JPH06109639A - Method for emission spectral analysis - Google Patents

Method for emission spectral analysis

Info

Publication number
JPH06109639A
JPH06109639A JP25620992A JP25620992A JPH06109639A JP H06109639 A JPH06109639 A JP H06109639A JP 25620992 A JP25620992 A JP 25620992A JP 25620992 A JP25620992 A JP 25620992A JP H06109639 A JPH06109639 A JP H06109639A
Authority
JP
Japan
Prior art keywords
sample
plasma
emission
spectrum
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25620992A
Other languages
Japanese (ja)
Other versions
JP3274187B2 (en
Inventor
Hiroyuki Tamenori
裕之 爲則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP25620992A priority Critical patent/JP3274187B2/en
Publication of JPH06109639A publication Critical patent/JPH06109639A/en
Application granted granted Critical
Publication of JP3274187B2 publication Critical patent/JP3274187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To stabilize the spectrum occurring from a sample by monitoring the emission intensity of plasma, and as it changes, controlling the output to the light source gas of a high frequency wave generating device, so that the emission intensity of a plasma gas element becomes constant. CONSTITUTION:A high frequency induction coil 4A is supplied with power from a high frequency power source 4B, and makes the gas, introduced into a plasma area P, to be a plasma state, to excite the element contained in a sample with the plasma. The excited element releases its energy as light when it becomes inactive, and the light is diffracted at a spectral part 5 as a bright line spectrum for analysis at a light measuring part 6. Thus, based upon wave length and intensity of spectrum, qualitative and quantitative analyses of elements can be made. Here the spectrum intensity of plasma gas element is monitored, and its fluctuation information is inputted in a high frequency control part 7, and the spectrum intensity is controlled to be constant, for the plasma temperature to be keep constant. Thus, a sample is determined with less measurement error.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発光分光分析方法に関
し、特にICPにおいて試料を励起させその励起した試
料により発生する輝線スペクトルの強度により前記試料
を定量する発光分光分析方法に関し、詳しくは、元素の
分析用の試料を溶媒に溶解させて試料溶液を調製してお
き、前記試料溶液を霧状の試料滴にして、高周波発生装
置により誘導結合プラズマ(ICP)発生用のガスをプ
ラズマ化したプラズマ中に導き、前記試料滴に含まれる
前記分析用の試料を励起させ、励起した前記試料により
発生するスペクトルを測定して前記試料の定量を行う発
光分光分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an emission spectroscopic analysis method, and more particularly, to an emission spectroscopic analysis method for exciting a sample in ICP and quantifying the sample by the intensity of an emission line spectrum generated by the excited sample. A sample solution for elemental analysis is dissolved in a solvent to prepare a sample solution, and the sample solution is made into mist-like sample droplets, and a gas for inductively coupled plasma (ICP) generation is turned into plasma by a high frequency generator. The present invention relates to an emission spectroscopic analysis method in which a sample for analysis contained in the sample droplet is guided into plasma, the spectrum generated by the excited sample is measured, and the sample is quantified.

【0002】[0002]

【従来の技術】従来、この種の発光分光分析方法として
は、試料を様々な濃度の溶液に調製し、それらの溶液そ
れぞれに分析元素以外の内部標準元素を一定の割合で加
えた検量用溶液をつくり、その内部標準元素と前記分析
元素濃度との発光強度比の関係を明らかにしておいたう
えで、前記内部標準元素を一定の割合で加えてある分析
用の試料を定量分析し、予め明らかにしておいた前記発
光強度比の関係から分析結果を較正する、いわゆる内部
標準法を用いて前記試料を定量するICP発光分光分析
方法があった。
2. Description of the Related Art Hitherto, as a method of emission spectroscopic analysis of this kind, a calibration solution in which samples are prepared into solutions having various concentrations and an internal standard element other than the analysis element is added to each of the solutions at a constant ratio. After clarifying the relationship of the emission intensity ratio between the internal standard element and the concentration of the analytical element, quantitatively analyze a sample for analysis in which the internal standard element is added at a fixed ratio, There is an ICP emission spectroscopic analysis method for quantifying the sample using a so-called internal standard method in which the analysis result is calibrated from the relationship of the emission intensity ratio which has been clarified.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述した従来
の発光分光分析方法を用いたとしても、分析用の試料を
溶媒に溶解させ、さらに霧状にした試料滴を、プラズマ
中に導入するときに、プラズマの発光強度が変動すると
いう問題点があり、このプラズマ発光強度変動が分析元
素と内部標準元素それぞれのスペクトルの強度に対する
測定誤差として現れ、しかもその変動の様子は元素ごと
に異なるため強度比も変動する。つまりプラズマ発光強
度の変動による測定誤差に対する較正は行えず、定量分
析に対して0.5%程度の測定誤差が生じていた。
However, even when the above-mentioned conventional emission spectroscopic analysis method is used, when a sample for analysis is dissolved in a solvent and atomized sample droplets are introduced into plasma. However, there is a problem that the plasma emission intensity fluctuates, and this plasma emission intensity fluctuation appears as a measurement error with respect to the spectral intensity of each of the analysis element and the internal standard element, and the state of the variation varies from element to element. The ratio also fluctuates. That is, the measurement error due to the fluctuation of the plasma emission intensity could not be calibrated, and a measurement error of about 0.5% occurred in the quantitative analysis.

