JPH09159610A - Plasma analyzing device with sample introduction stabilization mechanism - Google Patents

Plasma analyzing device with sample introduction stabilization mechanism

Info

Publication number
JPH09159610A
JPH09159610A JP31908895A JP31908895A JPH09159610A JP H09159610 A JPH09159610 A JP H09159610A JP 31908895 A JP31908895 A JP 31908895A JP 31908895 A JP31908895 A JP 31908895A JP H09159610 A JPH09159610 A JP H09159610A
Authority
JP
Japan
Prior art keywords
plasma
sample
pipe
pressure
spray chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31908895A
Other languages
Japanese (ja)
Inventor
Mitsuyasu Iwanaga
光恭 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP31908895A priority Critical patent/JPH09159610A/en
Publication of JPH09159610A publication Critical patent/JPH09159610A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plasma analyzing device for constantly maintaining the amount of introduced sample containing an atomized gas to a plasma torch regardless of the characteristics of a sample liquid. SOLUTION: A sample liquid 1 is guided to an atomizing nozzle 4 at the edge of a spray chamber 3 via a pipe 2 and is atomized into the chamber 3. The generated mist of the sample liquid 1 is introduced into a plasma flame 10 which is generated by a plasma torch 7 via a pipe 6 and is ionized through a process consisting of vaporizationdesolvent-atomization-excitation-ionization. The generated sample ion is introduced to a mass spectrograph via a sampling corn 11. A pressure sensor 21 for detecting pressure is provided halfway to the pipe 6 and a flow adjusting valve 22 is provided halfway to a pipe 5 for supplying an atomized gas. An operation circuit 23 creates a control signal based on a pressure signal P obtained from the pressure sensor 21 and a gas flow specification signal S and supplies the signal to the flow adjusting circuit 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は、誘導結合プラズ
マ質量分析装置(ICP−MS)、ICP発光分析装置
のようなプラズマ分析装置に関し、特に、試料導入安定
化機構を備えたプラズマ分析装置に関するものである。
TECHNICAL FIELD The present invention relates to a plasma analyzer such as an inductively coupled plasma mass spectrometer (ICP-MS) or an ICP emission spectrometer, and more particularly to a plasma analyzer provided with a sample introduction stabilizing mechanism. Is.

【0002】[0002]

【従来の技術】 ICP−MSで液体試料を分析する際
に、標準的に採用されている液体試料導入システムを図
1に示す。図1において、試料液1は、配管2を介して
スプレーチャンバ3の端部に設けられた噴霧ノズル4へ
導かれ、チャンバ内へ噴霧される。噴霧ノズル4には、
図示しないガス源より導入管5を介してアルゴンなどの
噴霧ガスが供給されている。
2. Description of the Related Art FIG. 1 shows a standard liquid sample introduction system used when analyzing a liquid sample by ICP-MS. In FIG. 1, a sample liquid 1 is guided to a spray nozzle 4 provided at an end of a spray chamber 3 via a pipe 2 and sprayed into the chamber. In the spray nozzle 4,
A spray gas such as argon is supplied from a gas source (not shown) through the introduction pipe 5.

【0003】スプレーチャンバ内に噴霧されてできた試
料液の霧は、チャンバ3の上部から取り出されて、配管
6を介してプラズマトーチ7へ送られる。プラズマトー
チ7は配管6を中心とした多重管構造を持ち、配管6の
外側からプラズマガス8,冷却ガス9が開放端部へ向け
て管内を流れるようにされている。そして、開放端部近
傍のトーチ外周部に巻回された高周波コイルLからの高
周波電磁界による励起を受けて、プラズマフレーム10
が発生し、このフレーム10内に配管6を介して試料液
の霧が導入され、気化−脱溶媒−原子化−励起−イオン
化の工程を通してイオン化される。このようにして生成
された試料イオンは、サンプリングコーン11を介して
図示しない質量分析装置へ導入され質量分析される。な
お、12は、スプレーチャンバ3の内壁に付着してチャ
ンバ内にたまる余剰試料液を排出するためのしごきポン
プである。
The mist of the sample liquid sprayed in the spray chamber is taken out from the upper part of the chamber 3 and sent to the plasma torch 7 through the pipe 6. The plasma torch 7 has a multi-tube structure centering on the pipe 6, and the plasma gas 8 and the cooling gas 9 flow from the outside of the pipe 6 toward the open end in the pipe. Then, the plasma frame 10 receives excitation by the high frequency electromagnetic field from the high frequency coil L wound around the outer periphery of the torch near the open end.
Is generated, and the mist of the sample liquid is introduced into the frame 10 through the pipe 6, and is ionized through the steps of vaporization-desolvation-atomization-excitation-ionization. The sample ions thus generated are introduced into a mass spectrometer (not shown) via the sampling cone 11 and mass analyzed. In addition, 12 is an ironing pump for discharging the excess sample liquid which is attached to the inner wall of the spray chamber 3 and accumulated in the chamber.

