JPH05170553A - Production of large-sized oxide superconductor - Google Patents

Production of large-sized oxide superconductor

Info

Publication number
JPH05170553A
JPH05170553A JP3337193A JP33719391A JPH05170553A JP H05170553 A JPH05170553 A JP H05170553A JP 3337193 A JP3337193 A JP 3337193A JP 33719391 A JP33719391 A JP 33719391A JP H05170553 A JPH05170553 A JP H05170553A
Authority
JP
Japan
Prior art keywords
raw material
material powder
superconductor
producing
oxide superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3337193A
Other languages
Japanese (ja)
Inventor
Hiroshi Takaichi
浩 高市
Akihiro Kondo
章弘 近藤
Masahito Murakami
雅人 村上
Naoki Koshizuka
直己 腰塚
Shoji Tanaka
昭二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Shikoku Electric Power Co Inc
Kawasaki Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Shikoku Electric Power Co Inc
Kawasaki Heavy Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER, Shikoku Electric Power Co Inc, Kawasaki Heavy Industries Ltd, Nippon Steel Corp filed Critical KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Priority to JP3337193A priority Critical patent/JPH05170553A/en
Publication of JPH05170553A publication Critical patent/JPH05170553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

PURPOSE:To stably produce a large-sized superconductor having strong magnetic levitation force and free from crack and deformation by press-compacting a powdery raw material prepared by a specific method of a prescribed form using a hydrostatic press and growing a superconducting phase by semi-melting thermal treatment. CONSTITUTION:The uniaxial cylindrical press 11 to be used in the present process is composed of a lower mold 12 and an upper mold 13. The raw material powder S1 is prepared by mixing e.g. Y2O3, BaCO3 and CuO at cationic ratios of 1.8:2.4:3.4, calcining the mixture at 920 deg.C for 12hr, putting the calcined product into a platinum crucible after crushing, heating at 1400 deg.C for 20min, quenching the heat-treated product, crushing the obtained block with a copper hammer and incorporating with a prescribed amount of Ag2O or Pt. The raw material powder S1 is filled in the lower mold 12 and preliminarily compacted by pressing with the upper mold 13. The preformed compact S2 is put into an ice-bag made of rubber, evacuated with a vacuum pump and formed with a hydrostatic press 14 to form a compact S3. The compact is placed on a platinum wire in a semi-melting heat-treatment apparatus 15, maintained at about 1100 deg.C for about 30min and cooled in the furnace by a specific method to obtain the objective oxide superconductor S4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】本発明は、バルク(塊)状の酸化物超電導
体の製造方法に関し、特に、磁気浮上によるフライホイ
ールや磁気軸受等への利用を目的とした大形酸化物超電
導体の製造方法に関するものである。
The present invention relates to a method for producing a bulk oxide superconductor, and more particularly to a method for producing a large oxide superconductor for use in flywheels, magnetic bearings, etc. by magnetic levitation. It is a thing.

【0002】[0002]

【従来の技術】従来、例えば、YBaCuO系の酸化物
超電導体では、溶融状態から超電導相を生成させること
によって、高い臨界電流密度と強力な磁気浮上力が得ら
れるようになってきており、フライホイールや磁気軸受
等への利用にその応用研究が行われている。
2. Description of the Related Art Conventionally, for example, in a YBaCuO-based oxide superconductor, it has been possible to obtain a high critical current density and a strong magnetic levitation force by generating a superconducting phase from a molten state. Applied research is being conducted for use in wheels and magnetic bearings.