【0004】従って、本発明の目的は、上記実情に鑑
み、プラズマ発光強度の変動による測定誤差を低減さ
せ、より測定精度よく試料を定量できる発光分光分析方
法を提供することにある。
Therefore, in view of the above situation, it is an object of the present invention to provide an emission spectroscopic analysis method capable of reducing a measurement error due to fluctuations in plasma emission intensity and quantifying a sample with higher measurement accuracy.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
の本発明の特徴構成はプラズマガス元素の発光強度をモ
ニターして、その発光強度の変動にともない高周波発生
装置のガスに対する出力をそのプラズマの発光強度が一
定になるように制御して、前記試料からの発生スペクト
ルを安定化させることにあり、さらに、前述の内部標準
法による測定誤差の較正を行えばなおよく、それらから
得られる作用効果は以下の通りである。
The feature of the present invention for attaining this object is to monitor the emission intensity of a plasma gas element and to output the output to the gas of the high frequency generator in accordance with the variation of the emission intensity of the plasma. Is to stabilize the emission spectrum of the sample by controlling so that the emission intensity of the sample becomes constant, and it is better to calibrate the measurement error by the above-mentioned internal standard method. The effects are as follows.

【0006】[0006]

【作用】元素の分析用の試料を溶媒に溶解させて試料溶
液を調製し、前記試料溶液を霧状の試料滴にして、この
試料滴をプラズマ中に導くから、前記試料溶液の酸性
度、粘性、表面張力等の液性によって、前記試料滴の粒
径や流速が、ばらつき易く、このばらつきによって、測
定誤差が生じることが分かっていたが、試料滴の粒径や
流速のばらつきは、プラズマ中に導入される溶媒量の変
動を伴うことから、この溶媒量の変動が、プラズマの温
度を変動させるために測定誤差が生じていたのではない
かと考えられ、プラズマの発光強度はそのプラズマの温
度変化に対応していることから、プラズマの温度を直接
制御することは困難な実情にあっても、プラズマガス元
素の発光強度を一定に制御すればプラズマの温度を制御
することが出来、測定誤差を低減することが出来るもの
である。
Function: A sample for elemental analysis is dissolved in a solvent to prepare a sample solution, and the sample solution is made into mist-like sample droplets, and the sample droplets are introduced into plasma. Therefore, the acidity of the sample solution, It has been known that the particle size and flow velocity of the sample droplets easily vary due to liquidity such as viscosity and surface tension, and this variation causes a measurement error. Since the change in the amount of solvent introduced in the plasma is accompanied by the change in the amount of solvent, it is considered that the measurement error was caused by the change in the temperature of the plasma. Because it is difficult to directly control the plasma temperature because it is compatible with temperature changes, it is possible to control the plasma temperature by controlling the emission intensity of the plasma gas element to be constant. One in which it is possible to reduce the error.

