JPH0754294B2 - Particle measuring device - Google Patents
Particle measuring deviceInfo
- Publication number
- JPH0754294B2 JPH0754294B2 JP1010872A JP1087289A JPH0754294B2 JP H0754294 B2 JPH0754294 B2 JP H0754294B2 JP 1010872 A JP1010872 A JP 1010872A JP 1087289 A JP1087289 A JP 1087289A JP H0754294 B2 JPH0754294 B2 JP H0754294B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction tube
- fine particles
- cavity
- pressure
- sample gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002245 particle Substances 0.000 title description 4
- 239000010419 fine particle Substances 0.000 claims description 30
- 238000006243 chemical reaction Methods 0.000 claims description 27
- 239000007789 gas Substances 0.000 claims description 15
- 238000001514 detection method Methods 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 claims description 5
- 239000012159 carrier gas Substances 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 3
- 238000004451 qualitative analysis Methods 0.000 claims description 3
- 238000004445 quantitative analysis Methods 0.000 claims description 3
- 238000000295 emission spectrum Methods 0.000 claims description 2
- 238000000889 atomisation Methods 0.000 claims 1
- 230000000149 penetrating effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Description
【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体プロセスにおいてクリーンルーム内或は
常圧CVD装置内のような大気圧又は常圧下の空間内にお
ける微粒子をインプロセスで検出できる微粒子測定装置
に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention is capable of detecting in-process fine particles in a semiconductor room in a clean room or in a space under atmospheric pressure or atmospheric pressure such as in an atmospheric pressure CVD apparatus. Regarding the device.
〈従来の技術〉 従来、微粒子測定装置として、反応槽中にレーザ光を照
射し、散乱光に基づきガス中の微粒子の大きさを求める
方法が公知である。しかしながら、この方法は次のよう
な欠点がある。<Prior Art> Conventionally, as a fine particle measuring device, a method is known in which a reaction tank is irradiated with laser light and the size of fine particles in a gas is determined based on scattered light. However, this method has the following drawbacks.
レーザ光の波長の制約から、直径が0.1μm以下の
微粒子の測定は原理的に出来ない。加えて実際の測定で
は測定装置を反応槽外において測定するため窓の汚れ等
によって0.5μm以下の微粒子は測定出来ない。一方、
半導体素子の高集積化は急速に進み、1MビットDRAM、4M
ビットDRAMのプロセスでは管理すべき微粒子の大きさが
0.05μmのレベルとなっている。In principle, it is not possible to measure fine particles with a diameter of 0.1 μm or less due to the restriction of the wavelength of laser light. In addition, in the actual measurement, since the measuring device is measured outside the reaction tank, fine particles of 0.5 μm or less cannot be measured due to stains on the window. on the other hand,
High integration of semiconductor devices has progressed rapidly, and 1Mbit DRAM, 4M
In the bit DRAM process, the size of the fine particles to be controlled is
The level is 0.05 μm.
光学的手法による検出のため微粒子の大きさしか分
らず、微粒子の組成についての情報は得られない。Since it is detected by an optical method, only the size of the fine particles is known, and no information about the composition of the fine particles is obtained.
〈発明が解決しようとする課題〉 本発明の解決しようとする技術的課題は、大気圧又は常
圧下の空間内に存在する直径が0.05μm程度の微粒子を
インラインで検出でき同時に成分の同定も行える微粒子
測定装置を実現することにある。<Problems to be Solved by the Invention> A technical problem to be solved by the present invention is to detect in-line fine particles having a diameter of about 0.05 μm existing in a space under atmospheric pressure or normal pressure, and at the same time, identify components. It is to realize a fine particle measuring device.
