JPH0510979A - Micro current sensor - Google Patents

Micro current sensor

Info

Publication number
JPH0510979A
JPH0510979A JP3192436A JP19243691A JPH0510979A JP H0510979 A JPH0510979 A JP H0510979A JP 3192436 A JP3192436 A JP 3192436A JP 19243691 A JP19243691 A JP 19243691A JP H0510979 A JPH0510979 A JP H0510979A
Authority
JP
Japan
Prior art keywords
hall element
coil pattern
magnetic field
current sensor
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3192436A
Other languages
Japanese (ja)
Other versions
JP3206027B2 (en
Inventor
Hidekazu Takada
英一 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP19243691A priority Critical patent/JP3206027B2/en
Publication of JPH0510979A publication Critical patent/JPH0510979A/en
Application granted granted Critical
Publication of JP3206027B2 publication Critical patent/JP3206027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To obtain a miniature micro current sensor capable of effectively detecting micro current without any use of an iron core 2. CONSTITUTION:A Hall element 13 is formed on a board 6 and an insulation film 7 is made on the Hall element 13. A coil pattern 5 is formed on the insulation film 7, then the coil pattern 5 is coated with another insulation film 8 and thus a drawing terminal 9 of the coil pattern 5 is formed on the surface of the insulation film 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁界検出素子を用いた
微小電流センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a minute current sensor using a magnetic field detecting element.

【0002】[0002]

【従来の技術】図6には従来の微小電流センサの概略の
構成図が示されている。同図において、微小電流センサ
10はC字型鉄心2のギャップ部分11にホール素子1を配
置した構成からなり、鉄心2には微小電流を流す導線3
がコイル状に巻かれている。この微小電流センサ10は鉄
心2に巻かれているコイル12の導線3に電流を流すこと
によって鉄心2に磁界を発生させ、その磁界をホール素
子1で検出するものである。
2. Description of the Related Art FIG. 6 is a schematic block diagram of a conventional minute current sensor. In the figure, a minute current sensor
Reference numeral 10 is a structure in which the Hall element 1 is arranged in the gap portion 11 of the C-shaped iron core 2, and a conductor 3 for flowing a minute current to the iron core 2
Is wound in a coil. This minute current sensor 10 is for generating a magnetic field in the iron core 2 by causing a current to flow through a conductor 3 of a coil 12 wound around the iron core 2, and detecting the magnetic field with a Hall element 1.

【0003】[0003]

【発明が解決しようとする課題】従来の微小電流センサ
10は鉄心2とホール素子1との組み合わせによって構成
されており、その鉄心2は微小電流であってもそれを検
出できるようにホール素子1に大きな磁界が加わるよう
に設けられるもので、必須の構成要素となっている。し
かし、鉄心2はホール素子1に比較して非常に大きく、
そのために、微小電流センサ10も鉄心2の大きさに左右
されて、大きくなるという問題がある。
[Problems to be Solved by the Invention] Conventional micro-current sensor
Reference numeral 10 is composed of a combination of an iron core 2 and a Hall element 1, and the iron core 2 is provided so that a large magnetic field is applied to the Hall element 1 so that it can detect even a minute current, and is essential. It is a component. However, the iron core 2 is much larger than the Hall element 1,
Therefore, there is a problem that the minute current sensor 10 also becomes large depending on the size of the iron core 2.

【0004】本発明は上記従来の課題を解決するために
なされたものであり、その目的は、鉄心を用いることな
く微小電流を効果的に検出できる小型の微小電流センサ
を提供することにある。
The present invention has been made to solve the above-mentioned conventional problems, and an object thereof is to provide a small-sized minute current sensor which can effectively detect a minute current without using an iron core.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するために、次のように構成されている。すなわち、本
発明は、磁界検出素子の少なくとも表裏一方側の絶縁形
成面に通電によって磁界を発生させるコイルパターンを
一体的に形成したことを特徴として構成されている。
In order to achieve the above object, the present invention is configured as follows. That is, the present invention is characterized in that a coil pattern for generating a magnetic field by energization is integrally formed on at least one of the front and back sides of the magnetic field detecting element.

【0006】[0006]

【作用】上記構成の本発明において、コイルパターンに
微小電流が流れると、フレミングの右手の法則によって
電流の流れに対して直角方向、つまり、磁界検出素子を
貫通する方向に磁界が発生する。磁界検出素子はこの磁
界を受けて磁界の大きさに対応する電圧等の信号を電流
検出信号として出力する。
In the present invention having the above-mentioned structure, when a minute current flows through the coil pattern, a magnetic field is generated by the Fleming's right-hand rule in a direction perpendicular to the current flow, that is, a direction penetrating the magnetic field detecting element. The magnetic field detection element receives this magnetic field and outputs a signal such as a voltage corresponding to the magnitude of the magnetic field as a current detection signal.

【0007】[0007]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1には本発明に係る微小電流センサの構造図が
示されている。同図において微小電流センサ10は基板6
上に磁界を検出する磁界検出素子としてのホール素子13
を形成し、このホール素子13上に絶縁膜7を被覆する。
そして、絶縁膜7上に渦巻き状のコイルパターン5が形
成され、このコイルパターン5上に絶縁膜8を塗布し、
この絶縁膜8上にコイルパターン5と接続する引き出し
端子9を設けた構造となっている。図1の(a)は微小
電流センサ10の構成を理解し易いように絶縁膜7および
8を透明とし、コイルパターン5の中心取り出し端子9
を省略した状態で示してある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a structural diagram of a minute current sensor according to the present invention. In the figure, the minute current sensor 10 is a substrate 6
Hall element 13 as a magnetic field detecting element for detecting a magnetic field
Then, the Hall element 13 is covered with the insulating film 7.
Then, the spiral coil pattern 5 is formed on the insulating film 7, and the insulating film 8 is applied on the coil pattern 5.
A lead terminal 9 connected to the coil pattern 5 is provided on the insulating film 8. In FIG. 1A, the insulating films 7 and 8 are transparent so that the structure of the minute current sensor 10 can be easily understood, and the center lead-out terminal 9 of the coil pattern 5 is shown.
Are omitted.

【0008】次に、上記微小電流センサ10の作製方法を
図面に基づいて順を追って説明する。まず、図2に示す
ように基板6上に十字型の化合物半導体4を真空蒸着の
3温度法、MOCVD法、MBE法等を用いて形成し、
ホール素子13を作製する。この化合物半導体4の材料に
はホール素子13の検出感度を向上させる目的で、ホール
移動度の大きいGaAs,InSb,InAs等の半導
体が用いられる。このホール素子13の4a部は駆動電圧
の入力部であり、4bは出力電圧の取り出し部である。
このホール素子13上に図3に示すように絶縁膜7を形成
する。この絶縁膜7の材料はSiO2 ,ポリイミド等が
用いられ、成膜法として、物理的付着、化学的付着ある
いは塗布等による成膜が行われる。次に、この絶縁膜7
上に図4に示すように渦巻き状の導体層を蒸着やフォト
リソグラフィーのプリント技術等を用いて形成してコイ
ルパターン5を作る。なお、絶縁膜7の膜厚はホール素
子13とコイルパターン5との絶縁が保たれる範囲で、極
めて薄い膜とする。この薄膜、すなわち、コイルパター
ン5とホール素子13との間隔を小さくすることによって
コイルパターン5に流れる微小電流で発生する微小磁界
においてもホール素子13は効果的にその磁界を検出する
ことができる。また、前記コイルパターン5は素子の中
心に大きな磁界を発生させるために渦巻き状に形成した
もので、この導体の材料としては導電率の大きいCu,
Al等の金属を用いる。そして、このコイルパターン5
の上に図5に示すように、絶縁膜8を形成する。絶縁膜
8の成膜法は図3の絶縁膜7と同一方法、すなわち、物
理的付着、化学的付着、または塗布等によって成膜す
る。そして材料としてはSiO2 ,ポリイミド等を用い
る。この絶縁膜8の中央部には前記コイルパターンの中
心側の端子接続部14に対向する穴15を設ける。そして、
絶縁膜8の表面に引き出し端子9の導体膜を形成し、こ
の引き出し端子9の一端側を前記穴15を利用して導通す
る。以上の工程を経て、磁界発生部としてのコイルパタ
ーン5と磁界検出部としてのホール素子13とを同一基板
6上に一体に形成する。
Next, a method of manufacturing the minute current sensor 10 will be described step by step with reference to the drawings. First, as shown in FIG. 2, a cross-shaped compound semiconductor 4 is formed on a substrate 6 by a vacuum evaporation three-temperature method, a MOCVD method, an MBE method, or the like,
The Hall element 13 is manufactured. For the purpose of improving the detection sensitivity of the Hall element 13, a semiconductor such as GaAs, InSb, InAs or the like having a large hole mobility is used as the material of the compound semiconductor 4. A portion 4a of the Hall element 13 is an input portion for the drive voltage, and a portion 4b is an output voltage take-out portion.
The insulating film 7 is formed on the Hall element 13 as shown in FIG. The material of the insulating film 7 is SiO 2 , polyimide or the like, and as a film forming method, a film is formed by physical adhesion, chemical adhesion or coating. Next, this insulating film 7
As shown in FIG. 4, a spiral conductor layer is formed on the upper surface by vapor deposition or a printing technique such as photolithography to form a coil pattern 5. The film thickness of the insulating film 7 is extremely thin as long as the insulation between the Hall element 13 and the coil pattern 5 is maintained. By reducing the gap between the thin film, that is, the coil pattern 5 and the Hall element 13, the Hall element 13 can effectively detect the magnetic field even in the minute magnetic field generated by the minute current flowing in the coil pattern 5. The coil pattern 5 is formed in a spiral shape to generate a large magnetic field at the center of the element, and the material of this conductor is Cu, which has a large conductivity.
A metal such as Al is used. And this coil pattern 5
As shown in FIG. 5, an insulating film 8 is formed thereon. The insulating film 8 is formed by the same method as the insulating film 7 shown in FIG. 3, that is, by physical attachment, chemical attachment, coating, or the like. Then, as the material, SiO 2 , polyimide or the like is used. A hole 15 is provided at the center of the insulating film 8 so as to face the terminal connecting portion 14 on the center side of the coil pattern. And
A conductor film of the lead-out terminal 9 is formed on the surface of the insulating film 8, and one end of the lead-out terminal 9 is electrically connected using the hole 15. Through the above steps, the coil pattern 5 as the magnetic field generating portion and the Hall element 13 as the magnetic field detecting portion are integrally formed on the same substrate 6.

【0009】上記のようにして作製された微小電流セン
サによれば、コイルパターン5に図示されていないリー
ド線等を介して微小電流が流れると、フレミングの右手
の法則によってホール素子13を貫通する磁界が発生す
る。この磁界はコイルパターン5と近接配置されている
ホール素子13に強く作用する。ホール素子13は前記磁界
を受けてその大きさに比例する電圧を発生する結果、こ
の電圧を検出することにより前記微小電流が検出可能と
なる。
According to the minute current sensor manufactured as described above, when a minute current flows through the lead wire (not shown) in the coil pattern 5, the Hall element 13 is penetrated by Fleming's right-hand rule. A magnetic field is generated. This magnetic field strongly acts on the Hall element 13 arranged close to the coil pattern 5. As a result of the Hall element 13 receiving the magnetic field and generating a voltage proportional to its magnitude, the minute current can be detected by detecting this voltage.

【0010】本実施例によれば、鉄心2を使用すること
なく、同一基板6上にコイルパターン5とホール素子13
とを形成したので、小型、軽量の画期的な微小電流セン
サ10を得ることができる。
According to this embodiment, the coil pattern 5 and the Hall element 13 are formed on the same substrate 6 without using the iron core 2.
Since the and are formed, it is possible to obtain a small and lightweight epoch-making minute current sensor 10.

【0011】なお、本発明は上記実施例に限定されるこ
とはなく、様々な実施の態様を採り得る。例えば上記実
施例ではホール素子13と、コイルパターン5とを基板6
の片面側に形成したが、これを基板6の両面に形成して
もよい。
The present invention is not limited to the above-mentioned embodiments, and various embodiments can be adopted. For example, in the above embodiment, the Hall element 13 and the coil pattern 5 are arranged on the substrate 6
However, it may be formed on both sides of the substrate 6.

【0012】また、上記実施例では、基板6上にホール
素子13を形成し、この上に絶縁膜7を成膜し、この絶縁
膜7上にコイルパターン5を形成しているが、これを、
基板6上にコイルパターン5を設け、次いで、絶縁膜
7,ホール素子13の順に形成してもよい。
In the above embodiment, the Hall element 13 is formed on the substrate 6, the insulating film 7 is formed on the Hall element 13, and the coil pattern 5 is formed on the insulating film 7. ,
The coil pattern 5 may be provided on the substrate 6, and then the insulating film 7 and the Hall element 13 may be formed in this order.

【0013】さらに、上記実施例では微小電流センサを
1個のホール素子と1個のコイルパターンとの一体結合
構造としたが、絶縁膜を介してホール素子とコイルパタ
ーンとを重ねて複数積層した多層構造としたものでもよ
い。
Further, in the above-described embodiment, the minute current sensor has a structure in which one Hall element and one coil pattern are integrally combined, but a plurality of Hall elements and coil patterns are laminated by interposing an insulating film. It may have a multilayer structure.

【0014】さらに、上記実施例では磁界検出素子とし
てホール素子13を用いたが、これを例えば、磁気抵抗素
子等の磁界検出素子としてもよい。
Further, although the Hall element 13 is used as the magnetic field detecting element in the above embodiment, it may be used as a magnetic field detecting element such as a magnetoresistive element.

【0015】[0015]

【発明の効果】本発明は、鉄心を用いることなく、同一
基板上に磁界発生用のコイルパターンと磁界検出用のホ
ール素子とを一体に形成したので、微小電流でも効果的
に検出できる極めて小型の微小電流センサを提供するこ
とができる。
According to the present invention, a coil pattern for magnetic field generation and a Hall element for magnetic field detection are integrally formed on the same substrate without using an iron core. The micro current sensor can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の微小電流センサの一実施例の構成図で
ある。
FIG. 1 is a configuration diagram of an embodiment of a minute current sensor of the present invention.

【図2】同実施例のホール素子の構成図である。FIG. 2 is a configuration diagram of a Hall element of the same example.

【図3】同実施例のホール素子上に絶縁膜を形成した構
成図である。
FIG. 3 is a configuration diagram in which an insulating film is formed on the Hall element of the same example.

【図4】同実施例のコイルパターンの構成図である。FIG. 4 is a configuration diagram of a coil pattern according to the embodiment.

【図5】同実施例のコイルパターン上に絶縁膜を形成
し、引き出し端子を取り付けた状態を示す構成図であ
る。
FIG. 5 is a configuration diagram showing a state in which an insulating film is formed on the coil pattern of the embodiment and lead terminals are attached.

【図6】従来の微小電流センサの構成図である。FIG. 6 is a configuration diagram of a conventional minute current sensor.

【符号の説明】[Explanation of symbols]

1 ホール素子 2 鉄心 4 十字型の化合物半導体 5 コイルパターン 6 基板 7 絶縁膜 10 微小電流センサ 13 ホール素子 1 Hall element 2 Iron core 4 Cross-shaped compound semiconductor 5 Coil pattern 6 Substrate 7 Insulating film 10 Micro current sensor 13 Hall element

Claims (1)

【特許請求の範囲】 【請求項1】 磁界検出素子の少なくとも表裏一方側の
絶縁形成面に通電によって磁界を発生させるコイルパタ
ーンを一体的に形成した微小電流センサ。
Claim: What is claimed is: 1. A micro-current sensor in which a coil pattern for generating a magnetic field by energization is integrally formed on at least one of the front and back sides of the magnetic field detection element.
JP19243691A 1991-07-05 1991-07-05 Micro current sensor Expired - Lifetime JP3206027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19243691A JP3206027B2 (en) 1991-07-05 1991-07-05 Micro current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19243691A JP3206027B2 (en) 1991-07-05 1991-07-05 Micro current sensor

Publications (2)

Publication Number Publication Date
JPH0510979A true JPH0510979A (en) 1993-01-19
JP3206027B2 JP3206027B2 (en) 2001-09-04

Family

ID=16291278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19243691A Expired - Lifetime JP3206027B2 (en) 1991-07-05 1991-07-05 Micro current sensor

Country Status (1)

Country Link
JP (1) JP3206027B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230467A (en) * 1999-12-09 2001-08-24 Sanken Electric Co Ltd Current detector provided with hall element
JP2006514283A (en) * 2003-02-11 2006-04-27 アレグロ・マイクロシステムズ・インコーポレーテッド Integrated sensor
JP2008185537A (en) * 2007-01-31 2008-08-14 Kaiser Technology:Kk Ac signal detection device, receiving device, and interboard transmission system
US7501928B2 (en) 2004-11-30 2009-03-10 Tdk Corporation Current sensor
US7504927B2 (en) 2004-12-06 2009-03-17 Tdk Corporation Current sensor
JP2010176964A (en) * 2009-01-28 2010-08-12 Denso Corp Current measurement device
CN103165580A (en) * 2011-12-14 2013-06-19 上海华虹Nec电子有限公司 Metal coil and current detection structure
US9859489B2 (en) 2006-01-20 2018-01-02 Allegro Microsystems, Llc Integrated circuit having first and second magnetic field sensing elements
JP2020085853A (en) * 2018-11-30 2020-06-04 株式会社東芝 Current detecting device
JP2020085860A (en) * 2018-11-30 2020-06-04 株式会社東芝 Current detecting device
US10935612B2 (en) 2018-08-20 2021-03-02 Allegro Microsystems, Llc Current sensor having multiple sensitivity ranges
US11567108B2 (en) 2021-03-31 2023-01-31 Allegro Microsystems, Llc Multi-gain channels for multi-range sensor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230467A (en) * 1999-12-09 2001-08-24 Sanken Electric Co Ltd Current detector provided with hall element
US7518354B2 (en) 2003-02-11 2009-04-14 Allegro Microsystems, Inc. Multi-substrate integrated sensor
JP2006514283A (en) * 2003-02-11 2006-04-27 アレグロ・マイクロシステムズ・インコーポレーテッド Integrated sensor
US7501928B2 (en) 2004-11-30 2009-03-10 Tdk Corporation Current sensor
US7504927B2 (en) 2004-12-06 2009-03-17 Tdk Corporation Current sensor
US10069063B2 (en) 2006-01-20 2018-09-04 Allegro Microsystems, Llc Integrated circuit having first and second magnetic field sensing elements
US9859489B2 (en) 2006-01-20 2018-01-02 Allegro Microsystems, Llc Integrated circuit having first and second magnetic field sensing elements
JP2008185537A (en) * 2007-01-31 2008-08-14 Kaiser Technology:Kk Ac signal detection device, receiving device, and interboard transmission system
JP2010176964A (en) * 2009-01-28 2010-08-12 Denso Corp Current measurement device
CN103165580A (en) * 2011-12-14 2013-06-19 上海华虹Nec电子有限公司 Metal coil and current detection structure
US10935612B2 (en) 2018-08-20 2021-03-02 Allegro Microsystems, Llc Current sensor having multiple sensitivity ranges
JP2020085853A (en) * 2018-11-30 2020-06-04 株式会社東芝 Current detecting device
JP2020085860A (en) * 2018-11-30 2020-06-04 株式会社東芝 Current detecting device
US11181554B2 (en) 2018-11-30 2021-11-23 Kabushiki Kaisha Toshiba Current detection apparatus
US11567108B2 (en) 2021-03-31 2023-01-31 Allegro Microsystems, Llc Multi-gain channels for multi-range sensor

Also Published As

Publication number Publication date
JP3206027B2 (en) 2001-09-04

Similar Documents

Publication Publication Date Title
US6411086B1 (en) Differential solenoidal magnetic field sensing device and method for manufacturing the same
JPH0510979A (en) Micro current sensor
JP2002026419A (en) Magnetism-electricity conversion device
JP3260921B2 (en) Movable body displacement detection device
JP2002267692A (en) Current sensor
JPH06130088A (en) Current sensor
JP2001004726A (en) Magnetic field sensor
US5227761A (en) Magnetoresistive sensor
KR20050051655A (en) Magnetoresistance effect element and production method and application method therefor
JP4273847B2 (en) Manufacturing method of magnetic sensor
JPH08178965A (en) Current detection circuit module
JPH08233927A (en) Thin film flux gate magnetic sensor and manufacture thereof
Bajorek et al. A permalloy current sensor
JPH08130338A (en) Thin film magnetic sensor
JP2547169Y2 (en) Current detection sensor
KR100792350B1 (en) Magnetic sensor and method of manufacturing thereof
JP2002084015A (en) Magneto-electric conversion element and magnetic sensor using the same
JP3161610B2 (en) Manufacturing method of Hall element
JPH01227482A (en) Magneto-resistive element
JP2586680B2 (en) Magnetoresistive element and manufacturing method thereof
JPS6112593Y2 (en)
JPS635256Y2 (en)
JP2021071488A (en) Magnetic sensor
JP3085147B2 (en) Magnetoelectric conversion element
JPS62194690A (en) Magnetic reluctance element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9