JP3764798B2 - Inductively coupled plasma mass and spectroscopic analyzer - Google Patents

Inductively coupled plasma mass and spectroscopic analyzer Download PDF

Info

Publication number
JP3764798B2
JP3764798B2 JP12759797A JP12759797A JP3764798B2 JP 3764798 B2 JP3764798 B2 JP 3764798B2 JP 12759797 A JP12759797 A JP 12759797A JP 12759797 A JP12759797 A JP 12759797A JP 3764798 B2 JP3764798 B2 JP 3764798B2
Authority
JP
Japan
Prior art keywords
chamber
gas
sample
torch
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12759797A
Other languages
Japanese (ja)
Other versions
JPH10321182A (en
Inventor
哲雅 伊藤
良知 中川
修 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP12759797A priority Critical patent/JP3764798B2/en
Publication of JPH10321182A publication Critical patent/JPH10321182A/en
Application granted granted Critical
Publication of JP3764798B2 publication Critical patent/JP3764798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、誘導結合プラズマ質量及び分光分析装置、特に有機溶媒試料導入装置に関する。
【0002】
【従来の技術】
従来の誘導結合プラズマ質量分析装置は、図2に示すようにプラズマ2発生用のトーチ4に試料導入部となるチャンバ9が接続されている。チャンバ9は、その一端に試料18を霧化する噴霧器13を装着した保持体12をOリング11を介して備えている。試料容器17に貯えられた試料18は、試料供給管16を通って噴霧器13に供給される。ここで、噴霧器13にはネブライザーガス供給部15に貯えられたネブライザーガスがネブライザーガス供給管14を介して供給される。そして、この噴霧器13で試料18は霧化された後、チャンバ9を経由し、霧化された試料18は、トーチ4に導入される。チャンバ9の最下部には、廃液を排出する液孔10が設けられている。
【0003】
トーチ4は同軸の三重の管より構成され、チャンバ9から導入された試料18は三重の管の最内管5を経由したうえでプラズマ2に導入される。試料18はプラズマ2中でイオン化され、誘導結合プラズマ分析装置分析部を構成するサンプリングコーン1の穴を通った後、質量分析計(図示せず)によって分析される。トーチ4の最内管5の外側に補助ガス供給孔8を介して補助ガスを通す中間管8aが設けられている。その外側にプラズマガス供給孔7を介してプラズマガスをトーチ4先端に供給する最外管24が設けられている。
【0004】
チャンバ9には細かく霧化された試料を最内管5に導入するための排出管23が設けられ、最内管5の端部と排出管23の端部とは、クランプ6にて流体的に接続されている。
導入される試料18が有機溶媒の場合、プラズマ2に導入された試料中の炭素Cがトーチ4の先端部やサンプリングコーン1の穴に付着し、目詰まりや感度低下を引き起こす。その場合には、保持体12にガスの導入口21を設け、この導入口21から酸素ガスを供給し、チャンバ9内で試料18と混合してプラズマ2中に導入することによって前記問題を解決していた。すなわち酸素ガスと混合された試料18中の炭素Cはプラズマ2中で燃焼して二酸化炭素CO2や一酸化炭素COとなる。二酸化炭素CO2や一酸化炭素COはサンプリングコーンの穴を通り抜けたり、大気中に発散するのでトーチ4先端やサンプリングコーン1の穴に付着することはない。
【0005】
【発明が解決しようとする課題】
上記従来技術においては、保持体12に設けたガスの導入口21から導入された酸素ガスと、保持体12に装着した噴霧器13から噴霧された有機溶媒は、チャンバ9内で混合される。このとき静電気や逆火や高周波などの原因でチャンバ9内の有機溶媒と酸素ガスに引火するとチャンバ9が破裂する恐れがあるため、酸素ガスの導入量を少なく抑えなければならない。導入された酸素ガスの量が試料中の炭素Cを十分に燃焼させるために必要な酸素ガスの量よりも少ない場合、炭素Cが十分に二酸化炭素CO2や一酸化炭素COにならずにトーチ4先端やサンプリングコーン1の穴の目詰まりを起こし、感度の低下をもたらす。
【0006】
本発明は、上記問題を解決し、試料中の炭素Cによるトーチ4先端やサンプリングコーン1の目詰まりや感度の低下を抑えるのに必要な量の酸素ガスを流してもチャンバ9が破裂する恐れが無く、目詰まりを防止し、高感度の測定ができる誘導結合プラズマ質量分析装置を得ることを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために本発明が採用した誘導結合プラズマ質量分析装置用有機溶媒試料導入装置は、トーチの最内管に枝管を有し、前記枝管から流量を制御できる酸素ガスを導入することを特徴とする。
本発明の誘導結合プラズマ質量分析装置用有機溶媒試料導入装置は、トーチの最内管に枝管を有し、その枝管から酸素ガスを導入している。噴霧器から噴出するネブライザーガスの流量は枝管から供給される酸素ガスに比べて十分に多く、かつネブライザーガスの流れは気密を保持しているチャンバから出口であるトーチの先端方向へ流れているため、酸素ガスは枝管からトーチの方向へ流れ、チャンバへは流れない。よってチャンバ内の酸素ガス濃度は極めて低い。
【0008】
チャンバ内の酸素ガス濃度を下げることができるため、チャンバ内に向かって逆火が起きた場合でもチャンバ内では燃焼が起きず、破裂することはない。したがって炭素Cによるトーチ先端やサンプリングコーンの目詰まりや感度の低下を抑えるのに必要な量の酸素ガスを流すことができ、目詰まりを防止し、高感度の測定ができる。
【0009】
【実施例】
本願発明を図1に基づいて詳細に説明する。なお、図1において、図2に書かれている部品で、ほぼ同一の機能を有するものは、ここでは説明を省略することもある。
チャンバ9の上面に誘導結合プラズマ2を発生するトーチ4が設けてあり、チャンバ9の端部に円筒形状の保持体12が設けてあり、保持体12には噴霧器13が装着してある。トーチ4とチャンバ9との接合面は、クランプ6によって洩れが生じないように接続してあり、チャンバ9と保持体12との結合部にはOリング11を介在させ、チャンバ9内のガスが外部に洩れないようにしてあり、気密を保持してある。なお、廃液孔10の図示されていない先の部分は、サイホン状に成っており、液体にて気密に保たれている。
【0010】
噴霧器13には、ネブライザーガス供給管14と試料供給管16がそれぞれ接続されており、試料供給管16の端部は試料容器17内の試料18に浸されている。
いま、ネブライザーガス供給部15からガスを供給すると、ネブライザーガス供給管14をガスが通って噴霧器13の先端からガスが噴出する。それによって噴霧器13の内部圧力が下がり、その負圧吸引によって試料容器17内の試料18が吸い込まれ、試料供給管16を通って噴霧器13へ達する。そして噴霧器13よりチャンバ9の内部へ試料18が噴射され、霧状の試料となる。