【0007】すなわち、プラズマガス元素の発光強度の
変動をモニターし、その発光強度の変動の度合を検知し
て、プラズマガス元素の発光強度が一定になるように高
周波発生装置の光源ガスに対する出力を制御すれば、プ
ラズマ中に導入される溶媒量が変動したとしても、その
溶媒量の変動にともなってプラズマの温度が変動し、さ
らにその温度の変動にともなって変化するプラズマガス
元素の発光強度を検知して、プラズマ発光強度が基の値
に戻るように制御されることになるから、プラズマガス
元素の発光強度は一定に保たれることになり、つまりプ
ラズマの温度が一定に保たれるようになりプラズマのエ
ネルギー状態が安定化するから、結果として分析用の試
料がプラズマから受け取るエネルギー量が安定化し、前
記分析用の試料から発生するスペクトル強度が安定化す
る。
That is, the variation of the emission intensity of the plasma gas element is monitored, the degree of the variation of the emission intensity is detected, and the output to the light source gas of the high frequency generator is controlled so that the emission intensity of the plasma gas element becomes constant. By controlling, even if the amount of solvent introduced into the plasma fluctuates, the temperature of the plasma fluctuates with the fluctuation of the solvent amount, and the emission intensity of the plasma gas element that changes with the fluctuation of the temperature is also controlled. Since the plasma emission intensity will be controlled to return to the original value after detection, the emission intensity of the plasma gas element will be kept constant, that is, the plasma temperature will be kept constant. As a result, the energy state of the plasma is stabilized, and as a result, the amount of energy that the sample for analysis receives from the plasma is stabilized, and Generated spectral intensity is stabilized.

【0008】また、試料を溶解する溶媒を水としておけ
ば、様々な試料に対する汎用性が高く、さらに、内部標
準法をもちいて測定値を較正することにより、プラズマ
中に導入される溶媒量の変動以外の要因による測定誤差
を同時に較正することが出来るので、さらに精度の高い
安定したスペクトル強度が得られる。
If the solvent for dissolving the sample is water, it is highly versatile for various samples. Furthermore, by calibrating the measured value using the internal standard method, the amount of solvent introduced into the plasma can be reduced. Since the measurement error due to factors other than the fluctuation can be calibrated at the same time, more accurate and stable spectrum intensity can be obtained.

【0009】[0009]

【発明の効果】従って、分析用の試料から発生するスペ
クトル強度が安定化するから安定した測定結果が得ら
れ、測定精度を向上することが出来た。つまり、より正
確な定量分析が可能になった。これによって、重量分析
法や、容量分析法等の、分析方法を用いずとも精度の高
い分析が出来るので、より手軽に、分析用の試料の正確
な定量が可能になった。
As described above, since the spectrum intensity generated from the sample for analysis is stabilized, a stable measurement result can be obtained and the measurement accuracy can be improved. In other words, more accurate quantitative analysis became possible. As a result, highly accurate analysis can be performed without using an analytical method such as a gravimetric method or a volumetric method, so that it becomes possible to more easily and accurately quantify a sample for analysis.

【0010】[0010]

【実施例】以下に本発明の実施例を図面に基づいて説明
する。本発明の発光分光分析方法に用いる発光分光分析
装置は、図1に示されるように、試料溶液を霧状の試料
滴とするためのネブライザ1、その試料滴の粒度をある
程度小さく均質にするための噴霧室2、均質な試料滴を
プラズマ領域に導くためのトーチ3、光源ガスをプラズ
マ化させる高周波発生装置4、プラズマ光源から発生す
るスペクトルを分光するための分光部5、分光結果を解
析する測光部6、及び高周波制御部7からなる。なお、
図示されてはいないが、プラズマを安定に発生させるた
めにネブライザ及びトーチに送り込むアルゴンガス流量
を制御するガス制御部と、解析された測光結果を出力す
るためのデータ処理部が設けられている。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the emission spectroscopic analysis apparatus used in the emission spectroscopic analysis method of the present invention is a nebulizer 1 for making a sample solution into a mist-like sample droplet, and to make the particle size of the sample droplet small to some extent and uniform. Spray chamber 2, a torch 3 for guiding a homogeneous sample drop to a plasma region, a high-frequency generator 4 for converting a light source gas into plasma, a spectroscopic unit 5 for spectrally dispersing a spectrum generated from a plasma light source, and a spectroscopic result is analyzed. It comprises a photometric unit 6 and a high frequency control unit 7. In addition,
Although not shown, a gas control unit for controlling the flow rate of the argon gas sent to the nebulizer and the torch for stable plasma generation and a data processing unit for outputting the analyzed photometric result are provided.