【0003】また、この超電導体の成型には、図3に示
すように、一軸プレス装置1が用いられている。この一
軸プレス装置1の下型2に供給された原料粉C1は、上
型3からの所定の圧力(例えば、1,000Kgf/c
2)(kgf=キログラム重)により圧縮された後、
圧縮後の成型体C2を半溶融熱処理装置4により熱処理
することにより、直径3cm、厚さ1cm程度の円柱状
の超電導体C3を製造している。尚、これらの超電導体
C3の磁気浮上力は4〜8kgf程度に設定されてい
る。
Further, as shown in FIG. 3, a uniaxial press machine 1 is used for molding the superconductor. The raw material powder C1 supplied to the lower mold 2 of the uniaxial pressing device 1 is at a predetermined pressure (for example, 1,000 Kgf / c) from the upper mold 3.
m 2 ) (kgf = kilogram weight),
By heat-treating the compacted body C2 after compression by the semi-molten heat treatment apparatus 4, a cylindrical superconductor C3 having a diameter of 3 cm and a thickness of about 1 cm is manufactured. The magnetic levitation force of these superconductors C3 is set to about 4 to 8 kgf.

【0004】[0004]

【発明が解決しようとする課題】ところで、このような
酸化物超電導体を今後、軸受型フライホイールや磁気軸
受等の実用品に応用していくためには、大形で、しか
も、磁気浮上力の強い超電導体が要望されている。
By the way, in order to apply such oxide superconductors to practical products such as bearing type flywheels and magnetic bearings in the future, they are large and have a magnetic levitation force. There is a demand for a strong superconductor.

【0005】例えば、図2は、超電導体の厚さと磁気浮
上力の関係を直径17mmの円柱状超電導体を用いて示
した一例のグラフである。このグラフに示すように、強
い磁気浮上力を得るためには、ある一定以上の厚み(図
1の場合は15mm以上)が必要になってくる。また、
安定した磁気浮上力を得るためにも所定以上の厚さが必
要となる。
For example, FIG. 2 is a graph showing an example of the relationship between the thickness of the superconductor and the magnetic levitation force using a cylindrical superconductor having a diameter of 17 mm. As shown in this graph, in order to obtain a strong magnetic levitation force, a certain thickness or more (15 mm or more in the case of FIG. 1) is required. Also,
In order to obtain a stable magnetic levitation force, a certain thickness or more is required.

【0006】さらに、超電導体を種々の産業用部品とし
て使用する場合には、立体的な(三次元の)形状が要求
されるようになり、所定の表面積と厚みをもった超電導
バルク材が必要となる。
Furthermore, when the superconductor is used as various industrial parts, a three-dimensional (three-dimensional) shape is required, and a superconducting bulk material having a predetermined surface area and thickness is required. Becomes

【0007】しかしながら、従来の方法で大形の超電導
体を製造した場合には、成型時に超電導体の内部に不均
一な圧力が生じる。その結果、半溶融熱処理した段階
で、加圧方向に垂直な面に沿って割れ5が発生し易く、
直径が大きく、且つ厚い超電導体C3を製造することは
できないという問題があった。
However, when a large-sized superconductor is manufactured by the conventional method, nonuniform pressure is generated inside the superconductor during molding. As a result, at the stage of the semi-molten heat treatment, cracks 5 are likely to occur along the plane perpendicular to the pressing direction,
There is a problem that it is not possible to manufacture a superconductor C3 having a large diameter and a large thickness.

【0008】本発明は、上記実情に鑑み、大形で磁気浮
上力の強い超電導体を割れや変形のない安定した状態で
製造することができる大形酸化物超電導体の製造方法を
提供することを目的とするものである。
In view of the above situation, the present invention provides a method for producing a large oxide superconductor capable of producing a large superconductor having a strong magnetic levitation force in a stable state without cracking or deformation. The purpose is.

【0009】[0009]

【課題を解決するための手段】この目的を達成するため
に、請求項1に記載の発明は、酸化超電導体を生成する
ための原料粉を等方加圧処理装置により所定形状に圧縮
成型した後、半溶融熱処理により超電導相を成長させる
ことを要旨とする。
In order to achieve this object, in the invention described in claim 1, the raw material powder for producing an oxidized superconductor is compression molded into a predetermined shape by an isotropic pressure processing apparatus. After that, the gist is to grow the superconducting phase by a semi-melting heat treatment.

