JPH05180770A - Icp emission spectrophotometer - Google Patents
Icp emission spectrophotometerInfo
- Publication number
- JPH05180770A JPH05180770A JP34619791A JP34619791A JPH05180770A JP H05180770 A JPH05180770 A JP H05180770A JP 34619791 A JP34619791 A JP 34619791A JP 34619791 A JP34619791 A JP 34619791A JP H05180770 A JPH05180770 A JP H05180770A
- Authority
- JP
- Japan
- Prior art keywords
- plasma torch
- nebulizer
- pipe
- aerosol
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ICP(高周波誘導結
合プラズマ)発光分光分析装置に係り、詳しくは、ネブ
ライザ部からプラズマトーチに至る試料エアロゾル搬送
経路の構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ICP (high frequency inductively coupled plasma) emission spectroscopic analyzer, and more particularly to the structure of a sample aerosol carrying path from a nebulizer section to a plasma torch.
【0002】[0002]
【従来の技術】ICP発光分光分析装置では、液体試料
がネブライザ部でエアロゾル化され、キャリアガスとと
もにプラズマトーチに導入される。2. Description of the Related Art In an ICP emission spectroscopic analyzer, a liquid sample is aerosolized by a nebulizer and introduced into a plasma torch together with a carrier gas.
【0003】図2に、従来のICP発光分光分析装置の
要部の概略構成を示す。同図において、符号1はネブラ
イザ部、2はプラズマトーチである。ネブライザ部1
は、超音波により液体試料を霧化するネブライザ本体3
と、脱溶媒部4とからなる。ネブライザ本体3では、試
料容器5からポンプ6により送り込まれる液体試料S
が、霧化室7内の超音波振動子8に吹き付けられて霧化
する。脱溶媒部4は、前段の加熱段4aと、後段の冷却
段4bとからなり、加熱段4aでは、ネブライザ本体3
からの試料エアロゾルが加熱乾燥されて細粒子化し、冷
却段4bでは、冷却により気化溶媒が結露して試料エア
ロゾルから取り除かれる。9は、ネブライザ部1からの
試料エアロゾルをプラズマトーチ2に搬送する搬送管で
ある。FIG. 2 shows a schematic structure of a main part of a conventional ICP emission spectral analyzer. In the figure, reference numeral 1 is a nebulizer portion, and 2 is a plasma torch. Nebulizer part 1
Is a nebulizer body 3 that atomizes a liquid sample by ultrasonic waves.
And a desolvation unit 4. In the nebulizer main body 3, the liquid sample S sent from the sample container 5 by the pump 6
Is sprayed on the ultrasonic transducer 8 in the atomization chamber 7 and atomized. The desolvation section 4 is composed of a heating stage 4a in the front stage and a cooling stage 4b in the rear stage. In the heating stage 4a, the nebulizer body 3 is
The sample aerosol from (3) is heated and dried into fine particles, and in the cooling stage 4b, the vaporized solvent is condensed by the cooling and removed from the sample aerosol. Reference numeral 9 is a carrier pipe for carrying the sample aerosol from the nebulizer unit 1 to the plasma torch 2.
【0004】ところで、従来の装置では、プラズマトー
チ2に接続する搬送管9も、脱溶媒部4を通る配管も、
ネブライザ本体4からの試料エアロゾルが層流の状態で
流れるように、ほぼ同一内径のチューブで構成されてい
る。というのは、搬送管9や脱溶媒部4の配管の中途部
に内径の違いによる段差があると、その個所で試料エア
ロゾルが滞留して、エアロゾル粒子が管壁に付着するか
らである。By the way, in the conventional apparatus, the carrier pipe 9 connected to the plasma torch 2 and the pipe passing through the desolvation section 4 are
The sample aerosol from the nebulizer body 4 is composed of tubes having substantially the same inner diameter so that the sample aerosol flows in a laminar flow state. This is because, if there is a step due to a difference in inner diameter in the middle of the transfer tube 9 or the desolvation section 4, the sample aerosol will stay at that point and the aerosol particles will adhere to the tube wall.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記の
ように一定内径のチューブを通じて試料エアロゾルを搬
送する構造では、ネブライザ本体3で試料エアロゾルの
粒子密度に濃淡の変動が発生すると、その濃淡の変動が
疎密波の形でプラズマトーチ2まで送られることにな
り、この粒子密度の濃淡がそのまま測光信号強度の変動
となって表れるので、安定した測光信号が得られず、測
定精度に悪影響を及ぼす。However, in the structure in which the sample aerosol is conveyed through the tube having the constant inner diameter as described above, when the density of the particle of the sample aerosol fluctuates in the nebulizer main body 3, the fluctuation of the density fluctuates. Since it is sent to the plasma torch 2 in the form of a compressional wave, the density of the particle density appears as a change in the intensity of the photometric signal as it is, and a stable photometric signal cannot be obtained, which adversely affects measurement accuracy.