【0011】前記ネブライザ1には、試料溶液導入管1
Aと、ガス制御部より連なるキャリアガス導入管1Bと
の同軸噴出管で構成してあり、ガス制御部によって導入
されるキャリアガスがネブライザ1の先端部1aを通過
する際の負圧で、試料溶液を霧状に噴霧する。これによ
って溶液試料は霧状となってスペクトル測定に適した微
粒子の試料滴となる。尚、キャリアガスとしては、通常
アルゴンガスを用いるが、ヘリウム、窒素等、プラズマ
として用いることが出来る成分であればよく、これに限
られるものではない。
The nebulizer 1 has a sample solution introducing tube 1
A and a carrier gas introducing pipe 1B connected from the gas control unit are coaxial ejection pipes, and the carrier gas introduced by the gas control unit is a negative pressure when passing through the tip portion 1a of the nebulizer 1. Atomize the solution. As a result, the solution sample becomes a mist and becomes fine particle sample drops suitable for spectrum measurement. Although argon gas is usually used as the carrier gas, any component that can be used as plasma, such as helium or nitrogen, may be used, and the carrier gas is not limited to this.

【0012】前記噴霧室2は、スプレイチャンバー2
A、整流仕切り2B、試料滴導入管2C、ドレイン回収
路2Dよりなり、スプレイチャンバー2A内に設けられ
た整流仕切り2Bによって、前記ネブライザ1から生じ
た試料滴のうち、スペクトル測定に適したさらに粒径が
微細な試料滴のみを試料滴導入管2Cに導き、スペクト
ル測定に適さない粒径が比較的大きい試料滴を、水封管
よりなるドレイン回収路2Dに回収する構成にしてあ
る。これらの構成により、試料滴の粒径が一定となり、
プラズマ領域に導入される溶媒量が安定するので、プラ
ズマの温度が安定し、より正確な測定が可能になる。
The spray chamber 2 is a spray chamber 2
A rectifying partition 2B provided in the spray chamber 2A, which is composed of A, a rectifying partition 2B, a sample droplet introducing tube 2C, and a drain collecting path 2D, and further particles suitable for spectrum measurement among the sample droplets generated from the nebulizer 1 Only the sample droplets having a small diameter are guided to the sample droplet introducing pipe 2C, and the sample droplets having a relatively large particle size which are not suitable for the spectrum measurement are collected in the drain collecting passage 2D made of a water sealed tube. With these configurations, the particle size of the sample droplet becomes constant,
Since the amount of solvent introduced into the plasma region is stable, the plasma temperature is stable and more accurate measurement is possible.

【0013】前記トーチ3は、石英三重管で形成し、前
記試料滴導入管2Cより連なる試料導入管3Aを中心と
して、その外側にガス制御部より連なる光源ガス導入管
3B、さらにその外側にガス制御部より連なる冷却ガス
導入管3Cを設けた構造にしてある。これらの構成によ
り、前記ガス制御部から、光源ガス、冷却ガスをそれぞ
れ前記光源ガス導入管、前記冷却ガス導入管に導入する
ことにより、試料滴を、トーチ上方のプラズマ領域Pに
導くことが出来る。尚、ガス制御部より導入する光源ガ
ス、及び冷却ガスは、キャリアガスと同質のガスを用い
る。
The torch 3 is formed by a quartz triple tube, and a light source gas introducing pipe 3B connected by a gas control unit is provided outside the sample introducing pipe 3A continuous with the sample drop introducing pipe 2C, and a gas is further provided outside thereof. The structure is such that a cooling gas introduction pipe 3C connected from the control unit is provided. With these configurations, by introducing the light source gas and the cooling gas into the light source gas introduction pipe and the cooling gas introduction pipe, respectively, from the gas control unit, the sample droplet can be guided to the plasma region P above the torch. . The light source gas and the cooling gas introduced from the gas control unit are of the same quality as the carrier gas.