【0010】[0010]

【作用】このような方法によれば、等方加圧処理を行う
ことにより原料粉の加圧が均等に行なわれて割れのない
大形超電導体を製造することができる。
According to such a method, it is possible to manufacture a large-sized superconductor without cracks by uniformly pressing the raw material powder by performing the isotropic pressure treatment.

【0011】また、等方加圧処理を行うことにより緻密
な成型体が得られるため、半溶融熱処理後の超電導体の
変形がほとんどない。
Further, since a dense molded body can be obtained by carrying out the isotropic pressure treatment, there is almost no deformation of the superconductor after the semi-molten heat treatment.

【0012】[0012]

【実施例】以下、本発明の実施例を図1に基づいて説明
する。図1は、本発明の大形酸化物超電導体の製造方法
を段階的に示す説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is an explanatory view showing stepwise a method for producing a large oxide superconductor according to the present invention.

【0013】図1において、11は原料粉S1が供給さ
れる下型12と、原料粉S1を所定の圧力(例えば、5
トン(100Kgf))により圧縮する上型13とを備
えた円柱型の一軸プレス装置である。
In FIG. 1, reference numeral 11 denotes a lower mold 12 to which the raw material powder S1 is supplied, and the raw material powder S1 at a predetermined pressure (for example, 5).
This is a cylindrical uniaxial pressing device provided with an upper mold 13 that is compressed by tons (100 Kgf).

【0014】原料粉S1は、Y23,BaCO3,Cu
Oの陽イオンの比が1.8:2.4:3.4となるよう
に混合し、920℃で12時間仮焼した後、粉砕したも
のを白金るつぼに入れ、さらに、1400℃で20分間
加熱して銅製のハンマーを用いて急冷した。そして、こ
の急冷してできた塊を再び粉砕して1mm以下の粒径と
し、Ag2Oを粉砕粉に対して10wt%(重量パーセ
ント)添加し、粉が緻密にかつ均一分散するまでよく粉
砕混合したものが使用されている。
The raw material powder S1 is composed of Y 2 O 3 , BaCO 3 and Cu.
The mixture was mixed so that the ratio of O cations was 1.8: 2.4: 3.4, calcined at 920 ° C. for 12 hours, and then ground into a platinum crucible and further heated at 1400 ° C. for 20 hours. It was heated for 1 minute and quenched with a copper hammer. Then, the rapidly cooled lumps are crushed again to a particle size of 1 mm or less, 10 wt% (weight percent) of Ag 2 O is added to the crushed powder, and the powder is crushed well until the powder is densely and uniformly dispersed. A mixture is used.

【0015】下型12に供給(例えば500g)された
原料粉S1は、上型13の加圧により直径80mm高さ
30mmの円板状に仮成型された予備成型体S2とな
る。
The raw material powder S1 supplied (for example, 500 g) to the lower mold 12 becomes a preformed body S2 which is temporarily molded into a disk shape having a diameter of 80 mm and a height of 30 mm by pressing the upper mold 13.

【0016】この成型体S2の形状は特に限定されるも
のではないが、厚さが15mm以上のものにおいて、後
述の等方加圧処理の効果が等しい。そして、この予備成
型体S2は、図示外のゴム製氷のうに入れられて真空ポ
ンプで脱気された後、等方加圧成型装置14の所定の圧
力(例えば、2000Kgf/cm2)により成型体S
3とされた後、半溶融熱処理装置15により処理され
る。
The shape of the molded body S2 is not particularly limited, but if the thickness is 15 mm or more, the effect of the isotropic pressure treatment described later is equal. Then, the preformed body S2 is put into a rubber ice cube (not shown) and deaerated by a vacuum pump, and then the preformed body is formed by a predetermined pressure of the isotropic pressure molding device 14 (for example, 2000 Kgf / cm 2 ). S
After being set to 3, it is processed by the semi-molten heat treatment apparatus 15.