【0006】本発明は、上記の問題点に鑑みてなされた
ものであって、試料エアロゾルが粒子密度に濃淡変動の
ない状態でプラズマトーチに導入されるようにして、測
光信号を安定化することを課題とする。The present invention has been made in view of the above problems, and stabilizes a photometric signal by introducing a sample aerosol into a plasma torch in a state in which the density of particles does not vary in density. Is an issue.
【0007】[0007]
【課題を解決するための手段】本発明は、上記の課題を
達成するために、ICP発光分光分析装置において、ネ
ブライザ部からプラズマトーチに至る試料エアロゾル搬
送管の中途部に、前記搬送管よりも大きい内径をもつバ
ッファチャンバが設けられている構成とした。In order to achieve the above-mentioned object, the present invention provides an ICP emission spectroscopic analysis apparatus, which is provided in a midway part of a sample aerosol carrying pipe from a nebulizer part to a plasma torch rather than the carrying pipe. A buffer chamber having a large inner diameter is provided.
【0008】[0008]
【作用】上記の構成によれば、ネブライザ部から供給さ
れる試料エアロゾルは、プラズマトーチの手前で、バッ
ファチャンバに流入してミキシングされ、粒子密度が均
等化された状態でプラズマトーチに導入される。According to the above-mentioned structure, the sample aerosol supplied from the nebulizer portion flows into the buffer chamber before the plasma torch and is mixed, and is introduced into the plasma torch in a state where the particle density is equalized. ..
【0009】[0009]
【実施例】図1は、本発明の実施例に係るICP発光分
光分析装置の要部の概略構成を示す構成図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing a schematic structure of a main part of an ICP emission spectral analyzer according to an embodiment of the present invention.
【0010】同図に示すように、この実施例のICP発
光分光分析装置が、ネブライザ部1と、プラズマトーチ
2とを備え、ネブライザ部1は、超音波により液体試料
を霧化するネブライザ本体3と、脱溶媒部4とからなる
点は、前記した従来例と同じである。また、ネブライザ
本体3が、試料容器5からポンプ6により送り込まれる
液体試料Sを、霧化室7内の超音波振動子8に吹き付け
て霧化するものであり、また、脱溶媒部4が、ネブライ
ザ本体3からの試料エアロゾルを加熱乾燥により細粒子
化する前段の加熱段4aと、冷却により気化溶媒を結露
させて取り除く後段の冷却段4bとからなるものである
点も、従来例と同じである。As shown in FIG. 1, the ICP emission spectroscopic analyzer of this embodiment comprises a nebulizer section 1 and a plasma torch 2, and the nebulizer section 1 nebulizer body 3 atomizes a liquid sample by ultrasonic waves. And the desolvation unit 4 are the same as in the conventional example described above. Further, the nebulizer body 3 sprays the liquid sample S sent from the sample container 5 by the pump 6 onto the ultrasonic vibrator 8 in the atomization chamber 7, and atomizes the liquid sample S. Similar to the conventional example, the sample aerosol from the nebulizer body 3 is composed of a former heating stage 4a for finely pulverizing the sample aerosol by heating and drying, and a latter cooling stage 4b for removing the vaporized solvent by dew condensation by cooling. is there.
