 was changed to an amorphous soft magnetic layer 54, a nonmagnetic conductor layer 53, and a ferromagnetic layer 52. Although an effect element is disclosed, the principle of bias application is exactly the same as that of the above-described magnetoresistance effect element.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上途した従来の磁気抵抗効果素子には以下の次点があ
る。
The following conventional magnetoresistance effect element has the following points.

(イ)非磁性導体層53にTi,Mo等の比抵抗値の小さな金
属材料を用いているため、センサ電流Iの相当量が非磁
性導体層53に分流し、実質的に強磁性体層52に流れる抵
抗変化感知用の電流量が少なくなってしまう。この結
果、磁気抵抗効果素子として必要量の出力を得るために
センス電流Iを増加させることになり、この電流増加に
伴う発熱が生じて磁気抵抗効果素子の特性を劣化させて
いた。
(A) Since a non-magnetic conductor layer 53 is made of a metal material having a small specific resistance, such as Ti or Mo, a considerable amount of the sensor current I is diverted to the non-magnetic conductor layer 53, and substantially the ferromagnetic layer The amount of current for sensing the resistance change flowing through 52 decreases. As a result, the sense current I is increased in order to obtain a required amount of output as a magnetoresistive element, and heat is generated due to the increase in current, thereby deteriorating the characteristics of the magnetoresistive element.

(ロ)上記の欠点を克服するために非磁性導体層53の代
わりにSiO2等の非磁性絶縁体層を用いてセンス電流の分
流を抑える方法が考えられる。しかしこの方法では、層
厚が小さいことから(200〜400Å)、ピンホールが生じ
易く、強磁性体層52と非晶質軟磁性体層54の間に不用な
磁気的結合を誘起するおそれがある。また、前記非磁性
絶縁体層と基板51との間に強磁性体層52が存在する場合
には、強磁性体層52にセンス電流Iを付与するために強
磁性体層2と電流端子55とを直接接触させなければなら
ない。この結果、磁気抵抗効果素子の作製過程が非常に
複雑なものになっていた。
(B) In order to overcome the above-mentioned disadvantage, a method of suppressing the shunt of the sense current by using a nonmagnetic insulator layer such as SiO 2 instead of the nonmagnetic conductor layer 53 is considered. However, in this method, since the layer thickness is small (200 to 400 °), pinholes are liable to occur, and there is a possibility that unnecessary magnetic coupling is induced between the ferromagnetic layer 52 and the amorphous soft magnetic layer 54. is there. When the ferromagnetic layer 52 exists between the nonmagnetic insulator layer and the substrate 51, the ferromagnetic layer 2 and the current terminal 55 are provided to apply the sense current I to the ferromagnetic layer 52. Must be in direct contact with As a result, the manufacturing process of the magnetoresistance effect element has become very complicated.

本発明の目的は、上記課題を解決し、強磁性体層に十
分なセンス電流を流して所望の磁気抵抗効果を実現する
ことができかつその製作が容易な磁気抵抗効果素子を提
供することにある。
An object of the present invention is to provide a magnetoresistive element capable of solving the above-mentioned problems and realizing a desired magnetoresistive effect by supplying a sufficient sense current to a ferromagnetic layer and easily manufacturing the same. is there.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明は、センス電流通
電用の電力端子を両端に有し、積層された強磁性体層及
び非晶質軟磁性体層と、これら強磁性体層と非晶質軟磁
性体層との間に介在する非磁性導体層とを備える磁気抵
抗効果素子において、前記非磁性導体層が炭素膜からな
るようにしたものである。
In order to achieve the above object, the present invention provides a laminated ferromagnetic layer and an amorphous soft magnetic layer having a power terminal for applying a sense current at both ends thereof, and a ferromagnetic layer and an amorphous soft magnetic layer. And a non-magnetic conductor layer interposed between the non-magnetic conductor layer and the non-magnetic conductor layer.