【0011】
この細かく霧化された試料18は、チャンバ9から排出管23経てトーチ4に達するが、それ以外の大きい粒子状の試料はチャンバ9の廃液孔10から排出される。チャンバ9では霧化された試料は分級されることになる。
一方、トーチ4は三重構造の石英管からなっており、プラズマガス供給孔7からガス(例えばアルゴンガス)が最外管24を介してトーチ4先端に供給され、誘導コイル3に高周波電力(例えば、周波数27.12MHz、電力1.6kW)を印加することにより、プラズマ2が形成される。8は補助ガス供給孔であり中間管8aを介して補助ガスがトーチ4先端に供給される。
【0012】
チャンバ9を経てトーチ4に達した試料18はトーチ4の三重管のうち、最内管5を通る。いま、酸素ガス供給部20から酸素ガスを供給すると、酸素ガス供給管19を通ってトーチ4の最内管5に設けた枝管22から酸素ガスが供給され、最内管5にて試料18と混合される。
ここで噴霧器13から噴出するネブライザーガスの流量は枝管22から供給される酸素ガスに比べて十分に多く、かつネブライザーガスの流れは気密を保持しているチャンバ9から出口であるトーチ4の先端方向へ流れているため、酸素ガスは枝管22からトーチ4の方向へ流れ、チャンバ9へは流れない。よってチャンバ9内の酸素ガス濃度は極めて低い。チャンバ9内の酸素ガス濃度を下げることができるため、チャンバ9内に向かって逆火が起きた場合でもチャンバ9内では燃焼が起きず、破裂することはない。
【0013】
十分な量の酸素ガスと混合された試料18は最内管5を通ってトーチ4の上面に達してプラズマ2によって燃焼し、試料中の炭素Cは二酸化炭素CO2や一酸化炭素COとなってサンプリングコーン1の穴を通り抜けたり、大気中に発散する。その他の試料はプラズマ2によってイオン化される。イオン化された試料18はサンプリングコーン1の穴を通り、質量分析計によって分析される。
【0014】
つまり、本願発明は、液状の試料を霧化する噴霧器と、霧化された試料を分級するチャンバと、分級された試料とプラズマガスとをそれぞれ流体的に分断された管にて導入・輸送し、前記分級された試料を導入・輸送する管(実施例では、試料は最内管5でプラズマガスは最外管24に流れる)に、その先端部で周囲に配置された誘導コイルに流れる高周波電力によりプラズマを形成するトーチと、前記トーチの前記分級された試料を導入・輸送する管に流量を制御できる酸素ガスを導入する枝管と、前記プラズマにてイオン化された試料を通すサンプリングコーンと、前記サンプリングコーンを通過したイオンを質量分析する質量分析装置より成ることを特徴とする誘導結合プラズマ質量分析装置である。
なお、サンプリングコーン1と質量分析装置の代わりに、プラズマの光を分光する分光分析装置を設けて、誘導結合プラズマ分光分析装置に採用することもできることは明らかである。
【0015】
【発明の効果】
本発明は、誘導結合プラズマ分析装置用有機溶媒試料導入装置において、トーチの最内管に枝管を有し、その枝管から流量を制御できる酸素ガスを導入できる構造としたので、下記の効果を有する。
(1)チャンバ内に酸素ガスが混入するのを極力避けることができる。
(2)チャンバ内の酸素ガス濃度を下げることができるため、チャンバの破裂を恐れることなく炭素Cによるトーチ先端やサンプリングコーンの目詰まりや感度の低下を抑えるのに必要な量の酸素ガスを流すことができる。
(3)炭素Cが十分に二酸化炭素CO2や一酸化炭素COになり、目詰まりを防止し、高感度の測定ができる。
【図面の簡単な説明】
【図1】本発明の実施例の誘導結合プラズマ質量分析装置用試料導入装置の概略断面である。
【図2】従来例の誘導結合プラズマ質量分析装置用試料導入装置の概略断面である。
【符号の説明】
1 サンプリングコーン
2 誘導結合プラズマ
3 誘導コイル
4 トーチ
5 最内管
6 クランプ
7 プラズマガス供給孔
8 補助ガス供給孔
8a 中間管
9 チャンバ
10 廃液孔
11 Oリング
12 保持体
13 噴霧器
14 ネブライザーガス供給管
15 ネブライザーガス供給部
16 試料供給管
17 試料容器
18 試料制御装置
19 酸素ガス供給管
20 酸素ガス供給部
21 導入口
22 枝管
23 排出管
24 最外管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inductively coupled plasma mass and spectroscopic analyzer, and more particularly to an organic solvent sample introduction device.
[0002]
[Prior art]
In the conventional inductively coupled plasma mass spectrometer, as shown in FIG. 2, a chamber 9 serving as a sample introduction unit is connected to a torch 4 for generating plasma 2. The chamber 9 is provided with a holder 12 with an atomizer 13 for atomizing the sample 18 at one end via an O-ring 11. The sample 18 stored in the sample container 17 is supplied to the nebulizer 13 through the sample supply pipe 16. Here, the nebulizer gas stored in the nebulizer gas supply unit 15 is supplied to the nebulizer 13 via the nebulizer gas supply pipe 14. After the sample 18 is atomized by the nebulizer 13, the atomized sample 18 is introduced into the torch 4 through the chamber 9. At the bottom of the chamber 9, the waste liquid holes 10 for discharging the waste liquid is provided.
[0003]
The torch 4 is composed of a coaxial triple tube, and the sample 18 introduced from the chamber 9 is introduced into the plasma 2 through the innermost tube 5 of the triple tube. The sample 18 is ionized in the plasma 2, passes through a hole in the sampling cone 1 constituting the inductively coupled plasma analyzer analysis unit, and then analyzed by a mass spectrometer (not shown). An intermediate pipe 8 a through which the auxiliary gas is passed through the auxiliary gas supply hole 8 is provided outside the innermost pipe 5 of the torch 4. An outermost tube 24 for supplying plasma gas to the tip of the torch 4 through the plasma gas supply hole 7 is provided on the outside thereof.