【0017】半溶融熱処理装置15では、例えば、アル
ミナボード(図示せず)の上にPt線(プラチナ(白
金))をひき、その上に成型体S3を乗せて1100℃
で加熱して30分間保持した後、1010℃まで10分
間で冷却してから、1℃/h(時)で850℃まで冷却
した後、炉冷した。更に、酸素を付加するために、酸素
気流中で600℃から400℃の温度で約50時間加熱
後炉冷することにより、割れや変形のない直径67m
m、厚さ24mmの円板状の酸化物超電導体S4が製造
される。この酸化物超電導体S4を液体窒素で冷却し、
直径72mm、表面磁束密度0.45T(テスラ=1
0,000ガウス)の永久磁石を用いて測定した磁気浮
上力は、13Kgfであった。
In the semi-molten heat treatment apparatus 15, for example, a Pt wire (platinum (platinum)) is drawn on an alumina board (not shown), the molded body S3 is placed thereon, and the temperature is 1100 ° C.
After heating for 10 minutes at 10 ° C., cooling to 1010 ° C. in 10 minutes, cooling to 850 ° C. at 1 ° C./h (hour), and then furnace cooling. Furthermore, in order to add oxygen, by heating in an oxygen stream at a temperature of 600 ° C. to 400 ° C. for about 50 hours and then cooling the furnace, a diameter of 67 m without cracking or deformation
A disc-shaped oxide superconductor S4 having a thickness of m and a thickness of 24 mm is manufactured. This oxide superconductor S4 is cooled with liquid nitrogen,
Diameter 72mm, surface magnetic flux density 0.45T (Tesla = 1
The magnetic levitation force measured using a permanent magnet of 10,000 gauss) was 13 Kgf.

【0018】ところで、この半溶融熱処理装置15は、
Pt線を使用せずにアルミナボートの上で成型体S3を
直接熱処理するようにしてもよい。
By the way, the semi-molten heat treatment apparatus 15 is
The molded body S3 may be directly heat-treated on an alumina boat without using the Pt wire.

【0019】この方法では、酸化物超電導体S4がアル
ミによって汚染されるため、超電導特性が若干低下する
ものの、高価なPt線を使用しないため、経済性に優れ
た製造方法とすることができる。
According to this method, the oxide superconductor S4 is contaminated with aluminum, so that the superconducting property is slightly deteriorated, but an expensive Pt wire is not used, so that the manufacturing method is excellent in economic efficiency.

【0020】また、一軸プレス装置11は角柱型の金型
を使用することにより、一辺が43mm、厚さ19mm
の角柱の超電導体を製造し、この超電導体を液体窒素で
冷却しても良い。このとき、直径32mm、表面磁束密
度0.50Tの永久磁石を用いて測定した超電導体の磁
気浮上力は7Kgfであった。この角柱超電導体を複数
密を組み合せることにより、大きな磁気浮上力を得るこ
とができる。
Further, the uniaxial pressing device 11 uses a prismatic mold so that one side is 43 mm and the thickness is 19 mm.
It is also possible to manufacture a rectangular column superconductor and to cool this superconductor with liquid nitrogen. At this time, the magnetic levitation force of the superconductor measured using a permanent magnet having a diameter of 32 mm and a surface magnetic flux density of 0.50 T was 7 Kgf. A large magnetic levitation force can be obtained by combining a plurality of prismatic superconductors densely.

【0021】[0021]

【発明の効果】本発明によれば、以上説明したことによ
り、大形で磁気浮上力の強い超電導体を割れや変形のな
い安定した状態で製造することができる。
As described above, according to the present invention, a large-sized superconductor having a strong magnetic levitation force can be manufactured in a stable state without cracking or deformation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の大形酸化物超電導体の製造方法を段階
的にしめす説明図である。
FIG. 1 is an explanatory view showing stepwise a method for producing a large oxide superconductor according to the present invention.

【図2】超電導体の厚さと磁気浮上力の関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between the thickness of the superconductor and the magnetic levitation force.

【図3】従来の大形酸化物超電導体の製造方法を段階的
に示す説明図である。
FIG. 3 is an explanatory view showing step by step a conventional method for producing a large oxide superconductor.

【符号の説明】[Explanation of symbols]

S1…原料粉 S4…酸化物超電導体 14…等方加圧処理装置 15…半溶融熱処理 S1 ... Raw material powder S4 ... Oxide superconductor 14 ... Isotropic pressure treatment device 15 ... Semi-melt heat treatment

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000006655 新日本製鐵株式会社 東京都千代田区大手町2丁目6番3号 (72)発明者 高市 浩 東京都江東区東雲1−14−3 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 近藤 章弘 東京都江東区東雲1−14−3 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 村上 雅人 東京都江東区東雲1−14−3 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 腰塚 直己 東京都江東区東雲1−14−3 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 田中 昭二 東京都江東区東雲1−14−3 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (71) Applicant 000006655 Nippon Steel Corporation 2-3-6 Otemachi, Chiyoda-ku, Tokyo (72) Inventor Hiroshi Takaichi 1-14-3 Shinonome, Koto-ku, Tokyo Foundation International Superconductivity Industrial Technology Research Center Superconductivity Research Institute (72) Inventor Akihiro Kondo 1-14-3 Shinonome, Koto-ku, Tokyo International Superconductivity Research Institute of Technology Superconductivity Research Institute (72) Inventor Murakami Masato 1-14-3 Shinonome, Koto-ku, Tokyo International Superconductivity Industry Technology Research Center Superconductivity Institute of Technology (72) Inventor Naoki Koshizuka 1-14-3 Shinonome, Koto-ku, Tokyo International Superconductivity Industry Research Institute Center Superconductivity Research Institute (72) Inventor Shoji Tanaka 1-14-3 Shinonome, Koto-ku, Tokyo International Foundation Conducting Industrial Technology Research Center superconducting Engineering Institute in

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 酸化超電導体を生成するための原料粉
を、等方加圧処理装置により所定形状に圧縮成型した
後、半溶融熱処理により超電導相を成長させることを特
徴とする大形酸化物超電導体の製造方法。
1. A large oxide characterized by growing a superconducting phase by semi-molten heat treatment after compression molding raw material powder for producing an oxidized superconductor into a predetermined shape by an isotropic pressure treatment device. Superconductor manufacturing method.
【請求項2】 前記原料粉は、所定比で混合した原料粉
を溶融後、急冷し且つ粉砕した粉砕粉であることを特徴
とする請求項1に記載の大形酸化物超電導体の製造方
法。
2. The method for producing a large oxide superconductor according to claim 1, wherein the raw material powder is a pulverized powder obtained by melting raw material powder mixed at a predetermined ratio, quenching and pulverizing. ..
【請求項3】 前記原料粉は、所定比で混合した原料粉
にプラチナ(白金)を所定量添加したものであることを
特徴とする請求項1に記載の大形酸化物超電導体の製造
方法。
3. The method for producing a large oxide superconductor according to claim 1, wherein the raw material powder is obtained by adding a predetermined amount of platinum (platinum) to the raw material powder mixed at a predetermined ratio. ..
【請求項4】 前記原料粉の圧縮後の前記形状はその厚
さが15mm以上に設定されていることを特徴とする請
求項1に記載の大形酸化物超電導体の製造方法。
4. The method for producing a large oxide superconductor according to claim 1, wherein the shape of the raw material powder after compression is set to have a thickness of 15 mm or more.
【請求項5】 前記半溶融熱処理は半溶融後徐冷するこ
とを特徴とする請求項1に記載の大形酸化物超電導体の
製造方法。
5. The method for producing a large-sized oxide superconductor according to claim 1, wherein the half-melt heat treatment is a step of half-melting followed by gradual cooling.
【請求項6】 前記粉砕粉に酸化銀を所定量添加するこ
とを特徴とする請求項2に記載の大形酸化物超電導体の
製造方法。
6. The method for producing a large oxide superconductor according to claim 2, wherein a predetermined amount of silver oxide is added to the pulverized powder.
JP3337193A 1991-12-19 1991-12-19 Production of large-sized oxide superconductor Pending JPH05170553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3337193A JPH05170553A (en) 1991-12-19 1991-12-19 Production of large-sized oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3337193A JPH05170553A (en) 1991-12-19 1991-12-19 Production of large-sized oxide superconductor

Publications (1)

Publication Number Publication Date
JPH05170553A true JPH05170553A (en) 1993-07-09

Family

ID=18306323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3337193A Pending JPH05170553A (en) 1991-12-19 1991-12-19 Production of large-sized oxide superconductor

Country Status (1)

Country Link
JP (1) JPH05170553A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256814A (en) * 1988-08-23 1990-02-26 Toshiba Corp Manufacture of superconductor parts
JPH02258668A (en) * 1989-03-31 1990-10-19 Kokusai Chiyoudendou Sangyo Gijutsu Kenkyu Center Production of oxide superconductor
JPH02258667A (en) * 1989-03-31 1990-10-19 Kokusai Chiyoudendou Sangyo Gijutsu Kenkyu Center Production of oxide superconductor
JPH03153558A (en) * 1989-11-08 1991-07-01 Kokusai Chiyoudendou Sangyo Gijutsu Kenkyu Center Production of oxide superconductor
JPH05194094A (en) * 1990-12-18 1993-08-03 Kiyoyasu Takizawa Production of oxide superconductor and method for pretreating oxide superconductor using the same method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256814A (en) * 1988-08-23 1990-02-26 Toshiba Corp Manufacture of superconductor parts
JPH02258668A (en) * 1989-03-31 1990-10-19 Kokusai Chiyoudendou Sangyo Gijutsu Kenkyu Center Production of oxide superconductor
JPH02258667A (en) * 1989-03-31 1990-10-19 Kokusai Chiyoudendou Sangyo Gijutsu Kenkyu Center Production of oxide superconductor
JPH03153558A (en) * 1989-11-08 1991-07-01 Kokusai Chiyoudendou Sangyo Gijutsu Kenkyu Center Production of oxide superconductor
JPH05194094A (en) * 1990-12-18 1993-08-03 Kiyoyasu Takizawa Production of oxide superconductor and method for pretreating oxide superconductor using the same method

Similar Documents

Publication Publication Date Title
EP0537363B1 (en) Oxide superconductor and production thereof
EP0300353B1 (en) Method of manufacturing superconductor
JPH05170553A (en) Production of large-sized oxide superconductor
EP0530370B1 (en) Process for producing oxide superconductor
JP2622123B2 (en) Method for producing flake-like oxide superconductor
US5459124A (en) Process for producing oxide superconductor
JPH0751463B2 (en) Method for manufacturing oxide superconductor
JPS63270318A (en) Production of superconductive material of oxide type
JPH03137050A (en) Manufacture of oxide superconductor
RU1547241C (en) Method of production of high-temperature ceramic superconductors
JPH01160861A (en) Anisotropic growth of superconducting ceramic
JP3115695B2 (en) Manufacturing method of oxide superconductor having large magnetic levitation force
JPH07187671A (en) Oxide superconductor and its production
JPH02258665A (en) Production of superconductive material
JPH03137052A (en) Manufacture of oxide superconductor
JPH0279310A (en) Manufacture of oxide superconductive wire
JPH03257018A (en) Precursor for oxide high-temperature superconductor and its production
JPS62284028A (en) Manufacture of rare-earth magnet
JPH03265570A (en) Production of oxide superconductor
JPH0416510A (en) Production of oxide superconducting bulk material
JPH0816026B2 (en) Manufacturing method of superconducting material
JPH01227310A (en) Manufacture of oxide superconductor wire
JPH0393663A (en) Production of high-temperature oxide superconducting material
JPH01252571A (en) Production of oxide superconductor
JPH05238731A (en) Production of rare-earth element superconductor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19971125