【0014】前記高周波発生装置4は、前記トーチ3上
方に、水冷式高周波誘導コイル4Aを高周波電源部4B
に接続してなり、高周波誘導コイル4Aは、高周波電源
部4Bから電力を供給することにより、プラズマ領域P
に導入されたガスをプラズマ化し、そのプラズマによ
り、試料に含まれる元素を励起させる機能を持つ。さら
に、高周波電源部4Bは高周波発振器と、同調結合装置
とからなり、前記高周波誘導コイルに対して安定に電力
を供給するように構成してある。
The high frequency generator 4 includes a water cooled high frequency induction coil 4A above the torch 3 and a high frequency power source section 4B.
The high frequency induction coil 4A is connected to the high frequency induction coil 4A by supplying electric power from the high frequency power source unit 4B.
It has the function of turning the gas introduced into the plasma into plasma and exciting the elements contained in the sample by the plasma. Further, the high frequency power supply unit 4B is composed of a high frequency oscillator and a tuning coupling device, and is configured to stably supply power to the high frequency induction coil.

【0015】励起された前記元素は、失活するときにそ
のエネルギーを光として放出するので、この放出された
光を輝線スペクトルとして観測することが出来る。つま
り、分光部において、この輝線スペクトルを分光部5で
回折し、測光部6で分析することにより、その輝線スペ
クトルの波長から元素の定性、その輝線スペクトルの強
度からその試料に含まれる元素の定量をすることができ
る。ここで、プラズマガス元素のスペクトル強度をモニ
ターし、その変動情報を高周波発振器に伝達する高周波
制御部7を設けてあるから、プラズマのスペクトル強度
を、一定に制御することが出来、前記スペクトル強度を
一定に制御することによってプラズマの温度が一定に保
たれ、それによって、試料から得られるスペクトル強度
を安定に得られ、測定誤差少なく試料を定量することが
できる。
Since the excited element emits its energy as light when it is deactivated, the emitted light can be observed as an emission line spectrum. That is, in the spectroscopic unit, the emission line spectrum is diffracted by the spectroscopic unit 5 and analyzed by the photometric unit 6 to determine the qualitative of the element from the wavelength of the emission line spectrum and the quantification of the element contained in the sample from the intensity of the emission line spectrum. You can Here, since the high frequency controller 7 for monitoring the spectral intensity of the plasma gas element and transmitting the variation information to the high frequency oscillator is provided, the spectral intensity of the plasma can be controlled to be constant and the spectral intensity By controlling the temperature to be constant, the plasma temperature is kept constant, whereby the spectrum intensity obtained from the sample can be stably obtained, and the sample can be quantified with a small measurement error.

【0016】また、定量分析を行う場合に、分析元素の
それぞれについて前記分析元素の様々な濃度の溶液に対
して一定量の内部標準元素であるイットリウムを一定量
加えてある標準試料を用いて分析元素の濃度と内部標準
元素との発光強度の関係を予め明らかにしておいた上
で、試料に含まれる分析元素の発光強度と内部標準元素
との発光強度の関係を表した検量線を用いて、分析元素
の発光強度を較正して正確な定量を行うことができる。
内部標準元素であるイットリウムは、試験中に含まれて
いないという理由でこれを用いることは言うまでもない
が、カルシウム等に代えることも可能である。内部標準
元素同士の発光強度比と分析元素の発光強度との関係か
ら検量線を求めれば、試料溶液の粘性や比重の違いによ
って生じる試料滴の粒径変化のために、プラズマ中に導
入される分析元素の原子数が変化しても内部標準元素の
原子数との比は変わらず、従って、分析元素の発光強度
をより正確に較正し、より正確な定量分析が可能にな
る。
Further, in the case of performing quantitative analysis, analysis is performed using a standard sample in which a fixed amount of yttrium, which is an internal standard element, is added to a solution of each of the analyzed elements in various concentrations. After clarifying the relationship between the concentration of the element and the emission intensity of the internal standard element in advance, use a calibration curve that shows the relationship between the emission intensity of the analytical element contained in the sample and the emission intensity of the internal standard element. The accurate quantification can be performed by calibrating the emission intensity of the analysis element.
Needless to say, yttrium, which is an internal standard element, is used because it is not included in the test, but it can be replaced with calcium or the like. If a calibration curve is obtained from the relationship between the emission intensity ratio of the internal standard elements and the emission intensity of the analytical element, it will be introduced into the plasma due to the change in the particle size of the sample droplet caused by the difference in viscosity and specific gravity of the sample solution. Even if the number of atoms of the analysis element changes, the ratio with the number of atoms of the internal standard element does not change. Therefore, the emission intensity of the analysis element can be calibrated more accurately, and more accurate quantitative analysis can be performed.