【0011】この実施例のICP発光分光分析装置が従
来例と異なる点は、ネブライザ部2からの試料エアロゾ
ルをプラズマトーチ1に搬送する搬送管9が中途部で分
断され、その分断部間に、バッファチャンバ10が連通
接続されていることである。このバッファチャンバ10
は、試料エアロゾルの粒子密度をミキシングにより均等
化するためのもので、搬送管9の内径より大きな内径を
有する。図示例では、バッファチャンバ10の上端に流
入口10aが開口し、この流入口10aに搬送管9の一
方の分断端が接続されている。また、搬送管9の他方の
分断端に接続される流出管10bは、バッファチャンバ
10の内部に突出し、その突出端に、球形で周面に多数
の透孔を有する吸い込み部11が設けられている。The difference of the ICP emission spectroscopic analyzer of this embodiment from the conventional example is that the carrier pipe 9 for carrying the sample aerosol from the nebulizer unit 2 to the plasma torch 1 is divided at an intermediate portion, and between the divided portions, That is, the buffer chamber 10 is connected for communication. This buffer chamber 10
Is for equalizing the particle density of the sample aerosol by mixing, and has an inner diameter larger than the inner diameter of the carrier tube 9. In the illustrated example, an inflow port 10a is opened at the upper end of the buffer chamber 10, and one divided end of the carrier pipe 9 is connected to the inflow port 10a. Further, the outflow pipe 10b connected to the other divided end of the transfer pipe 9 projects into the buffer chamber 10, and a spherical suction portion 11 having a large number of through holes on its peripheral surface is provided at the projecting end. ing.
【0012】上記の構成において、ネブライザ本体3で
生成された試料エアロゾルは、脱溶媒部4で、細粒子化
されるとともに溶媒が取り除かれ、搬送管9を通じてプ
ラズマトーチ1側へ送出されるが、搬送管9の中途部
で、バッファチャンバ10に流入する。このバッファチ
ャンバ10で、試料エアロゾルはそれ自体の流入速度に
より撹拌流を生じ、ミキシングされて、その粒子密度が
均等化される。In the above structure, the sample aerosol generated in the nebulizer body 3 is made into fine particles and the solvent is removed in the desolvation section 4, and is sent to the plasma torch 1 side through the carrier pipe 9. It flows into the buffer chamber 10 at some midpoint of the transfer pipe 9. In this buffer chamber 10, the sample aerosol produces a stirred flow due to its own inflow velocity and is mixed to equalize its particle density.
【0013】この場合、試料エアロゾルはバッファチャ
ンバ10で滞留するが、ネブライザ部1からの試料エア
ロゾルは、脱溶媒部4で充分に細粒子化されているの
で、バッファチャンバ10の内壁に付着するようなこと
はほとんどない。In this case, the sample aerosol stays in the buffer chamber 10, but the sample aerosol from the nebulizer section 1 is sufficiently finely divided by the desolvation section 4 so that it may adhere to the inner wall of the buffer chamber 10. There is almost nothing.
【0014】そして、粒子密度が均等化された試料エア
ロゾルが、下流側の搬送管9を通じてプラズマトーチ2
に流入することで、プラズマトーチ2では、粒子密度の
濃淡による発光強度の変動がなくなり、発光強度が安定
化する。したがって、安定した測光信号が得られる。Then, the sample aerosol in which the particle density is equalized is passed through the downstream transfer pipe 9 to the plasma torch 2.
By flowing into the plasma torch 2, the variation of the emission intensity due to the density of the particle density is eliminated, and the emission intensity is stabilized. Therefore, a stable photometric signal can be obtained.
【0015】なお、図示例では、ネブライザ本体3とし
て、超音波により霧化する方式のものを示したが、キャ
リアガスの噴射により試料をエアロゾル化する方式のネ
ブライザを有する装置にも、本発明を適用することがで
きるのは勿論である。In the illustrated example, the nebulizer main body 3 is of the type that atomizes by ultrasonic waves, but the present invention is also applicable to an apparatus having a nebulizer that atomizes a sample by jetting a carrier gas. Of course, it can be applied.
【0016】[0016]
【発明の効果】本発明によれば、ネブライザ部からの試
料エアロゾルに粒子密度の濃淡変動があっても、その試
料エアロゾルはバッファチャンバでのミキシングにより
密度が均等化されるので、プラズマトーチには、濃淡変
動のない試料エアロゾルが供給されることになり、プラ
ズマトーチからは安定した測光信号が得られ、測定精度
が向上する。According to the present invention, even if the sample aerosol from the nebulizer section has a variation in the density of the particle density, the density of the sample aerosol is equalized by the mixing in the buffer chamber, so that the plasma torch is As a result, a sample aerosol that does not fluctuate in light and shade is supplied, and a stable photometric signal can be obtained from the plasma torch, improving the measurement accuracy.