〈課題を解決するための手段〉 本発明の構成は、 マイクロ波源3と,該マイクロ波源で発生したマイクロ
波を導入するキャビティ4と,該キャビティの中央付近
を貫通して設けられ一端に検出窓を有する反応管5と,
該反応管の他端に一端が接続され他端が常圧下でかつ、
微粒子を含む空間に配置されたキャピラリーチューブ2
と,前記反応管内を減圧する排気手段6と,前記反応管
の検出窓に隣接して設けられた分析手段7とからなり, 前記排気手段により前記反応管内を原子化/イオン化が
可能な程度に減圧し,前記反応管内にキャリアガスを導
入して前記マイクロ波によりプラズマを生成するととも
に前記キャピラリーチューブにより常圧下のサンプルガ
スを導入し,前記サンプルガスに含まれる微粒子により
前記反応管内に発生したイオンの発光スペクトルをイン
ラインで前記分析装置で分析することにより前記微粒子
の定性・定量分析を行うことを特徴とするものである。<Means for Solving the Problems> The structure of the present invention has a microwave source 3, a cavity 4 for introducing microwaves generated by the microwave source, and a detection window provided at one end through the vicinity of the center of the cavity. A reaction tube 5 having
One end is connected to the other end of the reaction tube and the other end is under normal pressure, and
Capillary tube 2 placed in a space containing fine particles
And exhausting means 6 for reducing the pressure in the reaction tube, and analysis means 7 provided adjacent to the detection window of the reaction tube, so that the exhausting means can atomize / ionize the inside of the reaction tube. Ions generated in the reaction tube by reducing the pressure, introducing a carrier gas into the reaction tube to generate plasma by the microwave and introducing a sample gas under normal pressure by the capillary tube, and by the fine particles contained in the sample gas The qualitative / quantitative analysis of the fine particles is performed by in-line analysis of the emission spectrum of the fine particles with the analyzer.
〈作用〉 マイクロ波誘導プラズマの場合、前記反応管の真空度が
10Torr前後の真空度において4000°K以上の熱プラズマ
が生成される。この励起温度は前記サンプルガスに含ま
れる微粒子を解離(ガス化・イオン化)するに充分な温
度である。前記空間は大気圧又は常圧であり、サンプル
ガスは圧力差によって前記キャピラリチューブを通じ前
記反応管内に導かれる。サンプルガス中の微粒子は粒径
が小さい程、解離し易く、イオン化された微粒子は成分
固有のスペクトルで発光する。これを分光器を用いて測
定し、或は原子イオンを質量分析装置に導いて測定し、
微粒子の量的測定並びに成分の同定を行う。<Operation> In the case of microwave-induced plasma, the degree of vacuum in the reaction tube is
At a vacuum degree of around 10 Torr, thermal plasma of 4000 ° K or higher is generated. This excitation temperature is a temperature sufficient to dissociate (gasify / ionize) the fine particles contained in the sample gas. The space is at atmospheric pressure or atmospheric pressure, and the sample gas is introduced into the reaction tube through the capillary tube due to the pressure difference. The smaller the particle size of the fine particles in the sample gas is, the easier they are to dissociate, and the ionized fine particles emit light in a spectrum peculiar to the components. This is measured by using a spectroscope, or atomic ions are guided to a mass spectrometer and measured,
Quantitative measurement of fine particles and identification of components.