【0004】[0004]

【発明が解決しようとする課題】 この様な構成におい
て、プラズマフレームに導入される試料量や、噴霧ガス
量に変動があると、分析対象元素が反応する条件が変化
するため、イオンの生成量が変動し、その結果、質量分
析で得られる検出信号の強度も変動する。
In such a configuration, when the amount of the sample introduced into the plasma flame or the amount of the spray gas changes, the conditions under which the element to be analyzed reacts change, so the amount of generated ions Fluctuates, and as a result, the intensity of the detection signal obtained by mass spectrometry also fluctuates.

【0005】また、アンモニアや酢酸などの揮発性の高
い溶媒で比較的高濃度のものを試料液が含む場合、水主
体の試料液の場合に比べ、プラズマ中に導入される全体
量が多くなり、プラズマフレームへの最適な導入量(噴
霧ガスも合わせた)が、水主体の標準試料液で条件調整
した時と変わることになり、測定条件の最適化が困難に
なるという問題もある。
Further, when the sample solution contains a solvent having a high volatility such as ammonia or acetic acid and having a relatively high concentration, the whole amount introduced into the plasma is larger than that in the case of the sample solution mainly containing water. The optimum amount of gas introduced into the plasma flame (including the spray gas) changes when the conditions are adjusted with a water-based standard sample solution, which makes it difficult to optimize the measurement conditions.

【0006】本発明は上述した問題点を除くことのでき
るプラズマ分析装置を提供することを目的としている。
An object of the present invention is to provide a plasma analyzer which can eliminate the above-mentioned problems.

【0007】[0007]

【課題を解決するための手段】 この目的を達成するた
め、本発明は、スプレーチャンバにおいて試料液を霧化
し、霧化した試料液をプラズマトーチへ導入して試料を
励起して分析するようにしたプラズマ分析装置におい
て、プラズマトーチへ霧化した試料を運ぶスプレーチャ
ンバからプラズマトーチまでの流路にその流路内を流れ
る流量に対応した信号を得る検出手段を設け、該検出手
段から得られた検出出力に基づいてスプレーチャンバ内
の圧力を制御する制御手段を設けたことを特徴としてい
る。
[Means for Solving the Problems] To achieve this object, the present invention comprises atomizing a sample liquid in a spray chamber and introducing the atomized sample liquid into a plasma torch to excite and analyze the sample. In the plasma analyzer described above, a detection means for obtaining a signal corresponding to the flow rate in the flow path from the spray chamber carrying the atomized sample to the plasma torch to the plasma torch is provided, and the detection means is obtained from the detection means. It is characterized in that a control means for controlling the pressure in the spray chamber based on the detection output is provided.

【0008】[0008]

【発明の実施の形態】 以下、図面に基づいて本発明の
実施の形態を詳説する。図2は、本発明を実施したIC
P−MSの液体試料導入システムを示しており、図1と
共通の構成要素には同一番号が付されている。図2にお
いて、スプレーチャンバ3内に噴霧されてできた試料液
の霧をプラズマトーチ7へ送る配管6の途中には、配管
6の内部の圧力を検出する圧力センサ21が設けられ、
また、噴霧ノズルへ噴霧ガスを供給する配管5の途中に
流量調整弁22が設けられている。この流量調整弁22
へ制御信号を供給する演算回路23には、前記圧力セン
サ21から得られた圧力信号Pと、図示しない制御装置
からのガス流量指定信号Sが供給され、演算回路23は
2つの信号に基づいて制御信号を作成する。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 2 shows an IC embodying the present invention.
2 shows a liquid sample introduction system of P-MS, and the same components as those in FIG. 1 are denoted by the same reference numerals. In FIG. 2, a pressure sensor 21 that detects the pressure inside the pipe 6 is provided in the middle of the pipe 6 that sends the mist of the sample liquid sprayed in the spray chamber 3 to the plasma torch 7.
Further, a flow rate adjusting valve 22 is provided in the middle of the pipe 5 for supplying the spray gas to the spray nozzle. This flow rate adjustment valve 22
A pressure signal P obtained from the pressure sensor 21 and a gas flow rate designation signal S from a control device (not shown) are supplied to an arithmetic circuit 23 which supplies a control signal to the arithmetic circuit 23. Create a control signal.