【0017】尚、特許請求の範囲の項に、図面との対照
を便利にするために符号を記すが、該記入により本発明
は添付図面の構成に限定されるものではない。
It should be noted that reference numerals are added to the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の発光分光分析方法に用いられる発光分
光分析装置の概略図
FIG. 1 is a schematic diagram of an emission spectroscopic analyzer used in the emission spectroscopic analysis method of the present invention.

【符号の説明】[Explanation of symbols]

4 高周波発生装置 4 High frequency generator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 元素の分析用の試料を溶媒に溶解させて
試料溶液を調製しておき、前記試料溶液を霧状の試料滴
にして、高周波発生装置(4)により誘導結合プラズマ
(ICP)発生用のガスをプラズマ化したプラズマ中に
導き、前記試料滴に含まれる前記分析用の試料を励起さ
せ、励起した前記試料により発生するスペクトルを測定
して前記試料の定量を行う発光分光分析方法において、 プラズマの発光強度をモニターして、その発光強度の変
動にともない高周波発生装置の光源ガスに対する出力を
そのプラズマガス元素の発光強度が一定になるように制
御して、前記試料からの発生スペクトルを安定化させる
発光分光分析方法。
1. A sample solution is prepared by dissolving a sample for elemental analysis in a solvent, and the sample solution is formed into a mist-like sample droplet, which is then inductively coupled plasma (ICP) by a high frequency generator (4). An emission spectroscopic analysis method in which a gas for generation is introduced into plasma and the sample for analysis contained in the sample droplet is excited, and the spectrum generated by the excited sample is measured to quantify the sample. In, the emission spectrum of the plasma is monitored, and the output to the light source gas of the high frequency generator is controlled so that the emission intensity of the plasma gas element becomes constant in accordance with the fluctuation of the emission intensity, and the emission spectrum from the sample is controlled. Method for stabilizing emission of light.
【請求項2】 前記溶媒を水とする請求項1記載の発光
分光分析方法。
2. The emission spectroscopic analysis method according to claim 1, wherein the solvent is water.
【請求項3】 前記試料を様々な濃度の溶液に調製し、
それらの溶液それぞれに分析元素以外の内部標準元素を
一定の割合で加えた検量用溶液をつくり、その内部標準
元素と前記分析元素濃度との発光強度比の関係を明らか
にしておいたうえで、前記内部標準元素を一定の割合で
加えてある分析用の試料を、請求項1記載の発光分光分
析方法で定量分析し、予め明らかにしておいた前記発光
強度比の関係から分析結果を較正する発光分光分析方
法。
3. The sample is prepared in various concentration solutions,
After making a calibration solution by adding an internal standard element other than the analytical element to each of these solutions at a constant ratio, and clarifying the relationship between the emission standard of the internal standard element and the analytical element concentration, A sample for analysis, to which the internal standard element is added at a constant ratio, is quantitatively analyzed by the emission spectroscopic analysis method according to claim 1, and the analysis result is calibrated from the relationship of the emission intensity ratio which has been clarified in advance. Emission spectroscopy method.
JP25620992A 1992-09-25 1992-09-25 Emission spectroscopy method Expired - Fee Related JP3274187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25620992A JP3274187B2 (en) 1992-09-25 1992-09-25 Emission spectroscopy method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25620992A JP3274187B2 (en) 1992-09-25 1992-09-25 Emission spectroscopy method

Publications (2)

Publication Number Publication Date
JPH06109639A true JPH06109639A (en) 1994-04-22
JP3274187B2 JP3274187B2 (en) 2002-04-15

Family

ID=17289441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25620992A Expired - Fee Related JP3274187B2 (en) 1992-09-25 1992-09-25 Emission spectroscopy method

Country Status (1)