[0004]
The chamber 9 is provided with a discharge pipe 23 for introducing a finely atomized sample into the innermost pipe 5. The end of the innermost pipe 5 and the end of the discharge pipe 23 are fluidized by a clamp 6. It is connected to the.
When the sample 18 to be introduced is an organic solvent, carbon C in the sample introduced into the plasma 2 adheres to the tip of the torch 4 and the hole of the sampling cone 1, causing clogging and a decrease in sensitivity. In that case, the holding body 12 is provided with a gas inlet 21, oxygen gas is supplied from the inlet 21, mixed with the sample 18 in the chamber 9 and introduced into the plasma 2 to solve the above problem. Was. That is, carbon C in the sample 18 mixed with oxygen gas burns in the plasma 2 to become carbon dioxide CO 2 or carbon monoxide CO. Carbon dioxide CO 2 and carbon monoxide CO pass through the hole in the sampling cone 1 and diverge into the atmosphere, so they do not adhere to the tip of the torch 4 or the hole in the sampling cone 1.
[0005]
[Problems to be solved by the invention]
In the above prior art, the oxygen gas introduced from the gas inlet 21 provided in the holding body 12 and the organic solvent sprayed from the sprayer 13 attached to the holding body 12 are mixed in the chamber 9. At this time, if the organic solvent and oxygen gas in the chamber 9 are ignited due to static electricity, flashback, high frequency, or the like, the chamber 9 may burst, so the amount of oxygen gas introduced must be kept small. If the amount of introduced oxygen gas is less than the amount of oxygen gas required to sufficiently burn carbon C in the sample, the torch will not be sufficiently carbon dioxide CO 2 or carbon monoxide CO. 4 Clogging of the tip and the hole of the sampling cone 1 will cause the sensitivity to decrease.
[0006]
The present invention solves the above problem, and the chamber 9 may burst even if oxygen gas is supplied in an amount necessary to suppress clogging of the tip of the torch 4 and the sampling cone 1 due to carbon C in the sample and a decrease in sensitivity. An object of the present invention is to obtain an inductively coupled plasma mass spectrometer that can prevent clogging and perform highly sensitive measurement.
[0007]
[Means for Solving the Problems]
The organic solvent sample introduction device for inductively coupled plasma mass spectrometer adopted by the present invention to achieve the above object has a branch pipe in the innermost tube of the torch, and introduces oxygen gas from which the flow rate can be controlled. It is characterized by doing.
The organic solvent sample introduction device for an inductively coupled plasma mass spectrometer of the present invention has a branch pipe in the innermost pipe of the torch, and introduces oxygen gas from the branch pipe. The flow rate of the nebulizer gas ejected from the nebulizer is sufficiently larger than the oxygen gas supplied from the branch pipe, and the flow of the nebulizer gas flows from the chamber holding the airtightness toward the tip of the torch that is the outlet. , Oxygen gas flows from the branch pipe to the torch and does not flow to the chamber. Therefore, the oxygen gas concentration in the chamber is extremely low.
[0008]
Since the oxygen gas concentration in the chamber can be reduced, even if a backfire occurs in the chamber, combustion does not occur in the chamber, and no explosion occurs. Therefore, the amount of oxygen gas necessary to suppress clogging of the torch tip and sampling cone due to carbon C and a decrease in sensitivity can be flowed, so that clogging can be prevented and high sensitivity measurement can be performed.
[0009]
【Example】
The present invention will be described in detail with reference to FIG. In FIG. 1, the components shown in FIG. 2 that have substantially the same function may be omitted here.
A torch 4 for generating inductively coupled plasma 2 is provided on the upper surface of the chamber 9, a cylindrical holder 12 is provided at the end of the chamber 9, and a sprayer 13 is attached to the holder 12. The joint surface between the torch 4 and the chamber 9 is connected by the clamp 6 so that leakage does not occur. An O-ring 11 is interposed at the joint between the chamber 9 and the holding body 12, and the gas in the chamber 9 is It is designed not to leak outside and is airtight. Note that the portion of the waste liquid hole 10 not shown in the figure has a siphon shape and is kept airtight with a liquid.
[0010]
A nebulizer gas supply pipe 14 and a sample supply pipe 16 are respectively connected to the nebulizer 13, and an end of the sample supply pipe 16 is immersed in a sample 18 in a sample container 17.
Now, when gas is supplied from the nebulizer gas supply unit 15, the gas passes through the nebulizer gas supply pipe 14, and the gas is ejected from the tip of the sprayer 13. Thereby, the internal pressure of the sprayer 13 is lowered, and the sample 18 in the sample container 17 is sucked by the negative pressure suction, and reaches the sprayer 13 through the sample supply pipe 16. Then, the sample 18 is jetted from the nebulizer 13 into the chamber 9 to form a mist-like sample.
[0011]
The finely atomized sample 18 is reached torch 4 through the discharge pipe 23 from the chamber 9, the other large particulate sample is discharged from the waste liquid hole 10 of the chamber 9. In the chamber 9, the atomized sample is classified.
On the other hand, the torch 4 is formed of a triple-structured quartz tube, and a gas (for example, argon gas) is supplied from the plasma gas supply hole 7 to the tip of the torch 4 through the outermost tube 24, and high frequency power (for example, By applying a frequency of 27.12 MHz and a power of 1.6 kW, plasma 2 is formed. An auxiliary gas supply hole 8 supplies auxiliary gas to the tip of the torch 4 through the intermediate pipe 8a.
[0012]
The sample 18 that reaches the torch 4 through the chamber 9 passes through the innermost tube 5 among the triple tubes of the torch 4. Now, when oxygen gas is supplied from the oxygen gas supply unit 20, oxygen gas is supplied from the branch pipe 22 provided in the innermost pipe 5 of the torch 4 through the oxygen gas supply pipe 19. Mixed with.
Here, the flow rate of the nebulizer gas ejected from the nebulizer 13 is sufficiently larger than the oxygen gas supplied from the branch tube 22, and the flow of the nebulizer gas is the tip of the torch 4 that is the exit from the chamber 9 that is kept airtight Since the oxygen gas flows in the direction, the oxygen gas flows from the branch pipe 22 toward the torch 4 and does not flow into the chamber 9. Therefore, the oxygen gas concentration in the chamber 9 is extremely low. Since the oxygen gas concentration in the chamber 9 can be lowered, even if a backfire occurs in the chamber 9, combustion does not occur in the chamber 9 and no explosion occurs.
[0013]
The sample 18 mixed with a sufficient amount of oxygen gas passes through the innermost tube 5 to reach the upper surface of the torch 4 and burns by the plasma 2, and the carbon C in the sample becomes carbon dioxide CO2 or carbon monoxide CO. It passes through the hole in the sampling cone 1 and diverges into the atmosphere. Other samples are ionized by the plasma 2. The ionized sample 18 passes through a hole in the sampling cone 1 and is analyzed by a mass spectrometer.
[0014]
In other words, the present invention introduces and transports a sprayer for atomizing a liquid sample, a chamber for classifying the atomized sample, and the classified sample and the plasma gas through respective fluidly separated tubes. The high frequency current that flows in the induction coil disposed around the tip of the tube into which the classified sample is introduced and transported (in the embodiment, the sample is the innermost tube 5 and the plasma gas flows to the outermost tube 24). A torch for forming plasma by electric power, a branch pipe for introducing oxygen gas whose flow rate can be controlled to a pipe for introducing and transporting the classified sample of the torch, and a sampling cone for passing the sample ionized by the plasma The inductively coupled plasma mass spectrometer is characterized by comprising a mass spectrometer that performs mass analysis of ions that have passed through the sampling cone.
It is obvious that a spectroscopic analyzer that separates plasma light can be provided in place of the sampling cone 1 and the mass spectroscope and can be employed in the inductively coupled plasma spectroscopic analyzer.
[0015]
【The invention's effect】
In the organic solvent sample introduction device for inductively coupled plasma analyzer, the present invention has a structure in which the inner tube of the torch has a branch pipe, and oxygen gas whose flow rate can be controlled can be introduced from the branch pipe. Have
(1) Oxygen gas can be prevented from entering the chamber as much as possible.
(2) Since the oxygen gas concentration in the chamber can be lowered, the oxygen gas flowed in an amount necessary to suppress clogging of the torch tip and sampling cone and deterioration of sensitivity due to carbon C without fear of rupture of the chamber be able to.
(3) Carbon C becomes carbon dioxide CO 2 or carbon monoxide CO enough to prevent clogging and perform highly sensitive measurement.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a sample introduction device for an inductively coupled plasma mass spectrometer according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view of a conventional sample introduction device for an inductively coupled plasma mass spectrometer.
[Explanation of symbols]
1 Sampling cone 2 Inductively coupled plasma 3 Inductive coil 4 Torch 5 Inner tube 6 Clamp 7 Plasma gas supply hole 8 Auxiliary gas supply hole
8a Intermediate tube 9 Chamber 10 Waste liquid hole 11 O-ring 12 Holder 13 Nebulizer 14 Nebulizer gas supply tube 15 Nebulizer gas supply unit 16 Sample supply tube 17 Sample container 18 Sample control device 19 Oxygen gas supply tube 20 Oxygen gas supply unit 21 Inlet 22 Branch pipe
23 discharge pipe
24 Outermost pipe

Claims (2)

液状の試料を霧化する噴霧器と、
前記噴霧器にて霧化された試料を分級するチャンバと、
前記チャンバにて分級された試料とネブライザーガスと、プラズマガスと、補助ガスとをそれぞれ流体的に分断された三重構造の石英管にて導入・輸送し、該管の先端部でプラズマを形成するトーチと、
前記トーチにより形成されたプラズマにてイオン化された試料を通すサンプリングコーンと、
前記サンプリングコーンを通過したイオンを質量分析する質量分析装置と、
を備え、
前記チャンバに酸素ガスを導入することに替えて、前記チャンバで分級された試料が通る前記トーチの最内管に、酸素ガスが前記チャンバへ逆流することを防ぐように前記ネブライザーガスより少ない酸素ガスを導入する枝管が設けられていることを特徴とする誘導結合プラズマ質量分析装置。
A nebulizer for atomizing a liquid sample;
A chamber for classifying the sample atomized by the atomizer;
The sample classified in the chamber, the nebulizer gas, the plasma gas, and the auxiliary gas are introduced and transported through a triple-structured quartz tube that is fluidly separated, and plasma is formed at the tip of the tube. Torch,
A sampling cone through which the sample ionized by the plasma formed by the torch passes.
A mass spectrometer for mass-analyzing ions that have passed through the sampling cone;
With
Instead of introducing oxygen gas into the chamber, less oxygen gas than the nebulizer gas so as to prevent oxygen gas from flowing back into the chamber in the innermost tube of the torch through which the sample classified in the chamber passes. An inductively coupled plasma mass spectrometer characterized in that a branch pipe for introducing the gas is provided.
液状の試料を霧化する噴霧器と、
前記噴霧器にて霧化された試料を分級するチャンバと、
前記チャンバにて分級された試料とネブライザーガスと、プラズマガスと、補助ガスとをそれぞれ流体的に分断された三重構造の石英管にて導入・輸送し、該管の先端部でプラズマを形成するトーチと、
前記トーチにより形成されたプラズマの光を分光する分光分析装置と、
を備え、
前記チャンバに酸素ガスを導入することに替えて、前記チャンバで分級された試料が通る前記トーチの最内管に、酸素ガスが前記チャンバへ逆流することを防ぐように前記ネブライザーガスより少ない酸素ガスを導入する枝管が設けられていることを特徴とする誘導結合プラズマ分光分析装置。
A nebulizer for atomizing a liquid sample;
A chamber for classifying the sample atomized by the atomizer;
The sample classified in the chamber, the nebulizer gas, the plasma gas, and the auxiliary gas are introduced and transported through a triple-structured quartz tube that is fluidly separated, and plasma is formed at the tip of the tube. Torch,
A spectroscopic analyzer that splits the light of the plasma formed by the torch;
With
Instead of introducing oxygen gas into the chamber, less oxygen gas than the nebulizer gas so as to prevent oxygen gas from flowing back into the chamber in the innermost tube of the torch through which the sample classified in the chamber passes. An inductively coupled plasma spectroscopic analyzer, characterized in that a branch pipe for introducing a gas is provided.
JP12759797A 1997-05-16 1997-05-16 Inductively coupled plasma mass and spectroscopic analyzer Expired - Lifetime JP3764798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12759797A JP3764798B2 (en) 1997-05-16 1997-05-16 Inductively coupled plasma mass and spectroscopic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12759797A JP3764798B2 (en) 1997-05-16 1997-05-16 Inductively coupled plasma mass and spectroscopic analyzer

Publications (2)

Publication Number Publication Date
JPH10321182A JPH10321182A (en) 1998-12-04
JP3764798B2 true JP3764798B2 (en) 2006-04-12

Family

ID=14964030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12759797A Expired - Lifetime JP3764798B2 (en) 1997-05-16 1997-05-16 Inductively coupled plasma mass and spectroscopic analyzer

Country Status (1)

Country Link
JP (1) JP3764798B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815915B2 (en) * 2005-07-20 2011-11-16 味の素株式会社 Inductively coupled plasma analysis method and apparatus therefor
JP4783891B2 (en) * 2006-09-05 2011-09-28 独立行政法人産業技術総合研究所 Analytical device with inductively coupled plasma mass spectrometer coupled to gas chromatograph
JP4753083B2 (en) * 2006-09-05 2011-08-17 独立行政法人産業技術総合研究所 Inductively coupled plasma mass spectrometry and emission spectrometer
JP4968102B2 (en) * 2008-02-18 2012-07-04 株式会社島津製作所 ICP analyzer

Also Published As

Publication number Publication date
JPH10321182A (en) 1998-12-04

Similar Documents

Publication Publication Date Title
US4482246A (en) Inductively coupled plasma discharge in flowing non-argon gas at atmospheric pressure for spectrochemical analysis
JP2949123B2 (en) Torch device
CN101198846A (en) Boost devices and methods of using them
US9541479B2 (en) Apparatus and method for liquid sample introduction
JPH05251038A (en) Plasma ion mass spectrometry device
US8920610B2 (en) Method and apparatus for detecting ionisable gases in particular organic molecules, preferably hydrocarbons
JP3764798B2 (en) Inductively coupled plasma mass and spectroscopic analyzer
US6002129A (en) Inductively coupled plasma mass spectrometric and spectrochemical analyzer
US6709632B2 (en) ICP analyzer
JPS6257067B2 (en)
RU2252412C2 (en) Method for emission spectral analysis if substance composition and device for realization of said method
JP3084885B2 (en) ICP emission spectrometer
JP2007114063A (en) Nebulizer and sample liquid atomizer
JP4968102B2 (en) ICP analyzer
JP2005031020A (en) Liquid introduction plasma torch
JPH01265500A (en) Induction plasma device
JP4151592B2 (en) Mass spectrometer
JPH0426099A (en) Torch for high frequency plasma and element analysis apparatus using the same
JP3231232U (en) ICP analyzer
JP3037058B2 (en) Ignition mechanism of high frequency inductively coupled plasma device
RU117054U1 (en) Microwave plazmotron
JPH0738842Y2 (en) Sample atomizer for high frequency inductively coupled plasma emission spectrometry
JPH0835932A (en) Laser ablation apparatus
JPS60262045A (en) Specimen introducing apparatus for inductive coupling high frequency plasma spectrum analyser
JPH05190136A (en) High frequency inductive coupling plasma analyzing device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040302

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term