JP2001274477A - Magnetoresistive element - Google Patents
Magnetoresistive elementInfo
- Publication number
- JP2001274477A JP2001274477A JP2000084081A JP2000084081A JP2001274477A JP 2001274477 A JP2001274477 A JP 2001274477A JP 2000084081 A JP2000084081 A JP 2000084081A JP 2000084081 A JP2000084081 A JP 2000084081A JP 2001274477 A JP2001274477 A JP 2001274477A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- magnetic
- film
- magnetic field
- magnetization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000005291 magnetic effect Effects 0.000 claims abstract description 198
- 230000005415 magnetization Effects 0.000 claims abstract description 61
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 48
- 239000002184 metal Substances 0.000 claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 claims abstract description 27
- 230000003993 interaction Effects 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 3
- 230000008859 change Effects 0.000 abstract description 28
- 230000005389 magnetism Effects 0.000 abstract 4
- 238000010168 coupling process Methods 0.000 description 23
- 238000005859 coupling reaction Methods 0.000 description 23
- 230000008878 coupling Effects 0.000 description 22
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 230000005290 antiferromagnetic effect Effects 0.000 description 8
- 125000006850 spacer group Chemical group 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 239000004020 conductor Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910003321 CoFe Inorganic materials 0.000 description 4
- 229910015136 FeMn Inorganic materials 0.000 description 4
- 229910019041 PtMn Inorganic materials 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3268—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Power Engineering (AREA)
- Hall/Mr Elements (AREA)
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、磁気ヘッドや各種
センサなどに適用される、固着層と自由層とを有する磁
気抵抗素子に係り、特に、磁気特性が温度変化に対して
安定した磁気抵抗素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive element having a fixed layer and a free layer applied to a magnetic head, various sensors, and the like. Related to the element.
【0002】[0002]
【従来の技術】従来から、電子のスピンの向きに依存し
た散乱を利用して巨大磁気抵抗効果を得る磁気抵抗素子
(スピンバルブ型GMR素子)が知られている。この素
子は、図7(A)に示したように、磁化の向きが固定さ
れた(磁化が固着された)硬質磁性の固着層101と、
磁化の向きが外部磁界に応じて変化する軟質磁性の自由
層102と、固着層及び自由層に挟まれた導電性のスペ
ーサ層103とを有している。固着層101は、例え
ば、FeMn等からなる反強磁性膜101aとCoFe
等からなる軟質磁性の磁性膜101bとからなり、磁性
膜101bの磁化は反強磁性膜101aとの間に生じる
交換結合により所定の向きに固着(固定)されている。
また、自由層102はNiFe又はCoFeとNiFe
の積層体等の軟質磁性膜から構成され、スペーサ層10
3はCu等の導電性金属膜から構成されている。2. Description of the Related Art A magnetoresistive element (spin-valve GMR element) that obtains a giant magnetoresistance effect by utilizing scattering depending on the spin direction of electrons has been known. As shown in FIG. 7A, this element has a hard magnetic pinned layer 101 having a fixed magnetization direction (the magnetization is fixed),
It has a soft magnetic free layer 102 whose magnetization direction changes in accordance with an external magnetic field, and a conductive spacer layer 103 sandwiched between the fixed layer and the free layer. The fixed layer 101 is made of, for example, an antiferromagnetic film 101a made of FeMn or the like and a CoFe
The magnetization of the magnetic film 101b is fixed (fixed) in a predetermined direction by exchange coupling between the magnetic film 101b and the antiferromagnetic film 101a.
The free layer 102 is made of NiFe or CoFe and NiFe.
Made of a soft magnetic film such as a laminate of
Reference numeral 3 denotes a conductive metal film such as Cu.
【0003】一方、特開平10−4227号公報に開示
されているように、上記GMR素子よりも磁気抵抗変化
率(MR比)が大きく感度が良好な素子として磁気トン
ネル効果を利用した磁気抵抗素子(TMR素子)が注目
されている。この素子は、図7(B)に示したように、
磁化の向きが固定された硬質磁性の固着層104と、磁
化の向きが外部磁界に応じて変化する軟質磁性の自由層
105と、固着層及び自由層に挟まれた絶縁性のバリア
層106とからなっている。固着層104は、例えば、
FeMn等からなる反強磁性膜104aとCoFe又は
NiFe等からなる軟質磁性の磁性膜104bとからな
り、磁性膜104bの磁化は反強磁性膜104aとの間
に生じる交換結合により所定の向きに固定されている。
また、自由層105はNiFe又はCоFeとNiFe
の積層体等の軟質磁性膜から構成され、バリア層106
はAl2O3等の絶縁膜から構成されている。On the other hand, as disclosed in Japanese Patent Application Laid-Open No. 10-4227, a magnetoresistive element utilizing a magnetic tunnel effect is used as an element having a larger magnetoresistance change ratio (MR ratio) and a higher sensitivity than the above-mentioned GMR element. (TMR elements) are attracting attention. This element is, as shown in FIG.
A hard magnetic pinned layer 104 having a fixed magnetization direction, a soft magnetic free layer 105 whose magnetization direction changes according to an external magnetic field, and an insulating barrier layer 106 interposed between the pinned layer and the free layer. Consists of The fixing layer 104 is, for example,
An antiferromagnetic film 104a made of FeMn or the like and a soft magnetic film 104b made of CoFe or NiFe or the like, and the magnetization of the magnetic film 104b is fixed in a predetermined direction by exchange coupling between the magnetic film 104b and the antiferromagnetic film 104a. Have been.
The free layer 105 is made of NiFe or CoFe and NiFe.
Made of a soft magnetic film such as a laminate of
Is made of an insulating film such as Al 2 O 3 .
【0004】このように、GMR素子とTMR素子は、
自由層102,105と固着層101,104とを有す
る点で共通し、これらの自由層と固着層とに挟まれる層
103,106(以下、「中間層」という。)が導電性
であるか絶縁性であるかの点で相違する構成となってい
る。また、上述のGMR素子又はTMR素子の抵抗値
は、固着層101,104の磁化の向きと、外部磁界に
より変化する自由層102,105の磁化の向きの相対
的な関係に依存して変化する。即ち、素子の抵抗値は、
固着層101,104の磁化の向きと自由層102,1
05の磁化の向きが同じ場合に最小となり、それらの向
きが180°異なる場合に最大となる。As described above, the GMR element and the TMR element are
They are common in that they have free layers 102 and 105 and pinned layers 101 and 104, and whether layers 103 and 106 (hereinafter referred to as “intermediate layers”) sandwiched between these free layers and pinned layers are conductive. The configuration is different in that it is insulative. Further, the resistance value of the above-described GMR element or TMR element changes depending on the relative relationship between the magnetization directions of the fixed layers 101 and 104 and the magnetization directions of the free layers 102 and 105 which change due to an external magnetic field. . That is, the resistance value of the element is
The magnetization directions of the fixed layers 101 and 104 and the free layers 102 and 1
05 are minimum when the magnetization directions are the same, and maximum when the directions are 180 ° different.