【図1】本発明の実施例に係るICP発光分光分析装置
の要部の構成図である。FIG. 1 is a configuration diagram of a main part of an ICP emission spectroscopy analyzer according to an embodiment of the present invention.
【図2】従来のICP発光分光分析装置の要部の構成図
である。FIG. 2 is a configuration diagram of a main part of a conventional ICP emission spectroscopy analyzer.
1 ネブライザ部 2 プラズマトーチ 3 ネブライザ本体 4 脱溶媒部 9 搬送管 10 バッファチャンバ 1 Nebulizer part 2 Plasma torch 3 Nebulizer body 4 Desolvation part 9 Transfer pipe 10 Buffer chamber
Claims (1)
試料エアロゾル搬送管の中途部に、該搬送管よりも大き
い内径をもつバッファチャンバが設けられていることを
特徴とするICP発光分光分析装置。1. An ICP emission spectroscopic analyzer characterized in that a buffer chamber having an inner diameter larger than that of the carrier pipe is provided in the middle of the sample aerosol carrier pipe from the nebulizer part to the plasma torch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34619791A JPH05180770A (en) | 1991-12-27 | 1991-12-27 | Icp emission spectrophotometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34619791A JPH05180770A (en) | 1991-12-27 | 1991-12-27 | Icp emission spectrophotometer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05180770A true JPH05180770A (en) | 1993-07-23 |
Family
ID=18381772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34619791A Pending JPH05180770A (en) | 1991-12-27 | 1991-12-27 | Icp emission spectrophotometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05180770A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106323717A (en) * | 2016-10-08 | 2017-01-11 | 南昌大学 | Ultrasonic wave method filter membrane attached particulate matter re-flying method and device |
-
1991
- 1991-12-27 JP JP34619791A patent/JPH05180770A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106323717A (en) * | 2016-10-08 | 2017-01-11 | 南昌大学 | Ultrasonic wave method filter membrane attached particulate matter re-flying method and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5454274A (en) | Sequential combination low temperature condenser and enclosed filter solvent removal system, and method of use | |
US20020100416A1 (en) | Method and apparatus for deposition of particles on surfaces | |
US4098554A (en) | Device for atomizing a sample for flameless atomic absorption measurements | |
US6709632B2 (en) | ICP analyzer | |
JPH05180770A (en) | Icp emission spectrophotometer | |
JPS6257067B2 (en) | ||
US6002129A (en) | Inductively coupled plasma mass spectrometric and spectrochemical analyzer | |
JP3084885B2 (en) | ICP emission spectrometer | |
JPH06222005A (en) | Icp emission spectroscopic analysis | |
JPH09159610A (en) | Plasma analyzing device with sample introduction stabilization mechanism | |
JPH05296933A (en) | Icp emission spectrophotometer | |
JP3764798B2 (en) | Inductively coupled plasma mass and spectroscopic analyzer | |
JPH05232025A (en) | Icp emission spectral analyzer | |
JPH06203790A (en) | Mass spectrograph | |
JPH0426099A (en) | Torch for high frequency plasma and element analysis apparatus using the same | |
JPH09199076A (en) | Inductively coupled plasma mass spectrograph | |
JPH06249783A (en) | Icp emission spectroscopic analyzer | |
JP3206216B2 (en) | ICP emission spectrometer | |
JP2705502B2 (en) | ICP emission spectrometer | |
JPH06109639A (en) | Method for emission spectral analysis | |
JP2002131226A (en) | Atomic absorption spectrophotometer | |
JPH073319Y2 (en) | Sample fog generator for ICP emission spectroscopy | |
JP3052295B2 (en) | Atomized sample introduction device for spectroscopic analysis | |
JPH0619084Y2 (en) | Inductively coupled plasma optical emission spectrometer | |
JPH05234566A (en) | Sample liquid atomizing device |