〈実施例〉 以下図面に従い本発明を説明する。第1図は本発明実施
例装置の構成図である。図中、1は半導体プロセスにお
けるクリーンルーム、或は常圧CVD装置のような大気圧
又は常圧下の空間を示す。2はサンプルガスSGを採取す
るため一端が空間1内に挿入されたキャピラリチュー
ブ、3はマイクロ波源、4はマイクロ波源3からのマイ
クロ波が導入されたキャビティである。5は石英製の反
応管で、キャビティ4内を貫通して設置され、その一端
にはキャピラリチューブ2が接続されると共に、アルゴ
ン、ヘリウム等のキャリアガスCGを導入するキャリアガ
ス導入部5aが設けられている。この反応管の他端には検
出窓5bが設けられると共に、ガス排出部5cが設けられて
いる。6は排気手段でガス排出部5cを通じ反応管5内を
真空に引く。7は検出窓5bに向けて設けられサンプルガ
スSG中の微粒子を定性・定量分析する分析手段である。
この分析手段には、分光分析器、或は四重極質量分析計
のような質量分析装置が用いられる。7aは検出部として
の光電子増倍管である。8は信号検出部で、この中には
前置増幅器8a、A/D変換器8b、マイクロプロセッサを用
いた演算処理回路8c等が含まれる。<Examples> The present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention. In the figure, 1 indicates a clean room in a semiconductor process or a space under atmospheric pressure or atmospheric pressure such as an atmospheric pressure CVD apparatus. 2 is a capillary tube whose one end is inserted into the space 1 for collecting the sample gas SG, 3 is a microwave source, and 4 is a cavity into which the microwave from the microwave source 3 is introduced. Reference numeral 5 is a quartz reaction tube, which is installed so as to penetrate through the cavity 4 and is connected to the capillary tube 2 at one end thereof, and is provided with a carrier gas introduction part 5a for introducing a carrier gas CG such as argon or helium. Has been. A detection window 5b is provided at the other end of the reaction tube, and a gas discharge section 5c is provided. Reference numeral 6 denotes an evacuation means, which evacuates the inside of the reaction tube 5 through the gas exhaust part 5c. Reference numeral 7 is an analysis means provided toward the detection window 5b for qualitative / quantitative analysis of fine particles in the sample gas SG.
A mass spectrometer such as a spectroscopic analyzer or a quadrupole mass spectrometer is used as the analyzing means. 7a is a photomultiplier tube as a detector. A signal detector 8 includes a preamplifier 8a, an A / D converter 8b, an arithmetic processing circuit 8c using a microprocessor, and the like.
第2図は本発明実施例装置の要部を示す断面図である。
本図において、第1図における部分に対応する部分に同
一符号が付されている。キャビティ4には円板型で、外
周部よりマイクロ波が導入され、中心にマイクロ波が集
中する。例えば、Beenakker型キャビティが用いられ
る。反応管5はキャビティ4の中心部を通るように設置
される。FIG. 2 is a sectional view showing the main part of the apparatus according to the embodiment of the present invention.
In this figure, parts corresponding to the parts in FIG. 1 are designated by the same reference numerals. The cavity 4 is a disc type, and microwaves are introduced from the outer peripheral portion of the cavity 4, and the microwaves are concentrated in the center. For example, a Beanakker type cavity is used. The reaction tube 5 is installed so as to pass through the center of the cavity 4.
このような構成で、排気手段6によって反応管5内の真
空度を10Torr前後に引き、マイクロ波源3から周波数が
2.45GHzのマイクロ波をキャビティ4内に導き、キャリ
アガスCGを流すと、反応管5内に4000°K以上の熱プラ
ズマPLが生成される。With such a configuration, the vacuum degree in the reaction tube 5 is reduced to about 10 Torr by the exhaust means 6, and the frequency is changed from the microwave source 3.
When the microwave of 2.45 GHz is guided into the cavity 4 and the carrier gas CG is flown, the thermal plasma PL of 4000 ° K or more is generated in the reaction tube 5.
一方、空間1内は大気圧又は常圧に保たれておりサンプ
ルガスSGは圧力差によってキャピラリチューブ2を通じ
反応管5内に導かれる。プラズマPLに導かれたサンプル
ガスSG中の微粒子は解離されイオン化される。プラズマ
によって解離される微粒子は直径が小さい程解離しやす
く、直径が0.1〜0.05μmまでの微粒子を解離すること
ができる。On the other hand, the space 1 is kept at atmospheric pressure or normal pressure, and the sample gas SG is guided into the reaction tube 5 through the capillary tube 2 due to the pressure difference. The fine particles in the sample gas SG introduced into the plasma PL are dissociated and ionized. The smaller the diameter of the fine particles dissociated by plasma, the easier the dissociation is, and the fine particles having a diameter of 0.1 to 0.05 μm can be dissociated.