Country Link
JP (1) JP3274187B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316039A (en) * 2006-05-29 2007-12-06 Shimadzu Corp Icp emission spectrophotometer
JP2008164513A (en) * 2006-12-28 2008-07-17 Horiba Ltd Measuring period determining method, icp emission spectrometer analyzer and program
WO2014140179A1 (en) * 2013-03-15 2014-09-18 Thermo Electron Manufacturing Limited Method and apparatus for control of a plasma for spectrometry
WO2014175363A1 (en) * 2013-04-24 2014-10-30 株式会社Ihi Component-concentration measurement device and method
JP2022082533A (en) * 2020-11-23 2022-06-02 サーモ フィッシャー サイエンティフィック (ブレーメン) ゲーエムベーハー Diagnostic testing method for spectrometer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098843B2 (en) * 2007-06-29 2012-12-12 Jfeスチール株式会社 Method for determining the solid solution content of the element of interest in a metal sample

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316039A (en) * 2006-05-29 2007-12-06 Shimadzu Corp Icp emission spectrophotometer
JP2008164513A (en) * 2006-12-28 2008-07-17 Horiba Ltd Measuring period determining method, icp emission spectrometer analyzer and program
WO2014140179A1 (en) * 2013-03-15 2014-09-18 Thermo Electron Manufacturing Limited Method and apparatus for control of a plasma for spectrometry
CN105190830A (en) * 2013-03-15 2015-12-23 赛默电子制造有限公司 Method and apparatus for control of a plasma for spectrometry
WO2014175363A1 (en) * 2013-04-24 2014-10-30 株式会社Ihi Component-concentration measurement device and method
JP2014224812A (en) * 2013-04-24 2014-12-04 株式会社Ihi Component concentration measuring device and method
JP2022082533A (en) * 2020-11-23 2022-06-02 サーモ フィッシャー サイエンティフィック (ブレーメン) ゲーエムベーハー Diagnostic testing method for spectrometer

Also Published As

Publication number Publication date
JP3274187B2 (en) 2002-04-15

Similar Documents

Publication Publication Date Title
EP0792091B1 (en) Elemental analysis method
US4955717A (en) Demand modulated atomization apparatus and method for plasma spectroscopy
US5991020A (en) Method for determining the concentration of atomic species in gases and solids
Matusiewicz et al. Simultaneous determination of As, Bi, Sb, Se and Sn by microwave induced plasma spectrometry using a quadruple-mode microflow ultrasonic nebulizer for in situ hydride generation with internal standardization
EP0475636B1 (en) Method for analysis of gases using plasma
Bilge et al. Performance evaluation of laser induced breakdown spectroscopy in the measurement of liquid and solid samples
EP0015284B1 (en) Flameless emission spectroscope apparatus and sample introduction method for same
US7054008B2 (en) Method and apparatus for elemental and isotope measurements and diagnostics-microwave induced plasma-cavity ring-down spectroscopy
JPH06109639A (en) Method for emission spectral analysis
US6236012B1 (en) Plasma torch with an adjustable injector and gas analyzer using such a torch
JPH06222005A (en) Icp emission spectroscopic analysis
Matusiewicz et al. Analytical evaluation of a quadruple-mode micro-flow ultrasonic nebulizer for sample introduction in microwave induced plasma spectrometry
Duursma et al. Characterization of noise in inductively-coupled plasma emission spectrometry
JPH06203790A (en) Mass spectrograph
Dittrich et al. Laser-excited atomic fluorescence spectrometry as a practical analytical method. Part I. Design of a graphite tube atomiser for the determination of trace amounts of lead
Prokisch et al. Element determinations in aqueous and acetonitrile containing solutions by atomic emission spectrometry using a microwave plasma torch
Cordos et al. Capacitively coupled plasma with tip-ring electrode geometry for atomic emission spectrometry. Analytical performance and matrix effect of sodium chloride and potassium chloride
JPS6165154A (en) Method and instrument for quick analysis of carbon and sulfur components in metallic sample
Wang et al. Electron impact excitation-cavity ringdown absorption spectrometry of elemental mercury at 405 nm
Franzke et al. Measurements of sulfur compounds in CO2 by diode laser atomic absorption spectrometry
JP2003161700A (en) Method and apparatus for analyzing component of cement
JPH0213834A (en) Method and apparatus for analyzing trichlorosilane and tetrachlorosilane
Al'Tman et al. Zeeman atomic absorption spectroscopy
Grazhulene et al. Determination of lead in natural and waste waters using a non-dispersive atomic fluorescence spectrometer with a tungsten spiral atomizer
JPH0754294B2 (en) Particle measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees