JPH02258668A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH02258668A
JPH02258668A JP1078458A JP7845889A JPH02258668A JP H02258668 A JPH02258668 A JP H02258668A JP 1078458 A JP1078458 A JP 1078458A JP 7845889 A JP7845889 A JP 7845889A JP H02258668 A JPH02258668 A JP H02258668A
Authority
JP
Japan
Prior art keywords
superconductor
pellet
silver
liquid phase
oxide superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1078458A
Other languages
Japanese (ja)
Inventor
Tamotsu Noda
保 野田
Hisaji Koyama
央二 小山
Toru Shiobara
融 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Kyushu Electric Power Co Inc
Shikoku Electric Power Co Inc
Original Assignee
KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Kyushu Electric Power Co Inc
Shikoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER, Kyushu Electric Power Co Inc, Shikoku Electric Power Co Inc filed Critical KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Priority to JP1078458A priority Critical patent/JPH02258668A/en
Publication of JPH02258668A publication Critical patent/JPH02258668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To remove a non-superconductor phase contained in a silver-added oxide superconductor material to heighten the orientation of crystals, homogeneously disperse silver in the field of the crystal particles and improve the critical current density of the superconductor by pressing the material and discarding a liquid phase composition squeezed thereby. CONSTITUTION:The sintered pellet 5 of a silver-added oxide superconductor (e.g. Bi2Sr2Ca2Cu3Ox) is placed on an anvil 2 and heated into a semi-melted state. The sintered pellet 5 is preferably heated so as to give a liquid phase ratio of approximately 10-40% based on the whole amount of the pellet. Under said state a pressure control device 6 is actuated to move a piston 3 downward, thereby pressing the oxide superconductor pellet 5. A liquid phase composition 10 is squeezed from the pressed semi-melted pellet and flowed out into a receptacle 11. Thereby, a non-superconductor phase contained in the liquid phase is removed to heighten the ratio of the superconductor phase. The crystals can be further collected and organized by the pressure to heighten the orientation of the superconductor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物超電導体の製造方法に関し、特に臨界電
流密度の高い酸化物超電導体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing an oxide superconductor, and particularly to a method for manufacturing an oxide superconductor having a high critical current density.

〔従来の技術〕[Conventional technology]

酸化物超電導体の臨界電流密度を高めるために、組成の
検討、製造法の検討などがいろいろ試みられている。超
電導酸化物粉末の熱間ブレスもその一つの方法であるが
、これまで極立った改善例は報告されておらず、銀の添
加も試みられているが、銀は結晶粒界の限られた部位に
析出し易く、そのために大きな改善効果が得られない。
In order to increase the critical current density of oxide superconductors, various attempts have been made to examine compositions and manufacturing methods. Hot pressing of superconducting oxide powder is one method, but no significant improvements have been reported so far.Addition of silver has also been attempted, but silver has limited crystal grain boundaries. It tends to precipitate in certain areas, and therefore no significant improvement effect can be obtained.

酸化物超電導体の臨界電流密度は10’^/cm’の程
度にとどまっている。
The critical current density of oxide superconductors remains on the order of 10'^/cm'.

(発明が解決しようとする課題〕 本発明は、このような従来の欠点を克服し、臨界電流密
度が著しく改善された酸化物超電導体の製造方法を提供
することを目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to overcome such conventional drawbacks and provide a method for producing an oxide superconductor in which the critical current density is significantly improved.

(課題を解決するための手段) 本発明は、銀を含む酸化物超電導材料を半溶融状態にな
るまで加熱しながら加圧して、滲出した液相組成物を除
去する工程を含むことを特徴とする。
(Means for Solving the Problems) The present invention is characterized in that it includes a step of heating and pressurizing an oxide superconducting material containing silver until it becomes a semi-molten state, and removing the exuded liquid phase composition. do.

(作 用) 本発明においては、半溶融状態の銀添加超電導酸化物材
料を加圧して、液相の組成物を滲出させ、廃棄する。こ
れによって材料中の非超電導相を除ぎ、かつ結晶配向を
高めることができ、さらに銀を結晶粒界に一様に分散さ
せ、その結果臨界電流密度を高めることができる。
(Function) In the present invention, the semi-molten silver-added superconducting oxide material is pressurized to exude the liquid phase composition and discarded. This makes it possible to remove the non-superconducting phase in the material and improve the crystal orientation, and also allows the silver to be uniformly dispersed at the grain boundaries, thereby increasing the critical current density.

〔実施例〕〔Example〕

以下に、図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

第1図は本発明を説明するための模式図である。ブレス
1はアンビル2、直径5CII+のピストン3およびヒ
ータ4を具え、アンビル2上の酸化物超電導材料5を加
熱状態で加圧することができる。ピストン3は圧力制御
装置6によって最高2tonまでの圧力を酸化物超電導
材料5に加えることができ、圧力、変位、スピード等は
測定系7によって測定され、かつ表示される。アンビル
2およびピストン3の加圧面は、超電導材料5との反応
を防ぐためにそれぞれ白金板2^および3^で覆われて
いる。一方ヒータ4は調節温度計9によって所定の温度
に保たれ、超電導材料5を加熱する。
FIG. 1 is a schematic diagram for explaining the present invention. The brace 1 includes an anvil 2, a piston 3 with a diameter of 5 CII+, and a heater 4, and is capable of pressurizing the oxide superconducting material 5 on the anvil 2 in a heated state. The piston 3 can apply a pressure of up to 2 tons to the oxide superconducting material 5 by means of a pressure control device 6, and the pressure, displacement, speed, etc. are measured and displayed by a measuring system 7. The pressurizing surfaces of the anvil 2 and the piston 3 are covered with platinum plates 2^ and 3^, respectively, to prevent reaction with the superconducting material 5. On the other hand, the heater 4 is maintained at a predetermined temperature by a regulating thermometer 9, and heats the superconducting material 5.

加圧雰囲気はAr、02その他自由に選ぶことができる
The pressurized atmosphere can be freely selected from Ar, 02, and others.

まず、銀を添加したBi系酸化物超電導材料Bi、5r
2Ca、Cu、0.を例にとって説明する。通常の方法
に従って成分調整され、かつ焼成された銀添加Bi2S
r、ll:a2CusO,の焼結ベレット5をアンビル
2上に載せ、900℃〜1000℃に加熱して半溶融状
態とする。この際、液相の比率を全体のlθ〜40零程
度とするのが望ましい。この状態で圧力制御装置6を動
作させてピストン3を降下させ、酸化物超電導ベレット
5を加圧する。加圧の圧力は、ベレットが粉砕されない
範囲にとどめる。加圧された半溶融ベレットからは液相
組成物10が滲出して受は皿lO内に流れ出る。焼結ベ
レット5中には超電導相であるBf2SrzCazCu
sO1+以外の非超電導相が含まれている。この非超電
導相は加熱に際して超電導相より先に溶融し、半溶融状
態のベレット中に液相として存在する。従って加圧によ
って、非超電導相が除去され、超電導相の比率を高める
ことができる。さらに加圧によって結晶を集合組織化し
、配向性を高めることができるので、臨界電流密度を一
層高くすることができる。さらに、通常の方法では銀は
結晶粒界の限られた部位に析出するが、半溶融状態での
加圧によって10%までの銀は結晶粒界に均一に分散す
る。従フて銀添加の効果を一層高めることができる。銀
添加の有効範囲は2〜10%である。
First, Bi-based oxide superconducting material Bi, 5r added with silver
2Ca, Cu, 0. will be explained using an example. Silver-added Bi2S whose composition was adjusted according to the usual method and fired
A sintered pellet 5 of r, ll: a2CusO is placed on an anvil 2 and heated to 900° C. to 1000° C. to a semi-molten state. At this time, it is desirable that the ratio of the liquid phase is approximately lθ~400. In this state, the pressure control device 6 is operated to lower the piston 3 and pressurize the oxide superconducting pellet 5. The pressure is kept within a range that does not crush the pellets. The liquid phase composition 10 oozes from the pressurized semi-molten pellet and flows into the pan 10. The sintered pellet 5 contains Bf2SrzCazCu, which is a superconducting phase.
Contains non-superconducting phases other than sO1+. This non-superconducting phase melts earlier than the superconducting phase during heating, and exists as a liquid phase in the semi-molten pellet. Therefore, by applying pressure, the non-superconducting phase can be removed and the proportion of the superconducting phase can be increased. Furthermore, since the crystals can be textured and their orientation can be improved by applying pressure, the critical current density can be further increased. Further, in the usual method, silver is precipitated in limited areas at the grain boundaries, but by applying pressure in a semi-molten state, up to 10% of silver is uniformly dispersed at the grain boundaries. Consequently, the effect of silver addition can be further enhanced. The effective range of silver addition is 2-10%.

通常の方法で作製したBi25r2Ca2Cu、0.焼
結ベレットの臨界電流密度が10’^/ c、ra ’
であるのに対し、銀を2〜lO%添加したBi25r2
Ca2Cu、O,に上述した半溶融状態での加圧(^「
雰囲気中)を4回〜6回くり返すことによって103〜
10’A/cm”の臨界電流密度を得ることができた。
Bi25r2Ca2Cu prepared by a normal method, 0. The critical current density of the sintered pellet is 10'^/c, ra'
On the other hand, Bi25r2 with 2~1O% silver added
Pressure is applied to Ca2Cu, O, in the semi-molten state described above (^ "
103~ by repeating (in the atmosphere) 4~6 times
A critical current density of 10'A/cm'' could be obtained.

Bi25r2CaCu、OXの場合は同じ< 900℃
〜1000℃に、YBa2Cu、、O,の場合は880
〜960℃に加熱して液相比がlθ〜4桟の半溶融状態
を作り、その状態で加圧することによって銀を2〜10
%まで効果的に添加することができ、かつ液相組成物を
除去することによりて、上述したのと同様の効果を得る
ことができる。
Same for Bi25r2CaCu, OX<900℃
~1000℃, 880 for YBa2Cu,,O,
By heating to ~960°C to create a semi-molten state with a liquid phase ratio of lθ~4, and pressurizing in that state, silver is heated to 2~10
%, and by removing the liquid phase composition, effects similar to those described above can be obtained.

(発明の効果) 以上説明したように、本発明によれば半溶融状態の酸化
物超電導体を加圧することによって、非超電導相を除去
し、かつ結晶の配向度を高めることができ、さらに銀添
加の効果をあげることができる。その結果、酸化物超電
導体の臨界電流密度を向上させることができる。
(Effects of the Invention) As explained above, according to the present invention, by pressurizing the oxide superconductor in a semi-molten state, it is possible to remove the non-superconducting phase, increase the degree of crystal orientation, and further The effect of addition can be increased. As a result, the critical current density of the oxide superconductor can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するための模式図である。 ・・・プレス機、 ・・・アンビル、 ・・・ピストン、 ・・・ヒータ、 ・・・酸化物超電導材料ベレット。 FIG. 1 is a schematic diagram for explaining the present invention in detail. ...press machine, ...anvil, ···piston, ···heater, ...Oxide superconducting material pellet.

Claims (1)

【特許請求の範囲】[Claims] 1)銀を含む酸化物超電導材料を半溶融状態になるまで
加熱しながら加圧して、滲出した液相組成物を除去する
工程を含むことを特徴とする酸化物超電導体の製造方法
1) A method for producing an oxide superconductor, comprising the steps of heating and pressurizing an oxide superconducting material containing silver until it becomes a semi-molten state, and removing exuded liquid phase composition.
JP1078458A 1989-03-31 1989-03-31 Production of oxide superconductor Pending JPH02258668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1078458A JPH02258668A (en) 1989-03-31 1989-03-31 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1078458A JPH02258668A (en) 1989-03-31 1989-03-31 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH02258668A true JPH02258668A (en) 1990-10-19

Family

ID=13662589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1078458A Pending JPH02258668A (en) 1989-03-31 1989-03-31 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH02258668A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05170553A (en) * 1991-12-19 1993-07-09 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Production of large-sized oxide superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05170553A (en) * 1991-12-19 1993-07-09 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Production of large-sized oxide superconductor

Similar Documents

Publication Publication Date Title
CN106381133B (en) A kind of La-Fe base magnetic refrigeration composite material and preparation method thereof
CN104961463B (en) Niobium oxide rotating target and preparing method of niobium oxide rotating target
DE69021848D1 (en) Process for the production of superconductor raw materials.
JPH02258668A (en) Production of oxide superconductor
CN106601399B (en) A kind of compound magnetic refrigerating material and preparation method thereof
JPH02258667A (en) Production of oxide superconductor
CN115504780A (en) Method for uniformly doping nano particles in high-temperature superconducting material
CN101492284A (en) B value changeable negative temperature coefficient thermistor composition and method of producing the same
CN100443440C (en) Method for preparing yttrium barium copper oxygen superconductive material
Orr l CALORIMETRIC DETERMINATION OF SOLUTE-SOLUTE INTERACTIONS IN SOME DILUTE TIN-RICH LIQUID ALLOYS
JP2622123B2 (en) Method for producing flake-like oxide superconductor
JPH03159954A (en) Manufacture of product having improved physical characteristics and superconductivity
JPH08199281A (en) Production of thermoelectric refrigerating material and thermoelectric transducing element
JPH08204240A (en) Thermoelectric cooling material and production of thermoelectric conversion element
US5827798A (en) Method for production of superconducting polycrystalline wire rod
CN100376009C (en) Preparation method of high density MgB2 superconduction block material
JPH0516467B2 (en)
DE905275C (en) Thermal ammeter with room temperature compensation
Griessen et al. Distribution of activation energies in high temperature superconductors
GB1366411A (en) Method of preparing high transition temperature superconducting materials
JPH09214006A (en) Manufacturing method of thermoelectric material
JPH01160861A (en) Anisotropic growth of superconducting ceramic
Kubica et al. Phase Analysis in Sintered Nickel-Bronzes
Haasen et al. Superconducting composites prepared from fine powders
JPS54108150A (en) Combination of slide parts material