イオン化された微粒子は成分固有のスペクトルで発光す
る。この発光を例えば分光器を用いた分析手段7で検出
すれば、スペクトルの強度から微粒子の量的情報が得ら
れ、スペクトルの波長に基づき成分の同定を行う。The ionized fine particles emit light with a spectrum peculiar to the components. If this emitted light is detected by the analyzing means 7 using, for example, a spectroscope, quantitative information of the fine particles can be obtained from the intensity of the spectrum, and the component is identified based on the wavelength of the spectrum.
〈発明の効果〉 本発明によれば以下のような効果を有する。<Effects of the Invention> The present invention has the following effects.
従来の光学的方法によっては原理的に測定が不可能
であった直径が0.1〜0.05μmレベルの微粒子をインラ
インで検出することができる。Fine particles having a diameter of 0.1 to 0.05 μm, which cannot be measured in principle by the conventional optical method, can be detected in-line.
微粒子の量的情報が得られる他、成分の同定も同時
に行える。In addition to obtaining quantitative information of fine particles, identification of components can be performed at the same time.
キャピラリチューブを使って前記反応管と前記キャ
ビティとの圧力差でサンプリングを行うのでサンプルガ
スを移送する特別の手段が要らない。Since a capillary tube is used to perform sampling by the pressure difference between the reaction tube and the cavity, no special means for transferring the sample gas is required.
マイクロ波誘導に基づくプラズマ中では微粒子の径
が小さい程、解離、イオン化し易く原理的に径の小さな
微粒子の測定に向いている。In plasma based on microwave induction, the smaller the particle size is, the easier it is to dissociate and ionize, and in principle it is suitable for the measurement of small particle size.
例えば常圧下の空間がCVD装置内の場合は、その中
の不純物が一定量を越えたときに、即座に作業を中止し
てCVD装置内の清掃を行ったり、あるロットの物を不良
品として廃棄することにより、これを組み込む製品の不
良を防止することが出来る。For example, if the space under normal pressure is inside the CVD device, when the impurities in it exceed a certain amount, immediately stop the work and clean the inside of the CVD device, or mark a lot as a defective product. By discarding, it is possible to prevent defects in products incorporating this.
第1図は本発明実施例装置の構成図、第2図は本発明実
施例装置の要部を示す断面図である。 1……半導体プロセスにおける大気圧又は常圧下の空
間、2……キャピラリチューブ、3……マイクロ波源、
4……キャビティ、5……反応管、6……排気手段、7
……分析手段、8……信号検出部FIG. 1 is a block diagram of the apparatus of the embodiment of the present invention, and FIG. 2 is a sectional view showing the main part of the apparatus of the embodiment of the present invention. 1 ... Space under atmospheric pressure or normal pressure in semiconductor process, 2 ... Capillary tube, 3 ... Microwave source,
4 ... Cavity, 5 ... Reaction tube, 6 ... Exhaust means, 7
...... Analysis means, 8 …… Signal detector
Claims (1)
したマイクロ波を導入するキャビティ4と,該キャビテ
ィの中央付近を貫通して設けられ一端に検出窓を有する
反応管5と,該反応管の他端に一端が接続され他端が常
圧下でかつ,微粒子を含む空間に配置されたキャピラリ
ーチューブ2と,前記反応管内を減圧する排気手段6
と,前記反応管の検出窓に隣接して設けられた分析手段
7とからなり, 前記排気手段により前記反応管内を原子化/イオン化が
可能な程度に減圧し,前記反応管内にキャリアガスを導
入して前記マイクロ波によりプラズマを生成するととも
に前記キャピラリーチューブにより常圧下のサンプルガ
スを導入し,前記サンプルガスに含まれる微粒子により
前記反応管内に発生したイオンの発光スペクトルをイン
ラインで前記分析装置で分析することにより前記微粒子
の定性・定量分析を行うことを特徴とする微粒子測定装
置。1. A microwave source 3, a cavity 4 for introducing microwaves generated by the microwave source, a reaction tube 5 penetrating near the center of the cavity and having a detection window at one end, and the reaction tube. One end of which is connected to the other end and the other end of which is under normal pressure and which is arranged in a space containing fine particles, and an exhaust means 6 for reducing the pressure in the reaction tube.