〔作用〕[Action]

本発明によると、非磁性導体層として比抵抗値が高い
炭素(約350μΩ・cm)を用いることからセンス電流の
大部分が強磁性体層(約25μΩ・cm)を流れるため、非
磁性導体層として比抵抗値の低い金属材料(例えば、T
i:50μΩ・cm)を用いたときと較べて、同じセンス電流
値においても大きな磁界検出出力が得られる。また、グ
ラファイト構造を持つカーボン(炭素)膜は一般に緻密
であり、極薄膜においてもピンホールを生じず、強磁性
内層と非晶質軟磁性体層の磁気的結合を有効に遮断す
る。また、このカーボン膜と基板の間に強磁性体層が介
在する構成においても、カーボン膜の膜厚が200〜400Å
と小さく、膜厚方向の電気抵抗は大きくないため、強磁
性体層と電流端子を直接接触させる必要はない。
According to the present invention, since most of the sense current flows through the ferromagnetic layer (about 25 μΩ · cm) since carbon having a high specific resistance (about 350 μΩ · cm) is used as the nonmagnetic conductor layer, As a metal material having a low specific resistance (for example, T
i: 50 μΩ · cm), a large magnetic field detection output can be obtained even with the same sense current value. Further, a carbon (carbon) film having a graphite structure is generally dense, does not generate pinholes even in an extremely thin film, and effectively blocks magnetic coupling between the ferromagnetic inner layer and the amorphous soft magnetic material layer. Also, in the configuration in which the ferromagnetic layer is interposed between the carbon film and the substrate, the thickness of the carbon film is 200 to 400 mm.
Therefore, it is not necessary to make the ferromagnetic layer and the current terminal directly contact each other.

〔実施例〕〔Example〕

本発明の実施例について図面を参照して説明する。 Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施列に係る磁気抵抗効果素
子の縦断面図である。
FIG. 1 is a longitudinal sectional view of a magnetoresistive element according to a first embodiment of the present invention.

この磁気抵抗効果素子は、ガラス基板1上に強磁性体
層2,非磁性導体層3,非晶質軟磁性体層4の順に積層し、
最上位の非晶質軟磁性体層4上に一対の電流端子5,5を
取り付けた構造となっている。
This magnetoresistive element is formed by stacking a ferromagnetic layer 2, a nonmagnetic conductor layer 3, and an amorphous soft magnetic layer 4 on a glass substrate 1 in this order.
It has a structure in which a pair of current terminals 5, 5 are mounted on the uppermost amorphous soft magnetic layer 4.

強磁性体層2は、基板1の温度300〜350℃下で、蒸着
法を用いて成膜したパーマロイ膜でなる。このパーマロ
イ膜は、NiFe膜で、その膜厚が400Åに、NiとFeの重量
%が各々82%,18%に設定してある。また、パーマロイ
膜の成膜時に100Oeの磁界が印加され、NiFe膜に一軸磁
性異方性が付与されている。
The ferromagnetic layer 2 is a permalloy film formed by using a deposition method at a temperature of the substrate 1 of 300 to 350 ° C. This permalloy film is a NiFe film, the thickness of which is set to 400 °, and the weight percentages of Ni and Fe are set to 82% and 18%, respectively. Further, a magnetic field of 100 Oe is applied during the formation of the permalloy film, and the uniaxial magnetic anisotropy is imparted to the NiFe film.

非磁性導体層3は、強磁性体層2上にスパッタ法を用
いて成膜した膜厚200Åの炭素膜である。この炭素膜に
よって比抵抗値は約350μΩ・cmとなる。
The nonmagnetic conductor layer 3 is a 200-nm-thick carbon film formed on the ferromagnetic layer 2 by a sputtering method. With this carbon film, the specific resistance becomes about 350 μΩ · cm.

非晶質軟磁性体層4は、非磁性導体層3上にスパッタ
法で成膜された膜厚300ÅのCoZrMo膜である。この非晶
質軟磁性体層4の成膜時に100Oeの磁界が印加され非晶
質軟磁性体層4に一軸異方性が付与されている。またこ
の非晶質軟磁性体層4上には、蒸着法によってAu膜が成
膜されている。
The amorphous soft magnetic layer 4 is a CoZrMo film having a thickness of 300 ° formed on the nonmagnetic conductor layer 3 by a sputtering method. A magnetic field of 100 Oe is applied during the formation of the amorphous soft magnetic layer 4 to impart uniaxial anisotropy to the amorphous soft magnetic layer 4. An Au film is formed on the amorphous soft magnetic layer 4 by a vapor deposition method.

電流端子5,5は、非晶質軟磁性体層4上にフォトレジ
ストパターンを形成し、エッチングを行うことにより形
成されている。具体的には、積層体3,4,5上に所定のフ
ォトレジストパターンを形成し、Arガス雰囲気中でイオ
ンエッチングを行い、積層体3〜5を長さ50μm,幅5μ
mの矩形状のパターンに加工する。ここで、エッチング
条件は、加速電圧500VかつArガス出力1×10-4Torrであ
る。そして矩形状の積層体3〜5上にフォトレジストパ
ターンを形成し、表面のAu層の選択化学エッチングを行
うことによって電流端子5,5を形成する。
The current terminals 5, 5 are formed by forming a photoresist pattern on the amorphous soft magnetic layer 4 and performing etching. Specifically, a predetermined photoresist pattern is formed on the laminates 3, 4, and 5, ion etching is performed in an Ar gas atmosphere, and the laminates 3 to 5 are 50 μm long and 5 μm wide.
m is processed into a rectangular pattern. Here, the etching conditions are an acceleration voltage of 500 V and an Ar gas output of 1 × 10 −4 Torr. Then, a photoresist pattern is formed on the rectangular laminates 3 to 5, and the current terminals 5, 5 are formed by performing selective chemical etching of the Au layer on the surface.

この磁気抵抗効果素子において、電流端子5から供給
されるセンス電流Iは主に比抵抗値の最も小さな強磁性
体層2に流れる。そして強磁性体層2を流れるセンス電
流Iによって非晶質軟磁性体層4の面内を通りかつセン
ス電流Iの方向に垂直な磁界が発生する。この磁界によ
り非晶質軟磁性体層4の磁化方向が回転する。これによ
り、非晶質軟磁性体層4における磁化は、非晶質軟磁性
体層4の周囲に前記磁界の方向とは逆向きの磁界を生
じ、その一部が強磁性体層2に印加される。このバイア
ス磁界は、強磁性体層2の磁化をセンス電流Iに対して
回転させ、強磁性体層2のバイアス角度θを所定の値
(理想的には45度)にして線形応答性を実現する。
In this magnetoresistive element, the sense current I supplied from the current terminal 5 mainly flows through the ferromagnetic layer 2 having the smallest specific resistance. The sense current I flowing through the ferromagnetic layer 2 generates a magnetic field that passes through the plane of the amorphous soft magnetic layer 4 and is perpendicular to the direction of the sense current I. The magnetization direction of the amorphous soft magnetic layer 4 is rotated by this magnetic field. Thereby, the magnetization in the amorphous soft magnetic layer 4 generates a magnetic field around the amorphous soft magnetic layer 4 in a direction opposite to the direction of the magnetic field, and a part of the magnetic field is applied to the ferromagnetic layer 2. Is done. This bias magnetic field rotates the magnetization of the ferromagnetic layer 2 with respect to the sense current I, and realizes a linear response by setting the bias angle θ of the ferromagnetic layer 2 to a predetermined value (ideally 45 degrees). I do.

以上の磁気抵抗効果素子において、センス電流Iを10
mA流して磁界検出を行ったところ、磁気抵抗効果素子全
体の抵抗変化率Δρ/ρは、2.2%、最大値電圧変化量
ΔVは13.4mVであった。この結果を従来例と比較するた
め、非磁性導体層3に従来材料であるTi蒸着膜を用い、
他の層およびパターニングに関しては前途の例と全く同
一である磁気抵抗効果素子を作製した。この磁気抵抗効
果素子において、センサ電流Iを同じく10mA流して磁界
検出を行ったところ、磁気抵抗効果素子の抵抗変化率Δ
ρ/ρは1.8%、最大電圧変化量ΔVは1.4mVであった。
即ち本実施例による磁気抵抗効果素子においては、従来
に較べて、約18%大きな磁界検出出力が実現された。
In the above magnetoresistive effect element, the sense current I is 10
When a magnetic field was detected by flowing mA, the resistance change rate Δρ / ρ of the entire magnetoresistance effect element was 2.2%, and the maximum value voltage change ΔV was 13.4 mV. In order to compare this result with a conventional example, a Ti deposited film, which is a conventional material, was used for the nonmagnetic conductor layer 3,
With respect to other layers and patterning, a magnetoresistive element was manufactured which was exactly the same as the previous example. In this magnetoresistive effect element, when the sensor current I was also passed at 10 mA and the magnetic field was detected, the rate of change in resistance of the magnetoresistive effect element Δ
ρ / ρ was 1.8%, and the maximum voltage change ΔV was 1.4 mV.
That is, in the magnetoresistive effect element according to the present embodiment, a magnetic field detection output about 18% larger than that of the related art was realized.

第2図は本発明の第2の実施例に係る磁気抵抗効果素
子の縦断面図である。
FIG. 2 is a longitudinal sectional view of a magnetoresistive element according to a second embodiment of the present invention.

本例の磁気抵抗効果素子は、ガラス基板11上に、非晶
質軟磁性体層14,非磁性導体層13,上面に Au層を有した
強磁性体層12を積層した構造となっている。その他各層
の成膜方法,パターニング及び動作等は第1図の磁気抵
抗効果素子と同様であるため重複記載を省略する。本例
の磁気抵抗効果素子においても第1図の磁気抵抗効果素
子と同じように高い磁界検出出力が実現された。
The magnetoresistive element of this example has a structure in which an amorphous soft magnetic layer 14, a nonmagnetic conductor layer 13, and a ferromagnetic layer 12 having an Au layer on the upper surface are laminated on a glass substrate 11. . In addition, the film forming method, patterning, operation, and the like of each layer are the same as those of the magnetoresistive element of FIG. In the magnetoresistive element of this example, a high magnetic field detection output was realized as in the magnetoresistive element of FIG.

第3図は第3の実施例に係る磁気抵抗効果素子の縦断
面図である。
FIG. 3 is a longitudinal sectional view of a magnetoresistive element according to a third embodiment.

本例の磁気抵抗効果素子は、ガラス基板21上に強磁性
体層22,非磁性導体層23,非晶質軟磁性体層24を積層して
いる点で第1図の磁気抵抗効果素子と同構造であるが、
電流端子25,25が次のように形成されている点で第1図
の磁気抵抗効果素子とは相違する。
The magnetoresistive element of this embodiment differs from the magnetoresistive element of FIG. 1 in that a ferromagnetic layer 22, a nonmagnetic conductor layer 23, and an amorphous soft magnetic layer 24 are laminated on a glass substrate 21. It has the same structure,
It differs from the magnetoresistive element of FIG. 1 in that the current terminals 25, 25 are formed as follows.

積層体22〜24上に所定のフォトレジストパターンを形
成し、イオンエッチングを行うことによってこの積層体
22〜24を長さ50μm,幅5μmの矩形状パターンに加工
し、次に、矩形状の積層体22〜24上にAuを蒸着した後
(膜厚は0.5μm)、Au蒸着膜上にフォトレジストパタ
ーンを形成し、選択化学エッチングを行うことによっ
て、電流端子25,25を形成した。
This laminate is formed by forming a predetermined photoresist pattern on the laminates 22 to 24 and performing ion etching.
22 to 24 are processed into a rectangular pattern having a length of 50 μm and a width of 5 μm, and then Au is deposited on the rectangular laminates 22 to 24 (the film thickness is 0.5 μm), and then a photo is deposited on the Au deposited film. Current terminals 25, 25 were formed by forming a resist pattern and performing selective chemical etching.

本例の磁気抵抗効果素子においても第1図及び第2図
の磁気抵抗効果素子と同様に高い磁界検出出力が実現さ
れた。
Also in the magnetoresistive element of this example, a high magnetic field detection output was realized similarly to the magnetoresistive elements of FIGS. 1 and 2.

第4図は第4の実施例に係る磁気抵抗効果素子の縦断
面図である。
FIG. 4 is a longitudinal sectional view of a magnetoresistive element according to a fourth embodiment.

本例の磁気抵抗効果素子は、ガラス基板31上に、非晶
質軟磁性体34,非磁性導体層33,強磁性体層32を順に積層
した構造となっている。その他各層の成膜方法,パター
ニング及び動作等は第3図の磁気抵抗効果素子と同様で
ある。本例の磁気抵抗効果素子においても第3図の磁気
抵抗効果素子と同様に高い磁界検出出力が実現された。
The magnetoresistive effect element of this example has a structure in which an amorphous soft magnetic material 34, a nonmagnetic conductor layer 33, and a ferromagnetic layer 32 are sequentially stacked on a glass substrate 31. Other film forming methods, patterning, operations, and the like of each layer are the same as those of the magnetoresistive element of FIG. Also in the magnetoresistive element of this example, a high magnetic field detection output was realized as in the magnetoresistive element of FIG.

〔発明の効果〕〔The invention's effect〕

本発明の磁気抵抗効果素子は、以上説明したように構
成されているため、以下の効果がある。
The magnetoresistance effect element of the present invention has the following effects because it is configured as described above.

(イ)非磁性導体層に比抵抗値の大きな炭素を用いてい
るため、センス電流の大部分が強磁性体層に流れる。こ
の結果、非磁性導体層に比抵抗値の小さな金属材料を用
いた従来の磁気抵抗効果素子に比して同一センス電流値
で大きな磁界検出出力を得ることができる。
(A) Since carbon having a large specific resistance is used for the nonmagnetic conductor layer, most of the sense current flows to the ferromagnetic layer. As a result, a large magnetic field detection output can be obtained with the same sense current value as compared with a conventional magnetoresistive effect element using a metal material having a small specific resistance for the nonmagnetic conductor layer.

(ロ)炭素層は緻密であるため、成膜時にピンホールが
生じにくい。従って強磁性体層と非磁性導体層との磁気
的結合が有効に遮断される。
(B) Since the carbon layer is dense, pinholes are less likely to occur during film formation. Therefore, the magnetic coupling between the ferromagnetic layer and the nonmagnetic conductor layer is effectively cut off.

(ハ)炭素層の膜厚方向には十分な電流が流れるため、
電流端子を強磁性体層に直接取り付けることなく強磁性
体層にセンス電流を供給することができる。
(C) Since a sufficient current flows in the thickness direction of the carbon layer,
The sense current can be supplied to the ferromagnetic layer without directly attaching the current terminal to the ferromagnetic layer.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1の実施例に係る磁気抵抗効果素子
の縦断面図、 第2図〜第4図は本発明の第2〜第4の実施例に係る磁
気抵抗効果素子の縦断面図、 第5図は従来の磁気抵抗効果素子を示す斜視図である。 1,11,21,31・・・基板 2,12,22,32・・・強磁性体層 3,13,23,33・・・非磁性導体層 4,14,24,34・・・非晶質軟磁性体層 5,15,25,35・・・電流端子
FIG. 1 is a longitudinal sectional view of a magnetoresistive element according to a first embodiment of the present invention, and FIGS. 2 to 4 are longitudinal sections of a magnetoresistive element according to second to fourth embodiments of the present invention. FIG. 5 is a perspective view showing a conventional magnetoresistive element. 1,11,21,31 ・ ・ ・ substrate 2,12,22,32 ・ ・ ・ ferromagnetic layer 3,13,23,33 ・ ・ ・ non-magnetic conductor layer 4,14,24,34 ・ ・ ・ non Amorphous soft magnetic layer 5,15,25,35 ・ ・ ・ Current terminal