【0009】上記構成において、ガス流量指定信号Sは
配管6を介してプラズマトーチ7へ送られるガス流量を
指定する信号である。このガス流量は配管6内の圧力に
対応するため、演算回路23においてガス流量指定信号
Sと圧力センサ21からの圧力信号Pに基づいて配管6
内及びスプレーチャンバ3内の圧力を一定に保つための
制御量を求め、得られた制御信号を流量調整弁22に送
って弁22を通過する噴霧ガスの流量を制御するように
すれば、フィードバック制御により配管6内及びスプレ
ーチャンバ3内の圧力を、指定信号Sに対応した一定値
に維持することができる。そのため、プラズマフレーム
への導入量(噴霧ガスも合わせた)も、一定に維持され
ることになる。
In the above structure, the gas flow rate designation signal S is a signal that designates the gas flow rate sent to the plasma torch 7 through the pipe 6. Since this gas flow rate corresponds to the pressure in the pipe 6, the pipe 6 is calculated based on the gas flow rate designation signal S and the pressure signal P from the pressure sensor 21 in the arithmetic circuit 23.
If a control amount for keeping the pressure inside and inside the spray chamber 3 constant is obtained and the obtained control signal is sent to the flow rate adjusting valve 22 to control the flow rate of the atomizing gas passing through the valve 22, feedback is achieved. By control, the pressure in the pipe 6 and the spray chamber 3 can be maintained at a constant value corresponding to the designation signal S. Therefore, the amount introduced into the plasma flame (including the spray gas) is also kept constant.

【0010】この様な制御が行われるため、揮発性が高
い溶媒を使用した試料液と、揮発性の低い水主体の溶媒
を使用した試料液を交互に測定するような場合でも、揮
発性が高い溶媒を使用した試料液の場合には噴霧ガスの
量が少なくなるように自動的に調整され、水主体の溶媒
を使用した試料液の場合には噴霧ガスの量が多くなるよ
うに自動的に調整され、操作者がその都度調整をする必
要がない。
Since such control is performed, even when the sample liquid using a solvent having high volatility and the sample liquid using a solvent mainly composed of water having low volatility are alternately measured, the volatility is low. In the case of a sample solution that uses a high solvent, it is automatically adjusted to reduce the amount of spray gas, and in the case of a sample solution that uses a water-based solvent, it is automatically adjusted to increase the amount of spray gas. The operator does not have to make adjustments each time.

【0011】なお、上述した実施の形態では配管6の途
中に圧力センサ22を設け、配管6内の圧力を求めるよ
うにしたが、これに限らず、スプレーチャンバ3内の圧
力を検出するようにしても良いし、要するに、スプレー
チャンバからプラズマトーチへ供給されるガスの流量に
対応した信号が得られる手段をスプレーチャンバからプ
ラズマトーチまでの流路に設ければ良い。
In the above-described embodiment, the pressure sensor 22 is provided in the middle of the pipe 6 to obtain the pressure in the pipe 6, but the present invention is not limited to this, and the pressure in the spray chamber 3 may be detected. Alternatively, in short, a means for obtaining a signal corresponding to the flow rate of the gas supplied from the spray chamber to the plasma torch may be provided in the flow path from the spray chamber to the plasma torch.

【0012】[0012]

【発明の効果】 以上詳述したように、本発明では、プ
ラズマトーチへ霧化した試料を運ぶスプレーチャンバか
らプラズマトーチまでの流路にその流路内を流れる流量
に対応した信号を得る検出手段を設け、該検出手段から
得られた検出出力に基づいてスプレーチャンバ内の圧力
を制御する制御手段を設けたため、試料液の特性によら
ず、プラズマトーチへの噴霧ガスを含む試料導入量を常
に一定に維持することのできるプラズマ分析装置が実現
される。
As described above in detail, in the present invention, the detection means for obtaining the signal corresponding to the flow rate in the flow path from the spray chamber that carries the atomized sample to the plasma torch to the plasma torch. Since the control means for controlling the pressure in the spray chamber based on the detection output obtained from the detection means is provided, the sample introduction amount including the spray gas to the plasma torch is always maintained regardless of the characteristics of the sample solution. A plasma analyzer that can be maintained constant is realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ICP−MSで液体試料を分析する際に、従
来標準的に採用されている液体試料導入システムを示す
図である。
FIG. 1 is a diagram showing a liquid sample introduction system that has been conventionally standardly adopted when analyzing a liquid sample by ICP-MS.

【図2】 本発明を実施したICP−MSの液体試料導
入システムを示す図である。
FIG. 2 is a diagram showing a liquid sample introduction system of ICP-MS in which the present invention is implemented.

【符号の説明】[Explanation of symbols]

1:試料液 2,5,6:配管 3:スプレーチャンバ 4:噴霧ノズル 7:プラズマトーチ 8:プラズマガス 9:冷却ガス 10:プラズマフレーム L:高周波コイル 11:サンプリングコーン 21:圧力センサ 22:流量調整弁 23:演算回路 1: Sample liquid 2, 5, 6: Pipe 3: Spray chamber 4: Spray nozzle 7: Plasma torch 8: Plasma gas 9: Cooling gas 10: Plasma flame L: High frequency coil 11: Sampling cone 21: Pressure sensor 22: Flow rate Regulator valve 23: arithmetic circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スプレーチャンバにおいて試料液を霧化
し、霧化した試料液をプラズマトーチへ導入して試料を
励起して分析するようにしたプラズマ分析装置におい
て、プラズマトーチへ霧化した試料を運ぶスプレーチャ
ンバからプラズマトーチまでの流路にその流路内を流れ
る流量に対応した信号を得る検出手段を設け、該検出手
段から得られた検出出力に基づいてスプレーチャンバ内
の圧力を制御する制御手段を設けたことを特徴とする試
料導入安定化機構を備えたプラズマ分析装置。
1. A plasma analyzer in which a sample liquid is atomized in a spray chamber and the atomized sample liquid is introduced into a plasma torch to excite and analyze the sample, and the atomized sample is carried to the plasma torch. A control means for providing a detection means for obtaining a signal corresponding to a flow rate flowing in the flow path from the spray chamber to the plasma torch and controlling the pressure in the spray chamber based on the detection output obtained from the detection means. A plasma analyzer equipped with a sample introduction stabilization mechanism, characterized in that
【請求項2】 前記検出手段はスプレーチャンバとプラ
ズマトーチを結ぶ流路に設けられた圧力検出手段であ
り、前記制御手段は、前記圧力検出手段から得られた検
出出力に基づきスプレーチャンバ内へ供給される噴霧ガ
スの流量を制御するようにしたことを特徴とする請求項
1に記載の試料導入安定化機構を備えたプラズマ分析装
置。
2. The detection means is a pressure detection means provided in a flow path connecting the spray chamber and the plasma torch, and the control means supplies the pressure to the spray chamber based on a detection output obtained from the pressure detection means. The plasma analyzer provided with the sample introduction stabilizing mechanism according to claim 1, wherein the flow rate of the atomized gas to be generated is controlled.
JP31908895A 1995-12-07 1995-12-07 Plasma analyzing device with sample introduction stabilization mechanism Withdrawn JPH09159610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31908895A JPH09159610A (en) 1995-12-07 1995-12-07 Plasma analyzing device with sample introduction stabilization mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31908895A JPH09159610A (en) 1995-12-07 1995-12-07 Plasma analyzing device with sample introduction stabilization mechanism

Publications (1)

Publication Number Publication Date
JPH09159610A true JPH09159610A (en) 1997-06-20

Family

ID=18106361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31908895A Withdrawn JPH09159610A (en) 1995-12-07 1995-12-07 Plasma analyzing device with sample introduction stabilization mechanism

Country Status (1)

Country Link
JP (1) JPH09159610A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1090690A1 (en) * 1998-05-25 2001-04-11 Fuji Koeki Co., Ltd Liquid spray device and cutting method
US6460831B2 (en) 1996-11-29 2002-10-08 Fuji Bc Engineering Co., Ltd. Cutting liquid coater
US6773212B2 (en) 2000-10-26 2004-08-10 Fuji Koeki Co., Ltd. Cutting-oil coater and cutting device
US7342196B2 (en) 2004-09-10 2008-03-11 Sulzer Metco Ag Plasma spraying apparatus and also a method for monitoring the condition of a plasma apparatus
EP1635623A3 (en) * 2004-09-10 2011-12-14 Sulzer Metco AG Plasma spray device and a method for controlling the status of a plasma spray device
TWI670752B (en) * 2017-05-12 2019-09-01 日商Sumco股份有限公司 Composition analysis method in spray chamber, sample atomization introduction device, analysis device and sample

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6460831B2 (en) 1996-11-29 2002-10-08 Fuji Bc Engineering Co., Ltd. Cutting liquid coater
US6679484B2 (en) 1996-11-29 2004-01-20 Fuji Bc Engineering Co., Ltd. Cutting liquid coater
EP1090690A1 (en) * 1998-05-25 2001-04-11 Fuji Koeki Co., Ltd Liquid spray device and cutting method
EP1090690A4 (en) * 1998-05-25 2001-11-07 Fuji Koeki Co Ltd Liquid spray device and cutting method
US6659370B1 (en) 1998-05-25 2003-12-09 Fuji Bc Engineering Co., Ltd. Liquid spray device and cutting method
US6773212B2 (en) 2000-10-26 2004-08-10 Fuji Koeki Co., Ltd. Cutting-oil coater and cutting device
US7342196B2 (en) 2004-09-10 2008-03-11 Sulzer Metco Ag Plasma spraying apparatus and also a method for monitoring the condition of a plasma apparatus
EP1635623A3 (en) * 2004-09-10 2011-12-14 Sulzer Metco AG Plasma spray device and a method for controlling the status of a plasma spray device
TWI670752B (en) * 2017-05-12 2019-09-01 日商Sumco股份有限公司 Composition analysis method in spray chamber, sample atomization introduction device, analysis device and sample
KR20190139290A (en) * 2017-05-12 2019-12-17 가부시키가이샤 사무코 Spray chambers, sample mist introduction devices, analyzers, and method of component analysis in samples
US11648574B2 (en) 2017-05-12 2023-05-16 Sumco Corporation Spray chamber, sample atomization and introduction device, analysis device, and method of analyzing component in sample

Similar Documents

Publication Publication Date Title
Mermet Use of magnesium as a test element for inductively coupled plasma atomic emission spectrometry diagnostics
JP4903515B2 (en) Inductively coupled plasma mass spectrometer
EP0792091A1 (en) Elemental analysis method and apparatus
JPH05251038A (en) Plasma ion mass spectrometry device
JP3800621B2 (en) ICP analyzer
JPH09159610A (en) Plasma analyzing device with sample introduction stabilization mechanism
JP2007316039A (en) Icp emission spectrophotometer
JP2962626B2 (en) Mass spectrometer
US6236012B1 (en) Plasma torch with an adjustable injector and gas analyzer using such a torch
JP6795095B2 (en) Plasma generator, luminescence analyzer and mass spectrometer equipped with this, and device state determination method
JP4123432B2 (en) Liquid introduction plasma torch
US5130537A (en) Plasma analyzer for trace element analysis
JPH06222005A (en) Icp emission spectroscopic analysis
JP2000164169A (en) Mass spectrometer
JP2009121846A (en) Sample liquid feed pump, and icp emission spectrometer using liquid feed pump
US5763877A (en) Analyzer using plasma and analysis method using plasma, interface used for the same and sample introducing component used for the same
JP4095646B2 (en) Elemental analyzer
JP3202576U (en) ICP analyzer
JP3591082B2 (en) ICP analyzer
JP2836190B2 (en) High frequency inductively coupled plasma analyzer
JPH01124951A (en) High frequency inductively coupled plasma mass spectrograph
JP3617247B2 (en) ICP mass spectrometer
JPH0619084Y2 (en) Inductively coupled plasma optical emission spectrometer
JP7433477B2 (en) Ion source and mass spectrometer equipped with it
JPH0264438A (en) Apparatus for icp analysis and method for icp analysis

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030304