And an analysis means 7 provided adjacent to the detection window of the reaction tube, the pressure of the inside of the reaction tube is reduced to a level capable of atomization / ionization by the exhaust means, and a carrier gas is introduced into the reaction tube. Then, plasma is generated by the microwave and the sample gas under normal pressure is introduced by the capillary tube, and the emission spectrum of the ions generated in the reaction tube by the fine particles contained in the sample gas is analyzed inline by the analyzer. A fine particle measuring device characterized by performing qualitative / quantitative analysis of the fine particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1010872A JPH0754294B2 (en) | 1989-01-19 | 1989-01-19 | Particle measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1010872A JPH0754294B2 (en) | 1989-01-19 | 1989-01-19 | Particle measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02190744A JPH02190744A (en) | 1990-07-26 |
JPH0754294B2 true JPH0754294B2 (en) | 1995-06-07 |
Family
ID=11762431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1010872A Expired - Lifetime JPH0754294B2 (en) | 1989-01-19 | 1989-01-19 | Particle measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0754294B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01269555A (en) * | 1988-04-20 | 1989-10-27 | Fuji Photo Film Co Ltd | Thermal printer device |
JP3057184B2 (en) * | 1991-04-26 | 2000-06-26 | 横河電機株式会社 | Plasma generator |
JP2804873B2 (en) * | 1992-12-17 | 1998-09-30 | 三菱電機株式会社 | Particle analysis device and particle analysis method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57108655A (en) * | 1980-12-25 | 1982-07-06 | Tsukasa Sotsuken:Kk | Device for measuring air fuel ratio of internal combustion engine or other burning apparatus |
JPS57130433U (en) * | 1981-02-06 | 1982-08-14 |
-
1989
- 1989-01-19 JP JP1010872A patent/JPH0754294B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02190744A (en) | 1990-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8237928B2 (en) | Method and apparatus for identifying the chemical composition of a gas | |
US6864982B2 (en) | Gas analyzing method and gas analyzer for semiconductor treater | |
Williams et al. | Naturally occurring molecular species used for plasma diagnostics and signal correction in microwave-induced plasma optical emission spectrometry | |
US6975393B2 (en) | Method and apparatus for implementing an afterglow emission spectroscopy monitor | |
JPH06186157A (en) | Device and method for fine particle analysis | |
WO1980000273A1 (en) | Sample introduction system for flameless emission spectroscopy | |
JPH0754294B2 (en) | Particle measuring device | |
EP0510127B1 (en) | Method and apparatus for analytical sample preparation | |
JP4580119B2 (en) | Method and apparatus for analyzing impurities in gas | |
JP3274187B2 (en) | Emission spectroscopy method | |
JPH0622217B2 (en) | Surface treatment apparatus and surface treatment method | |
Matosek et al. | Spectrometric analysis of non-metals introduced from a graphite furnace into a microwave-induced plasma | |
JPH0754293B2 (en) | Particle measuring device | |
JP3198127B2 (en) | X-ray spectrometer | |
EP1325304A1 (en) | Afterglow emission spectroscopy monitor | |
JPH0837175A (en) | Contamination measuring method | |
JPS6165154A (en) | Method and instrument for quick analysis of carbon and sulfur components in metallic sample | |
SU639320A1 (en) | Method of determining gold content in ores | |
JP2690572B2 (en) | Surface condition evaluation method and apparatus | |
JP2003075408A (en) | Method and apparatus for analysis of metal element in solid sample | |
JPH02229793A (en) | Method and device for detecting gas species formed during synthesis of diamond | |
JPH11101748A (en) | Emission spectral analyzer | |
JP2770448B2 (en) | Ion species analysis method and apparatus | |
KR200445465Y1 (en) | Miniatured Sample Detecting Device Using the Plasma | |
JPS6353927A (en) | Plasma processing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080607 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090607 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090607 Year of fee payment: 14 |