【0005】外部磁界はこのように変化する抵抗値に基
づいて検出されるので、これらの素子においては、自由
層102,105の磁化の向きが外部磁界に従って容易
に変化する一方で、固着層101,104の磁化の向き
は使用温度条件下において確実に固定されていることが
要求される。このため、固着層101,104の反強磁
性膜101a,104aとして、ブロッキング温度の高
い材料を選択することが望ましく、図7(C)に示した
ように、固着層101の反強磁性膜101cに規則合金
とされたPtMnを用いることも検討されている。Since the external magnetic field is detected based on the resistance value thus changed, in these devices, the magnetization directions of the free layers 102 and 105 easily change according to the external magnetic field, while the fixed layer 101 is changed. , 104 are required to be reliably fixed under the operating temperature condition. For this reason, it is desirable to select a material having a high blocking temperature as the antiferromagnetic films 101a and 104a of the pinned layers 101 and 104, and as shown in FIG. The use of PtMn, which is an ordered alloy, is also being studied.
【0006】[0006]
【発明が解決しようとする課題】ところで、固着層10
1,104の反強磁性膜101a,104aに上記Fe
Mn(熱処理を施して規則合金とする必要がないもの)
等を用いた場合には、温度上昇に伴って交換結合磁界H
exが直線的に減少する(0に近づく)。交換結合磁界
Hexは、外部磁界により固着層の固定された磁化が反
転する磁界である。この交換結合磁界Hexの減少が及
ぼす影響について検討すると、図8(A)に示したよう
に、室温では外部磁界の変化範囲内における同外部磁界
の増大に伴い、素子の抵抗値は大きな値から小さな値へ
と階段状に減少するので、同外部磁界が所定磁界(この
場合は「0」)より大きいか否かを同抵抗値から検出可
能である。しかしながら、高温(この例では180℃)
になると、図8(B)に示したように、外部磁界の変化
範囲内で正方向に所定の値より大きい磁界が加わった場
合、及び逆方向(負方向)に所定の値より大きい磁界が
加わった場合の両場合において、素子の抵抗値は小さく
なり、これらの場合を区別できないという問題が生じ
る。By the way, the fixing layer 10
The above-described Fe is applied to the antiferromagnetic films
Mn (Those that do not need to be heat-treated to form ordered alloys)
And the like, the exchange coupling magnetic field H
ex decreases linearly (approaches 0). The exchange coupling magnetic field Hex is a magnetic field in which the fixed magnetization of the fixed layer is reversed by an external magnetic field. When examining the effect of the decrease in the exchange coupling magnetic field Hex, as shown in FIG. 8A, at room temperature, the resistance value of the element changes from a large value with an increase in the external magnetic field within the change range of the external magnetic field. Since the value decreases stepwise to a small value, it can be detected from the resistance value whether the external magnetic field is larger than a predetermined magnetic field (in this case, “0”). However, high temperatures (180 ° C. in this example)
As shown in FIG. 8B, when a magnetic field larger than a predetermined value is applied in the positive direction within the change range of the external magnetic field, and a magnetic field larger than the predetermined value in the reverse direction (negative direction), as shown in FIG. In both cases, the resistance value of the element becomes small, and there is a problem that these cases cannot be distinguished.
【0007】また、このような素子は、外部磁界の大き
さが交換結合磁界Hexよりも大きいか否かを検出する
ためにも使用されるが、温度上昇に伴って交換結合磁界
Hexが大きく変化することは、検出基準となる磁界の
大きさが変化することを意味するので、その検出精度が
大きく悪化するという問題がある。[0007] Such an element is also used to detect whether or not the magnitude of the external magnetic field is greater than the exchange coupling magnetic field Hex. However, the exchange coupling magnetic field Hex changes greatly with an increase in temperature. This means that the magnitude of the magnetic field serving as a detection reference changes, so that there is a problem that the detection accuracy is greatly deteriorated.
【0008】一方、図7(C)に示した固着層101の
反強磁性膜101cにPtMnを用いた場合には、高温
アニ−ル処理(成膜後に高温環境下に放置する処理)を
実施して同PtMnを規則合金とすることにより、上記
交換結合磁界Hexの温度依存性が改善される。しかし
ながら、高温アニ−ル処理は他の膜に悪影響を及ぼすた
め、結果として製造される素子の磁気抵抗変化率が低下
してしまうという問題がある。従って、本発明の目的
は、交換結合磁界Hexが温度により変化し難く、か
つ、磁気抵抗変化率が大きい磁気抵抗素子を提供するこ
とにある。On the other hand, when PtMn is used for the antiferromagnetic film 101c of the pinned layer 101 shown in FIG. 7C, a high-temperature annealing process (a process of leaving the film in a high-temperature environment after film formation) is performed. By using PtMn as an ordered alloy, the temperature dependence of the exchange coupling magnetic field Hex is improved. However, since the high-temperature annealing treatment has an adverse effect on other films, there is a problem in that the magnetoresistance ratio of the manufactured element is reduced as a result. Therefore, an object of the present invention is to provide a magnetoresistive element in which the exchange coupling magnetic field Hex is unlikely to change with temperature and has a high magnetoresistance change rate.
【0009】[0009]
【本発明の概要】上記目的を達成する本発明の構成上の
特徴は、磁化の向きが固定された固着層と、磁化の向き
が外部磁界に応じて変化する自由層と、前記固着層及び
前記自由層との間に挟まれる中間層とを含んでなる磁気
抵抗素子において、前記固着層は軟質磁性の磁性膜と同
磁性膜の磁化を固定する硬質磁性の強磁性膜とを含むと
ともに、前記軟質磁性の磁性膜と前記硬質磁性の強磁性
膜との間の強磁性的相互作用を失わない程度の厚さを有
する非磁性金属層を同軟質磁性の磁性膜と同硬質磁性の
強磁性膜との間に介在させたことにある。SUMMARY OF THE INVENTION The structural features of the present invention that achieve the above object include a pinned layer having a fixed magnetization direction, a free layer having a magnetization direction that changes according to an external magnetic field, A magnetoresistive element comprising an intermediate layer sandwiched between the free layer and the fixed layer, wherein the fixed layer includes a soft magnetic magnetic film and a hard magnetic ferromagnetic film that fixes the magnetization of the magnetic film, A non-magnetic metal layer having a thickness that does not lose the ferromagnetic interaction between the soft magnetic magnetic film and the hard magnetic ferromagnetic film is formed of the same soft magnetic magnetic film and the same hard magnetic ferromagnetic film. It has been interposed between the membrane.
【0010】この場合において、前記固着層の硬質磁性
の強磁性膜には強磁性体の中でもキュリー温度が比較的
高いもの、例えばCoPtCrを用いることが好適であ
る。また、前記非磁性金属層にはCrを用いることが好
適である。更に、好ましくは、前記非磁性金属層の厚さ
を0.3〜1.0nm(3〜10Å)とし、より好まし
くは、0.5〜0.8nm(5〜8Å)とする。なお、
前記固着層の軟質磁性の磁性膜は強磁性体膜又は強磁性
体積層膜の何れであってもよく、前記中間層は導電性材
料又は絶縁性材料の何れであってもよい。即ち、本発明
はGMR素子及びTMR素子の何れにも適用される。In this case, the hard magnetic ferromagnetic film of the pinned layer is preferably made of a ferromagnetic material having a relatively high Curie temperature, for example, CoPtCr. Preferably, Cr is used for the nonmagnetic metal layer. Further, preferably, the thickness of the nonmagnetic metal layer is 0.3 to 1.0 nm (3 to 10 °), and more preferably, 0.5 to 0.8 nm (5 to 8 °). In addition,
The soft magnetic film of the pinned layer may be a ferromagnetic film or a ferromagnetic laminated film, and the intermediate layer may be a conductive material or an insulating material. That is, the present invention is applied to both the GMR element and the TMR element.
【0011】このように構成された磁気抵抗素子におい
ては、固着層の硬質磁性膜として反強磁性膜ではなく強
磁性膜を用いた。硬質磁性の強磁性膜と軟質磁性の磁性
膜との間の交換結合は、キュリー温度よりも十分低い温
度域においては温度依存性が小さく、しかも、硬質磁性
の強磁性膜には、高温アニール処理等の高温下での処理
を施さなくても、キュリー温度が室温より大きいものが
多数存在する。また、上記磁気抵抗素子では、固着層の
軟質磁性の磁性膜と同固着層の硬質磁性の強磁性膜との
間に介在された非磁性金属層により、同軟質磁性の磁性
膜と同硬質磁性の強磁性膜との間の強磁性的相互作用が
失われない範囲内で抑制されるため、同軟質磁性の磁性
膜の磁化の向きと同硬質磁性の強磁性膜の磁化の向きが
同時に(一斉に)反転してしまうことが回避される。In the magnetoresistive element thus configured, a ferromagnetic film instead of an antiferromagnetic film is used as the hard magnetic film of the pinned layer. The exchange coupling between the hard magnetic ferromagnetic film and the soft magnetic magnetic film has a small temperature dependence in a temperature range sufficiently lower than the Curie temperature, and the hard magnetic ferromagnetic film has a high-temperature annealing treatment. Even if the treatment at a high temperature such as that described above is not performed, many Curie temperatures are higher than room temperature. Further, in the above-mentioned magnetoresistive element, the nonmagnetic metal layer interposed between the soft magnetic magnetic film of the fixed layer and the hard magnetic ferromagnetic film of the fixed layer allows the soft magnetic magnetic film and the hard magnetic The magnetization direction of the soft magnetic film and the magnetization direction of the hard magnetic film are simultaneously controlled because the ferromagnetic interaction with the (At once) is avoided.
【0012】この結果、固着層の交換結合磁界が(使用
温度領域における)温度変化に対して変化し難いものと
なるとともに、硬質磁性の強磁性膜の磁化の向きが反転
し難くなるので、外部磁界検出用の素子として好適な磁
気抵抗素子が得られる。また、固着層にPtMnを採用
した場合のように高温アニ−ル処理を必要とせず、高温
下で処理する工程を省略又は少なくすることができるた
め、磁気抵抗変化率が大きい値に維持された磁気抵抗素
子を得ることができる。As a result, the exchange-coupling magnetic field of the pinned layer hardly changes with a change in temperature (in the operating temperature range), and the magnetization direction of the hard magnetic ferromagnetic film is hardly reversed. A magnetoresistive element suitable as an element for detecting a magnetic field is obtained. Further, since high-temperature annealing is not required as in the case of using PtMn for the fixed layer, the step of processing at high temperature can be omitted or reduced, so that the magnetoresistance ratio is maintained at a large value. A magnetoresistive element can be obtained.
【0013】[0013]
【発明の実施の形態】以下、本発明による磁気抵抗素子
の各実施形態について図面を参照しつつ説明する。図1
に断面を示した第1実施形態に係る磁気抵抗素子は、巨
大磁気抵抗効果を利用したGMR素子であり、Siから
なる基板10を備えている。基板10の上には、非磁性
導電材料であるCrからなり膜厚10nmの下部電極1
1が形成されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a magnetoresistive element according to the present invention will be described with reference to the drawings. FIG.
The magnetoresistive element according to the first embodiment, whose cross section is shown in FIG. 1, is a GMR element utilizing a giant magnetoresistive effect, and includes a substrate 10 made of Si. On the substrate 10, a lower electrode 1 made of Cr which is a non-magnetic conductive material and having a thickness of 10 nm.
1 is formed.
【0014】下部電極11の上には、キュリー温度が比
較的高いCoPtCrからなり膜厚25nmの硬質磁性
の強磁性膜12が形成されている。この強磁性膜12の
上には、非磁性導電材料であるCrからなり膜厚0.7
nmの非磁性金属層13が積層されていて、同非磁性金
属層13の上には、軟質磁性であるCоからなり膜厚5
nmの下磁性層14が形成されている。これら強磁性膜
12、非磁性金属層13、及び下磁性層14は、外部磁
界によっては磁化の向きが変化しないことが期待される
固着層15を構成するものであって、強磁性膜12は下
磁性層14の磁化を強磁性的相互作用(強磁性的結合作
用)により固定する固定磁化層(Pin層)として機能
する。この意味において、下磁性層14は被固定層(P
inned層)とも呼ばれる。On the lower electrode 11, a hard magnetic ferromagnetic film 12 made of CoPtCr having a relatively high Curie temperature and having a thickness of 25 nm is formed. On the ferromagnetic film 12, a nonmagnetic conductive material made of Cr and having a thickness of 0.7
A non-magnetic metal layer 13 having a thickness of 5 nm is formed on the non-magnetic metal layer 13 and made of soft magnetic Co.
The lower magnetic layer 14 is formed. The ferromagnetic film 12, the non-magnetic metal layer 13, and the lower magnetic layer 14 constitute a pinned layer 15 whose magnetization direction is not expected to change by an external magnetic field. It functions as a fixed magnetic layer (Pin layer) that fixes the magnetization of the lower magnetic layer 14 by ferromagnetic interaction (ferromagnetic coupling). In this sense, the lower magnetic layer 14 is composed of the pinned layer (P
Also referred to as an inner layer.
【0015】上記非磁性金属層13は、強磁性膜12と
下磁性層14との間の強磁性的相互作用を抑制する(小
さくする)が、同作用を喪失しないように機能してい
る。具体的には、上記固着層15の非磁性金属層13の
厚さは、上記例では0.7nmとしたが、好ましくは
0.3〜1.0nm、更に好ましくは、0.5〜0.8
nmとするとよい。The nonmagnetic metal layer 13 functions to suppress (reduce) the ferromagnetic interaction between the ferromagnetic film 12 and the lower magnetic layer 14, but not to lose the effect. Specifically, the thickness of the nonmagnetic metal layer 13 of the fixed layer 15 is set to 0.7 nm in the above example, but is preferably 0.3 to 1.0 nm, and more preferably 0.5 to 0. 8
nm.
【0016】下磁性層14の上には、中間層としてのス
ペーサ層16が形成されている。このスペーサ層16
は、高電気伝導率の導電性金属であるCuからなり、そ
の膜厚は3nmである。On the lower magnetic layer 14, a spacer layer 16 is formed as an intermediate layer. This spacer layer 16
Is made of Cu, which is a conductive metal having high electric conductivity, and has a thickness of 3 nm.
【0017】スペーサ層16の上には、Coからなる膜
厚1nmの下層膜17が形成され、下層膜17の上に
は、NiFeからなる膜厚20nmの軟質磁性の磁性膜
18が積層されている。これら下層膜17と磁性膜18
は、磁化の向きが外部磁界に応じて容易に変化すること
が期待される自由層19を構成している。On the spacer layer 16, a lower film 17 of 1 nm in thickness made of Co is formed. On the lower film 17, a soft magnetic film 18 of 20 nm in thickness made of NiFe is laminated. I have. These lower film 17 and magnetic film 18
Constitutes a free layer 19 in which the direction of magnetization is expected to easily change according to an external magnetic field.
【0018】次に、上記GMR素子の作用について説明
する。このGMR素子においては、磁気情報記録媒体
(メディア)、或いはN極及びS極を交互にリング状に
配列したロータ等が作る外部磁界の変化に伴って自由層
19の磁化の向きが変化し、自由層19の磁化の向きと
固着層15の磁化の向きとがなす角度が変化するため、
スペーサ層16の呈する抵抗値が変化する。具体的に
は、自由層19の磁化と固着層15の磁化とが同じ向き
になると抵抗値は最小となり、両磁化の向きが180°
異なると(反対方向となると)同抵抗値は最大となる。
実際の使用にあたっては、図1において素子の両側に電
極を形成し、この電極を介してスペーサ層16に対して
同層の層面に平行な方向のセンス電流を流すことで同ス
ペーサ層16の両端部間の抵抗値を検出し、検出された
抵抗値から外部磁界を検出する。Next, the operation of the GMR element will be described. In this GMR element, the direction of magnetization of the free layer 19 changes with a change in an external magnetic field created by a magnetic information recording medium (media) or a rotor in which N and S poles are alternately arranged in a ring shape. Since the angle between the direction of magnetization of the free layer 19 and the direction of magnetization of the pinned layer 15 changes,
The resistance value of the spacer layer 16 changes. Specifically, when the magnetization of the free layer 19 and the magnetization of the pinned layer 15 are in the same direction, the resistance value is minimum, and the directions of both magnetizations are 180 °.
If different (in the opposite direction), the same resistance value will be maximum.
In actual use, electrodes are formed on both sides of the element in FIG. 1, and a sense current is supplied to the spacer layer 16 through the electrodes in a direction parallel to the layer surface of the element, thereby forming both ends of the spacer layer 16. A resistance value between the units is detected, and an external magnetic field is detected from the detected resistance value.
【0019】次に、上記GMR素子の磁気抵抗変化率に
ついて説明すると、図2(A),(B)は、環境温度を
それぞれ室温(20℃)、及び高温(180℃)とした
場合の外部磁界Hに対する磁気抵抗変化率の測定結果で
ある。縦軸に示された磁気抵抗変化率は、一般にMR比
と呼ばれるものであり、素子の呈する最小の抵抗値をR
s、素子に外部磁界Hが加わったとき同素子の呈する抵
抗値をR(H)とすると、MR比=((R(H)−R
s)/Rs)×100%にて表される値である。Next, the magnetoresistance change rate of the GMR element will be described. FIGS. 2A and 2B show the case where the ambient temperature is room temperature (20 ° C.) and the ambient temperature is 180 ° C., respectively. It is a measurement result of the magnetoresistance change rate with respect to the magnetic field H. The rate of change in magnetoresistance shown on the vertical axis is generally called an MR ratio, and the minimum resistance value exhibited by the element is represented by R
s, when the resistance value of the element when an external magnetic field H is applied to the element is R (H), MR ratio = ((R (H) −R
s) / Rs) × 100%.
【0020】この測定においては、外部磁界Hは素子の
層面に平行な方向とし、同外部磁界Hを0(Oe)であ
る状態から固着層15の固着されている磁化の向き(以
下、この方向を正方向といい、正方向と反対方向を負方
向という。)に+300(Oe)まで上昇させた時点で
MR比の測定を開始し、その後外部磁界Hを負方向に変
化させて−300(Oe)とし、再び外部磁界Hを正方
向に変化させて+300(Oe)とした。また、この測
定に用いた素子は、上記膜構成を有するものであって、
平面視で幅1mm、長さ7mm(抵抗値は1.8Ω)と
し、センス電流は長さ方向に1mAとした。In this measurement, the external magnetic field H is set in a direction parallel to the layer surface of the element, and the external magnetic field H is changed from 0 (Oe) to the direction of the fixed magnetization of the fixed layer 15 (hereinafter, this direction). Is referred to as the positive direction, and the direction opposite to the positive direction is referred to as the negative direction.) When the ratio is increased to +300 (Oe), the measurement of the MR ratio is started. Oe), and the external magnetic field H was again changed in the positive direction to +300 (Oe). The element used for this measurement has the above-mentioned film configuration,
The width was 1 mm and the length was 7 mm (the resistance value was 1.8Ω) in plan view, and the sense current was 1 mA in the length direction.
【0021】環境温度が室温の場合には、図2(A)に
示したように、上記GMR素子のMR比は、略0(O
e)以上の領域において略0%となる。このとき、固着
層15と自由層19の磁化は同一向きとなっている。ま
た、略−220〜0(Oe)の領域においては、固着層
15の磁化は固定されている向きを維持するが、自由層
19の磁化は外部磁界Hにより反転され、固着層15の
磁化の向きとは反対の向きとなるため、MR比は略7%
と大きくなる。更に、略−220(Oe)以下の領域
(−220(Oe)よりも負方向に大きい領域)におい
ては、下磁性層14も外部磁界Hにより磁化の向きが反
転され、自由層19の磁化と同じ向きとなる。この結
果、MR比は再び略0%となる。When the environmental temperature is room temperature, as shown in FIG. 2A, the MR ratio of the GMR element is substantially 0 (O
e) It becomes approximately 0% in the above region. At this time, the magnetizations of the fixed layer 15 and the free layer 19 are in the same direction. In the region of approximately −220 to 0 (Oe), the magnetization of the fixed layer 15 maintains the fixed direction, but the magnetization of the free layer 19 is reversed by the external magnetic field H, and the magnetization of the fixed layer 15 is reduced. Because the direction is opposite to the direction, the MR ratio is about 7%
It becomes big. Further, in a region of approximately −220 (Oe) or less (a region larger in the negative direction than −220 (Oe)), the magnetization direction of the lower magnetic layer 14 is also reversed by the external magnetic field H, and the magnetization of the free layer 19 is reduced. It has the same orientation. As a result, the MR ratio becomes substantially 0% again.
【0022】環境温度が180℃の場合には、図2
(B)に示したように、上記GMR素子のMR比は、略
0(Oe)以上の領域において略0%となる。このと
き、固着層15と自由層19の磁化は同一向きとなって
いる。また、略−160〜0(Oe)の領域において
は、固着層15の磁化は固定されている向きを維持する
が、自由層19は外部磁界Hにより反転するため、MR
比は略5%と大きくなる。更に、略−160(Oe)以
下の領域においては、下磁性層14も外部磁界Hにより
磁化の向きが反転され、自由層19の磁化と同じ向きと
なる。この結果、MR比は再び略0%となる。このよう
に、交換結合磁界Hexの絶対値は、環境温度が室温で
ある場合に対し180℃である場合の方が小さくなり、
また、MR比も若干低下することが認められる。When the ambient temperature is 180 ° C., FIG.
As shown in (B), the MR ratio of the GMR element is approximately 0% in a region of approximately 0 (Oe) or more. At this time, the magnetizations of the fixed layer 15 and the free layer 19 are in the same direction. In the region of approximately −160 to 0 (Oe), the magnetization of the pinned layer 15 maintains the fixed direction, but the free layer 19 is inverted by the external magnetic field H.
The ratio is as large as approximately 5%. Further, in a region of approximately −160 (Oe) or less, the magnetization direction of the lower magnetic layer 14 is also inverted by the external magnetic field H, and becomes the same as the magnetization direction of the free layer 19. As a result, the MR ratio becomes substantially 0% again. As described above, the absolute value of the exchange coupling magnetic field Hex is smaller when the ambient temperature is 180 ° C. than when the ambient temperature is room temperature,
Further, it is recognized that the MR ratio slightly decreases.
【0023】図3の実線及び破線は、種々の温度におけ
る上記GMR素子と従来のGMR素子の交換結合磁界H
exの大きさをそれぞれ示している。この測定に用いた
従来のGMR素子は、5nmのCr、10nmのNiF
e、1nmのCо、3nmのCu、1nmのCо、10
nmのNiFe、10nmのFeMnを積層したもので
ある。同図から理解されるように、上記実施形態のGM
R素子においては、温度上昇に伴う交換結合磁界Hex
の低下量が従来のGMR素子のそれよりも小さくなって
いる。The solid and broken lines in FIG. 3 show the exchange coupling magnetic field H of the GMR element and the conventional GMR element at various temperatures.
ex indicates the size of each. The conventional GMR element used for this measurement is 5 nm Cr, 10 nm NiF
e, 1 nm Co, 3 nm Cu, 1 nm Co, 10
It is obtained by laminating NiFe of 10 nm and FeMn of 10 nm. As can be understood from FIG.
In the R element, the exchange coupling magnetic field Hex accompanying the temperature rise
Is smaller than that of the conventional GMR element.
【0024】以上、説明したように、第1実施形態にお
いては、固着層15は軟質磁性の磁性膜14と同磁性膜
14の磁化を固定する硬質磁性の強磁性膜12とからな
り、前記軟質磁性の磁性膜14と前記硬質磁性の強磁性
膜12との間の強磁性的相互作用を失わない程度の厚さ
を有する非磁性金属層13を同軟質磁性の磁性膜14と
同硬質磁性の強磁性膜12との間に介在させた。これに
より、第1実施形態に係る素子は、その交換結合磁界H
exが温度変化に対し変化し難く、且つ、高温下での処
理が不要となって磁気特性も良好で、外部磁界検出用の
素子として好適な特性を有するものとなった。As described above, in the first embodiment, the pinned layer 15 comprises the soft magnetic magnetic film 14 and the hard magnetic ferromagnetic film 12 for fixing the magnetization of the magnetic film 14. The non-magnetic metal layer 13 having a thickness that does not lose the ferromagnetic interaction between the magnetic magnetic film 14 and the hard magnetic ferromagnetic film 12 is replaced with the soft magnetic magnetic film 14 and the hard magnetic ferromagnetic film 12. It was interposed between the ferromagnetic film 12. Thereby, the element according to the first embodiment has the exchange coupling magnetic field H
ex does not easily change with temperature change, and no high-temperature treatment is required, the magnetic properties are good, and the element has characteristics suitable for an element for detecting an external magnetic field.
【0025】次に、図4に断面を示した第2実施形態に
係る磁気抵抗素子について説明すると、この素子は、磁
気トンネル効果を利用したTMR素子であり、シリコン
表面を酸化してSiO2としたシリコン基板30を備え
ている。この基板30は、例えば、ガラス、又は石英等
から構成することもできる。基板30の上には、非磁性
導電材料であるCrからなり膜厚10nmの下部電極3
1が形成されている。Next, the magnetoresistive element according to the second embodiment whose cross section is shown in FIG. 4 will be described. This element is a TMR element utilizing the magnetic tunnel effect, and oxidizes the silicon surface to form SiO 2 . Silicon substrate 30 is provided. The substrate 30 can be made of, for example, glass or quartz. On the substrate 30, a lower electrode 3 made of Cr, which is a non-magnetic conductive material, having a thickness of 10 nm.
1 is formed.
【0026】下部電極31の上には、CoPtCrから
なり膜厚30nmの硬質磁性の強磁性膜32が形成され
ている。この強磁性膜32の上には、非磁性導電材料で
あるCrからなり膜厚0.7nmの非磁性金属層33が
積層されていて、同非磁性金属層33の上には、軟質磁
性であるNiFeからなり膜厚5nmの下磁性層34が
形成されている。これら強磁性膜32、非磁性金属層3
3、及び下磁性層34は、外部磁界によっては磁化の向
きが変化しないことが期待される固着層35を構成する
ものであって、強磁性膜32は被固定層となる下磁性層
34の磁化を固定する固定磁化層として機能する。ま
た、非磁性金属層33は、強磁性膜32と軟質磁性の下
磁性層34との間の強磁性的相互作用を喪失しない範囲
で抑制するように機能している。On the lower electrode 31, a hard magnetic ferromagnetic film 32 made of CoPtCr and having a thickness of 30 nm is formed. On this ferromagnetic film 32, a 0.7-nm thick non-magnetic metal layer 33 made of Cr, which is a non-magnetic conductive material, is laminated. A lower magnetic layer 34 made of certain NiFe and having a thickness of 5 nm is formed. These ferromagnetic film 32 and non-magnetic metal layer 3
3 and the lower magnetic layer 34 constitute a pinned layer 35 whose magnetization direction is not expected to be changed by an external magnetic field. The ferromagnetic film 32 is formed of the lower magnetic layer 34 serving as a pinned layer. It functions as a fixed magnetization layer that fixes the magnetization. The non-magnetic metal layer 33 functions so as to suppress the ferromagnetic interaction between the ferromagnetic film 32 and the soft magnetic lower magnetic layer 34 within a range in which the ferromagnetic interaction is not lost.
【0027】下磁性層34の上には、中間層としての絶
縁層36が形成されている。この絶縁層36は、絶縁材
であるAl2O3からなり、その膜厚は2nmである。On the lower magnetic layer 34, an insulating layer 36 as an intermediate layer is formed. The insulating layer 36 is made of an insulating material, Al 2 O 3 , and has a thickness of 2 nm.
【0028】絶縁層36の上には、Coからなる膜厚1
nmの下層膜37が形成され、下層膜37の上には、軟
質磁性であるNiFeからなり膜厚60nmの軟質磁性
の磁性膜38が積層されている。これら下層膜37と磁
性膜38は、磁化の向きが外部磁界に応じて容易に変化
することが期待される自由層39を構成している。磁性
膜38の上には、Mоからなり膜厚30nmのダミー膜
40が形成されている。On the insulating layer 36, a film 1 of Co
The lower film 37 is formed with a thickness of 60 nm, and a soft magnetic film 38 made of soft magnetic NiFe and having a thickness of 60 nm is laminated on the lower film 37. The lower film 37 and the magnetic film 38 constitute a free layer 39 in which the direction of magnetization is expected to easily change according to an external magnetic field. On the magnetic film 38, a dummy film 40 made of Mo and having a thickness of 30 nm is formed.
【0029】次に、上記TMR素子の作用について説明
する。このTMR素子においては、磁気情報記録媒体や
ロータ等が作る外部磁界の変化に伴って、自由層39の
磁化の向きが変化する。この結果、自由層39の磁化と
固着層35の磁化とが同じ向きになると、層面垂直方向
における抵抗値は最小となり、両磁化の向きが180°
異なると同抵抗値は最大となる。実際の使用にあたって
は、ダミー膜40から下部電極31に向う(又はその逆
方向に向う)一定電流が流されて、同電流方向における
素子端部間の電位差が検出され、この電位差から前記抵
抗値の変化、即ち、外部磁界の変化が検出される。Next, the operation of the TMR element will be described. In this TMR element, the direction of magnetization of the free layer 39 changes with a change in the external magnetic field generated by the magnetic information recording medium, the rotor, and the like. As a result, when the magnetization of the free layer 39 and the magnetization of the pinned layer 35 are in the same direction, the resistance value in the direction perpendicular to the layer surface is minimized, and the directions of both magnetizations are 180 °.
If they are different, the same resistance value becomes maximum. In actual use, a constant current flows from the dummy film 40 to the lower electrode 31 (or in the opposite direction), and a potential difference between the ends of the element in the same current direction is detected. , That is, a change in the external magnetic field.
【0030】次に、上記TMR素子の磁気抵抗変化率に
ついて説明すると、図5(A),(B)は、環境温度を
それぞれ室温(20℃)、及び高温(180℃)とした
場合の外部磁界Hに対する磁気抵抗変化率(MR比)の
測定結果を示している。この測定における、外部磁界H
の与え方は、上述した図2(A),(B)の場合と同様
である。また、この測定は、平面視における大きさが縦
20μm、横100μmのTMR素子を1000個直列
に接続し、これに1mAの電流を流して行った。Next, the magnetoresistance change rate of the TMR element will be described. FIGS. 5A and 5B show the case where the ambient temperature is room temperature (20 ° C.) and the ambient temperature is high (180 ° C.). The measurement results of the magnetoresistance ratio (MR ratio) with respect to the magnetic field H are shown. In this measurement, the external magnetic field H
Is the same as in the case of FIGS. 2A and 2B described above. In addition, this measurement was performed by connecting 1000 TMR elements each having a size of 20 μm in length and 100 μm in width in a plan view in series, and applying a current of 1 mA to them.
【0031】図5から解るように、この素子のMR比
は、室温及び180℃の何れにおいても外部磁界が略0
(Oe)以上の領域で略0%となる。この場合、自由層
39の磁化の向きは固着層35の固定された磁化の向き
と同じとなっている。また、室温では略−230〜0
(Oe)にて、180℃では略−180〜0(Oe)に
て、MR比は共に略20%となる。この場合、自由層3
9の磁化は固着層35の固定された磁化の向きと反対向
きとなっている。更に、室温では略−230(Oe)以
下にて、180℃では略−180(Oe)以下にてMR
比は共に略0%となる。この場合、下磁性層34の磁化
は固定された磁化の向きとは反対向きとなり、自由層3
9の向きと同じとなっている。このように、交換結合磁
界Hexの絶対値は、環境温度が室温である場合に対し
180℃である場合の方が小さくなる。As can be seen from FIG. 5, the MR ratio of this element is such that the external magnetic field is substantially zero at both room temperature and 180 ° C.
It becomes approximately 0% in the region of (Oe) or more. In this case, the magnetization direction of the free layer 39 is the same as the fixed magnetization direction of the fixed layer 35. Also, at room temperature, it is approximately -230 to 0
At (Oe), at 180 [deg.] C., the MR ratio becomes approximately 20% at approximately -180 to 0 (Oe). In this case, the free layer 3
The direction of magnetization 9 is opposite to the direction of the fixed magnetization of the pinned layer 35. Further, at room temperature, the temperature is about -230 (Oe) or less, and at 180 ° C, the temperature is about -180 (Oe) or less.
Both ratios are approximately 0%. In this case, the magnetization of the lower magnetic layer 34 is opposite to the direction of the fixed magnetization, and the free layer 3
It is the same as the direction of 9. As described above, the absolute value of the exchange coupling magnetic field Hex is smaller when the ambient temperature is 180 ° C. than when the ambient temperature is room temperature.
【0032】図6の実線及び破線は、種々の温度におけ
る上記TMR素子と従来のTMR素子の交換結合磁界H
exの大きさをそれぞれ示している。この測定で使用し
た従来のTMRは、10nmのCr、50nmのNiF
e、1nmのCо、2nmのAl2O3、1nmのCо、
10nmのNiFe、10nmのFeMn、30nmの
Moを積層したものである。同図から理解されるよう
に、上記TMR素子においては、温度の上昇に伴う交換
結合磁界Hexの低下量が従来のTMR素子のそれより
も小さくなっている。The solid and broken lines in FIG. 6 show the exchange coupling magnetic field H between the TMR element and the conventional TMR element at various temperatures.
ex indicates the size of each. The conventional TMR used in this measurement was 10 nm Cr, 50 nm NiF
e, 1 nm Co, 2 nm Al 2 O 3 , 1 nm Co,
It is formed by laminating 10 nm of NiFe, 10 nm of FeMn, and 30 nm of Mo. As can be understood from the figure, in the above-mentioned TMR element, the amount of decrease in the exchange coupling magnetic field Hex with an increase in temperature is smaller than that of the conventional TMR element.
【0033】以上、説明したように、第2実施形態にお
いては、固着層35は軟質磁性の磁性膜34と同磁性膜
34の磁化を固定する硬質磁性の強磁性膜32とからな
り、前記軟質磁性の磁性膜34と前記硬質磁性の強磁性
膜32との間の強磁性的相互作用を失わない程度の厚さ
を有する非磁性金属層33を同軟質磁性の磁性膜34と
同硬質磁性の強磁性膜32との間に介在させた。これに
より、第2実施形態に係るTMR素子は、その交換結合
磁界Hexが温度変化に対し変化し難く、且つ、高温下
での処理が不要となって磁気特性も良好で、外部磁界検
出用の素子として好適な特性を有するものとなった。As described above, in the second embodiment, the pinned layer 35 is composed of the soft magnetic magnetic film 34 and the hard magnetic ferromagnetic film 32 for fixing the magnetization of the magnetic film 34. The non-magnetic metal layer 33 having a thickness that does not lose the ferromagnetic interaction between the magnetic magnetic film 34 and the hard magnetic ferromagnetic film 32 is formed of the soft magnetic magnetic film 34 and the hard magnetic ferromagnetic film 32. It was interposed between the ferromagnetic film 32. As a result, the TMR element according to the second embodiment has an exchange coupling magnetic field Hex that is unlikely to change with temperature, does not require processing at high temperatures, has good magnetic characteristics, and has an excellent external magnetic field detection capability. The device had characteristics suitable for use as an element.
【0034】なお、第2実施形態においても、第1実施
形態と同様、上記固着層35の非磁性金属層13の厚さ
を0.7nmとしたが、同厚さは磁性膜34と前記強磁
性膜32との間の強磁性的相互作用を失わない程度であ
ればよい。具体的には、非磁性金属層33をCrとした
場合、その厚さは、好ましくは0.3〜1.0nm、更
に好ましくは0.5〜0.8nmとするとよい。In the second embodiment, as in the first embodiment, the thickness of the nonmagnetic metal layer 13 of the pinned layer 35 is 0.7 nm, but the thickness is the same as that of the magnetic film 34. It is sufficient that the ferromagnetic interaction with the magnetic film 32 is not lost. Specifically, when the nonmagnetic metal layer 33 is made of Cr, its thickness is preferably 0.3 to 1.0 nm, and more preferably 0.5 to 0.8 nm.
【0035】以上のように、本発明の実施形態に係る磁
気抵抗素子においては、交換結合磁界Hexが温度の変
化に対して変動し難いものとなっているので、広い範囲
で変化する外部磁界を精度良く検出することができる。As described above, in the magnetoresistive element according to the embodiment of the present invention, since the exchange coupling magnetic field Hex does not easily change with a change in temperature, an external magnetic field that changes over a wide range is not affected. It can be detected with high accuracy.
【0036】なお、本発明の範囲内において、種々の変
形例を採用することができる。例えば、上記固着層1
5,35の非磁性金属層13,33は、Crに限られ
ず、Al、或いはCu等であってもよい。また、非磁性
金属層13,33は必ずしも膜状である必要はなく、ミ
クロ的にみれば強磁性膜12,32と下磁性層14,3
4との間に非磁性の金属分子が不連続的に存在している
状態であってもよい。更に、固着層15,35には、上
記CoPtCrの他、キュリー温度が比較的高い強磁性
材料(例えば、CoTaCr等)を採用することもでき
る。Various modifications can be adopted within the scope of the present invention. For example, the fixing layer 1
The nonmagnetic metal layers 13 and 33 of 5, 35 are not limited to Cr but may be Al, Cu, or the like. Further, the non-magnetic metal layers 13 and 33 do not necessarily have to be in the form of a film.
4 may be in a state where non-magnetic metal molecules are discontinuously present. Further, for the pinned layers 15 and 35, a ferromagnetic material having a relatively high Curie temperature (for example, CoTaCr or the like) may be employed in addition to the above-described CoPtCr.
【図1】 本発明の第1実施形態に係るGMR素子の断
面図である。FIG. 1 is a sectional view of a GMR element according to a first embodiment of the present invention.
【図2】 図2(A)は図1に示したGMR素子の室温
における外部磁界に対するMR比の変化の様子を、図2
(B)は同GMR素子の180℃における外部磁界に対
するMR比の変化の様子を示した図である。FIG. 2A shows how the MR ratio of the GMR element shown in FIG. 1 to an external magnetic field at room temperature changes.
(B) is a diagram showing how the MR ratio of the GMR element to an external magnetic field at 180 ° C. changes.
【図3】 図1に示したGMR素子の温度変化に対する
交換結合磁界Hexの変化の様子を示した図である。FIG. 3 is a diagram showing a state of a change in an exchange coupling magnetic field Hex with respect to a temperature change of the GMR element shown in FIG.
【図4】 本発明の第2実施形態に係るTMR素子の断
面図である。FIG. 4 is a sectional view of a TMR element according to a second embodiment of the present invention.
【図5】 図5(A)は図4に示したTMR素子の室温
における外部磁界に対するMR比の変化の様子を、図5
(B)は同TMR素子の180℃における外部磁界に対
するMR比の変化の様子を示した図である。FIG. 5A shows how the MR ratio of the TMR element shown in FIG. 4 to an external magnetic field at room temperature changes.
(B) is a diagram showing how the MR ratio of the same TMR element to an external magnetic field at 180 ° C. changes.
【図6】 図4に示したTMR素子の温度変化に対する
交換結合磁界Hexの変化の様子を示した図である。6 is a diagram showing a state of a change of an exchange coupling magnetic field Hex with respect to a temperature change of the TMR element shown in FIG.
【図7】 図7(A),(C)は従来のGMR素子の断
面図、同図(B)は従来のTMR素子の断面図である。7 (A) and 7 (C) are cross-sectional views of a conventional GMR element, and FIG. 7 (B) is a cross-sectional view of a conventional TMR element.
【図8】 図8(A),(B)は、環境温度が室温及び
180℃における従来の磁気抵抗素子の作動をそれぞれ
示す図である。FIGS. 8A and 8B are diagrams showing the operation of a conventional magnetoresistive element at an ambient temperature of room temperature and 180 ° C., respectively.
10…基板、11…下部電極、12…強磁性膜(硬質磁
性の磁性膜)、13…非磁性金属層、14…下磁性層
(軟質磁性の磁性膜)、15…固着層、16…スペーサ
層(中間層)、17…下層膜、18…磁性膜、19…自
由層(軟質磁性膜)、30…基板、31…下部電極、3
2…強磁性膜(硬質磁性の磁性膜)、33…非磁性金属
層、34…下磁性層(軟質磁性の磁性膜)、35…固着
層、36…絶縁層(中間層)、37…下層膜、38…磁
性膜、39…自由層、40…ダミー膜。DESCRIPTION OF SYMBOLS 10 ... board | substrate, 11 ... lower electrode, 12 ... ferromagnetic film (hard magnetic film), 13 ... non-magnetic metal layer, 14 ... lower magnetic layer (soft magnetic film), 15 ... pinned layer, 16 ... spacer Layer (intermediate layer), 17: lower layer film, 18: magnetic film, 19: free layer (soft magnetic film), 30: substrate, 31: lower electrode, 3
2: Ferromagnetic film (hard magnetic film), 33: non-magnetic metal layer, 34: lower magnetic layer (soft magnetic film), 35: fixed layer, 36: insulating layer (intermediate layer), 37: lower layer Film, 38: magnetic film, 39: free layer, 40: dummy film.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 正芳 静岡県浜松市中沢町10番1号 ヤマハ株式 会社内 Fターム(参考) 5D034 BA05 BA21 CA08 5E049 AA01 AA04 AA07 AA09 BA12 CB02 DB12 DB18 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Masayoshi Yamashita 10-1 Nakazawa-cho, Hamamatsu-shi, Shizuoka F-term in Yamaha Corporation (reference) 5D034 BA05 BA21 CA08 5E049 AA01 AA04 AA07 AA09 BA12 CB02 DB12 DB18
Claims (4)
向きが外部磁界に応じて変化する自由層と、前記固着層
及び前記自由層との間に挟まれる中間層とを含んでなる
磁気抵抗素子において、 前記固着層は軟質磁性の磁性膜と同磁性膜の磁化を固定
する硬質磁性の強磁性膜とを含むとともに、前記軟質磁
性の磁性膜と前記硬質磁性の強磁性膜との間の強磁性的
相互作用を失わない程度の厚さを有する非磁性金属層を
同軟質磁性の磁性膜と同硬質磁性の強磁性膜との間に介
在させたことを特徴とする磁気抵抗素子。1. A fixed layer having a fixed magnetization direction, a free layer whose magnetization direction changes according to an external magnetic field, and an intermediate layer sandwiched between the fixed layer and the free layer. In the magnetoresistive element, the fixed layer includes a soft magnetic magnetic film and a hard magnetic ferromagnetic film for fixing the magnetization of the magnetic film, and the soft magnetic magnetic film and the hard magnetic ferromagnetic film. Characterized in that a nonmagnetic metal layer having a thickness that does not lose the ferromagnetic interaction between layers is interposed between the soft magnetic magnetic film and the hard magnetic ferromagnetic film. element.
用いたことを特徴とする請求項1に記載の磁気抵抗素
子。2. The magnetoresistive element according to claim 1, wherein CoPtCr is used for said hard magnetic ferromagnetic film.
徴とする請求項1又は請求項2に記載の磁気抵抗素子。3. The magnetoresistive element according to claim 1, wherein Cr is used for said nonmagnetic metal layer.
0nmとしたことを特徴とする請求項1乃至請求項3の
何れか一項に記載の磁気抵抗素子。4. The method according to claim 1, wherein said nonmagnetic metal layer has a thickness of 0.3 to 1.
4. The magnetoresistive element according to claim 1, wherein the magnetoresistive element has a thickness of 0 nm. 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000084081A JP2001274477A (en) | 2000-03-24 | 2000-03-24 | Magnetoresistive element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000084081A JP2001274477A (en) | 2000-03-24 | 2000-03-24 | Magnetoresistive element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001274477A true JP2001274477A (en) | 2001-10-05 |
Family
ID=18600609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000084081A Withdrawn JP2001274477A (en) | 2000-03-24 | 2000-03-24 | Magnetoresistive element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001274477A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003008101A (en) * | 2001-06-20 | 2003-01-10 | Ricoh Co Ltd | Tunneling magnetoresistive effect element and bearing detecting system using the same |
WO2004025745A1 (en) * | 2002-09-13 | 2004-03-25 | Matsushita Electric Industrial Co., Ltd. | Magnetoresistance effect element and production method and application method therefor |
US7190560B2 (en) | 2004-02-18 | 2007-03-13 | Hitachi Global Storage Technologies Netherlands B.V. | Self-pinned CPP sensor using Fe/Cr/Fe structure |
US7221545B2 (en) | 2004-02-18 | 2007-05-22 | Hitachi Global Storage Technologies Netherlands B.V. | High HC reference layer structure for self-pinned GMR heads |
-
2000
- 2000-03-24 JP JP2000084081A patent/JP2001274477A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003008101A (en) * | 2001-06-20 | 2003-01-10 | Ricoh Co Ltd | Tunneling magnetoresistive effect element and bearing detecting system using the same |
WO2004025745A1 (en) * | 2002-09-13 | 2004-03-25 | Matsushita Electric Industrial Co., Ltd. | Magnetoresistance effect element and production method and application method therefor |
US7190560B2 (en) | 2004-02-18 | 2007-03-13 | Hitachi Global Storage Technologies Netherlands B.V. | Self-pinned CPP sensor using Fe/Cr/Fe structure |
US7221545B2 (en) | 2004-02-18 | 2007-05-22 | Hitachi Global Storage Technologies Netherlands B.V. | High HC reference layer structure for self-pinned GMR heads |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6640652B2 (en) | Rotation angle sensor capable of accurately detecting rotation angle | |
JP3017061B2 (en) | Bridge circuit magnetic field sensor | |
US7064937B2 (en) | System and method for fixing a direction of magnetization of pinned layers in a magnetic field sensor | |
JP3596600B2 (en) | Magnetic sensor and method of manufacturing the same | |
WO2020208907A1 (en) | Magnetoresistive element and magnetic sensor | |
US6771472B1 (en) | Structure to achieve thermally stable high sensitivity and linear range in bridge GMR sensor using SAF magnetic alignments | |
JPH10294506A (en) | Spin valve type thin-film element and its manufacture | |
JP2008306112A (en) | Magneto-resistance effect film, magnetic sensor, and rotation angle detecting device | |
JP2006269955A (en) | Magnetic field detecting device | |
JP2007024598A (en) | Magnetic sensor | |
JP3558951B2 (en) | Magnetic memory element and magnetic memory using the same | |
KR100269989B1 (en) | Spin-valve type thin film element and its manufacturing method | |
JP2000338211A (en) | Magnetic sensor and its manufacture | |
JPH0870149A (en) | Magnetoresistance element | |
JPH09251618A (en) | Magnetic sensor | |
JP2001274477A (en) | Magnetoresistive element | |
JPH11273034A (en) | Magnetic sensor, thin-film magnetic head and production of thin-film magnetic head | |
JP2001052315A (en) | Spin valve-type thin-film magnetic element, thin-film magnetic head and manufacture of the spin valve-type thin-film magnetic element | |
JPH07297465A (en) | Huge magnetic reluctance sensor with insulation pinned layer | |
JP2001217478A (en) | Magnetic resistance element | |
JPH0563254A (en) | Magnetoresistance composite element | |
JPH06244477A (en) | Magnetoresistance element | |
JPH11195824A (en) | Magnetoresistance effect element and magnetoresistance effect type head | |
JP3243078B2 (en) | Magnetoresistive head | |
JP2000150235A (en) | Spin valve magnetoresistive sensor and thin-film magnetic head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061124 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090128 |