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】センス電流通電用の電力端子を両端に有
し、積層された強磁性体層及び非晶質軟磁性体層と、こ
れら強磁性体層と非晶質軟磁性体層との間に介在する非
磁性導体層とを備える磁気抵抗効果素子において、前記
非磁性導体層が炭素膜からなることを特徴とする磁気抵
抗効果素子。
1. A ferromagnetic material layer and an amorphous soft magnetic material layer having power terminals for applying a sense current at both ends thereof, and a ferromagnetic material layer and an amorphous soft magnetic material layer A magnetoresistive element including a nonmagnetic conductor layer interposed therebetween, wherein the nonmagnetic conductor layer is made of a carbon film.
JP1087108A 1989-04-07 1989-04-07 Magnetoresistance effect element Expired - Fee Related JP2806549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1087108A JP2806549B2 (en) 1989-04-07 1989-04-07 Magnetoresistance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1087108A JP2806549B2 (en) 1989-04-07 1989-04-07 Magnetoresistance effect element

Publications (2)

Publication Number Publication Date
JPH02266580A JPH02266580A (en) 1990-10-31
JP2806549B2 true JP2806549B2 (en) 1998-09-30

Family

ID=13905754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1087108A Expired - Fee Related JP2806549B2 (en) 1989-04-07 1989-04-07 Magnetoresistance effect element

Country Status (1)

Country Link
JP (1) JP2806549B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113257993B (en) * 2020-02-10 2023-07-18 天津大学 Organic semiconductor magnetic resistance device with carbon film protective layer and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038892A (en) * 1983-08-12 1985-02-28 Hitachi Ltd Shunt bias type magnetoresistance element
JPS6352492A (en) * 1986-08-22 1988-03-05 Hitachi Ltd Magnetoresistance element
JPH065573B2 (en) * 1987-03-25 1994-01-19 日本電気株式会社 Magnetoresistive effect head

Also Published As

Publication number Publication date
JPH02266580A (en) 1990-10-31

Similar Documents

Publication Publication Date Title
US20030070497A1 (en) Rotation angle sensor capable of accurately detecting rotation angle
JPH11175920A (en) Magneto-resistance effect type combined head and its manufacture
JPH0950613A (en) Magnetoresistive effect element and magnetic field detecting device
JP2002246671A (en) Method of manufacturing magnetic detection element
JPH0969211A (en) Magnetoresistance effect film, magnetic head and magnetic recorder/reproducer
JPH0870149A (en) Magnetoresistance element
JP2000298162A (en) Magnetic detecting element, its manufacture, and magnetic detecting device
JP2000348309A (en) Spin valve type thin-film magnetic element, thin-film magnetic head and production of spin valve type thin- film magnetic element
JP3035838B2 (en) Magnetoresistance composite element
JP2806549B2 (en) Magnetoresistance effect element
JPH09251618A (en) Magnetic sensor
JP2001052315A (en) Spin valve-type thin-film magnetic element, thin-film magnetic head and manufacture of the spin valve-type thin-film magnetic element
JPH0950612A (en) Magnetoresistive effect film, magnetoresistive effect element, magnetic head and magnetic recording and reproducing device
JPH07297465A (en) Huge magnetic reluctance sensor with insulation pinned layer
JP3634997B2 (en) Manufacturing method of magnetic head
JP2000150235A (en) Spin valve magnetoresistive sensor and thin-film magnetic head
JP2907805B1 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing device
JP2850584B2 (en) Method of manufacturing magnetoresistive element
JP2004178659A (en) Spin valve head and magnetic recorder
JPH0642566B2 (en) Method of manufacturing magnetic low resistance element
JP2669376B2 (en) Magnetoresistive head
JP2001274477A (en) Magnetoresistive element
JPH1079305A (en) Magnetic device
JPH11328624A (en) Magneto-resistance effect device
JPH10233540A (en) Magneto-resistance effect film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees