JPH09214006A - Manufacturing method of thermoelectric material - Google Patents

Manufacturing method of thermoelectric material

Info

Publication number
JPH09214006A
JPH09214006A JP8019535A JP1953596A JPH09214006A JP H09214006 A JPH09214006 A JP H09214006A JP 8019535 A JP8019535 A JP 8019535A JP 1953596 A JP1953596 A JP 1953596A JP H09214006 A JPH09214006 A JP H09214006A
Authority
JP
Japan
Prior art keywords
pressure
powder
raw material
oxide film
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8019535A
Other languages
Japanese (ja)
Inventor
Isao Endo
功 遠藤
Shuzo Kagawa
修三 香川
Hideki Satake
秀機 佐武
Michio Yamaguchi
道夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP8019535A priority Critical patent/JPH09214006A/en
Publication of JPH09214006A publication Critical patent/JPH09214006A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To sinter a thermoelectric material even in the atmosphere by hot pressing raw material metal powder at pressure of a specific value or higher. SOLUTION: Raw material powder is pressurized and sintered with hot press. The hot press is performed with the conditions of pressure of 1000kg/cm<2> or more. The sintering with the hot press is desired to be performed at higher pressure within a range where no trouble is caused for the strength of a metal mold, etc. More specifically, the pressure of 2000kg/cm<2> or higher is more desirous, and 3000kg/cm<2> or higher is further more desirous. The raw material powder being relatively small in its diameter is oxidized when it makes contact with the atmosphere and hence allows an oxide film to be formed on a powder surface, but large pressure of 1000kg/cm<2> or higher is applied to the raw material powder upon sintering with the hot press so that the oxide film on the powder surface is destroyed at a stretch and a sintered product not substantially affected by the oxide film is formed. Accordingly, there is no need of the use of expensive atmospheric gas such as Ar gas, and hence the running cost is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱電材料の製造方法に
関し、より具体的には、ホットプレスによる粉末焼結法
の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thermoelectric material, and more particularly to improvement of a powder sintering method by hot pressing.

【0002】[0002]

【従来の技術】ビスマス、テルル等の金属間化合物半導
体である熱電材料は、従来から熱電冷却や熱電発電の材
料として広く使用されている。熱電材料で得られる最適
の熱電効率は、その材料の熱電性能指数によって決ま
る。この性能指数は、次の式により表わされる。 Z=α2/ρκ (1/K) ここで、αはゼーベック係数(V/K)、ρは電気抵抗(Ω・
m)、及びκは熱伝導率(W/m・K)である。この性能指数Z
が大きいほど熱電効率は大きくなるため、熱電材料は大
きな性能指数を有するべきである。ところで、性能指数
は、熱電材料を構成する元素の種類や量だけでなく、熱
電材料の製造方法にも左右される。
2. Description of the Related Art Thermoelectric materials, which are intermetallic compound semiconductors such as bismuth and tellurium, have been widely used as materials for thermoelectric cooling and thermoelectric power generation. The optimum thermoelectric efficiency obtained with a thermoelectric material depends on the thermoelectric figure of merit of the material. This figure of merit is represented by the following equation. Z = α 2 / ρκ (1 / K) where α is the Seebeck coefficient (V / K) and ρ is the electrical resistance (Ω ・
m) and κ are thermal conductivity (W / m · K). This figure of merit Z
The greater the value, the greater the thermoelectric efficiency, so the thermoelectric material should have a large figure of merit. By the way, the figure of merit depends not only on the type and amount of the elements constituting the thermoelectric material but also on the manufacturing method of the thermoelectric material.

【0003】熱電材料を製造する方法の1つとして、ホ
ットプレスによる焼結法がある。この焼結法は、所定量
の成分元素粉末を混合溶解により得たインゴットを粉砕
した粉末、又は各成分元素粉末を所定量混ぜ合わせた混
合粉末を、ホットプレス装置のプレス型に入れて昇温
し、同時に加圧して焼結するものである。このホットプ
レス焼結法では、加熱と加圧を同時に行なうから、焼結
時に、蒸気圧の高いセレン、テルル等の元素が昇華して
飛散することなく高密度の焼結体が得られる。高密度の
焼結体は、電気抵抗が小さく、大きな性能指数を有する
ことができる。
As one of the methods for producing a thermoelectric material, there is a sintering method by hot pressing. In this sintering method, a powder obtained by crushing an ingot obtained by mixing and dissolving a predetermined amount of component element powder or a mixed powder obtained by mixing a predetermined amount of each component element powder is put in a press die of a hot press machine and heated And simultaneously pressurize and sinter. In this hot press sintering method, since heating and pressurization are performed at the same time, a high density sintered body can be obtained without sublimating and scattering elements such as selenium and tellurium having a high vapor pressure during sintering. The high-density sintered body has low electric resistance and can have a large figure of merit.

【0004】ホットプレスによる焼結は、一般的には、
真空中、又はArガス等の不活性ガス雰囲気、又は
2、CO等の還元性ガスを含んだ雰囲気の中で、約2
00〜450kg/cm2の圧力、結晶化可能な温度(材料系
にもよるが、例えば約350〜600oC)の条件で、約
20分以上の時間をかけて行なわれている。焼結を真空
又は不活性ガス等の雰囲気中で行なう理由は、原料粉末
は粒径が非常に小さいために、大気に接触すると酸化さ
れて表面に電気抵抗の大きな酸化膜が形成され、得られ
る焼結体の電気抵抗が大きくなり、結果として熱電性能
指数が小さくなってしまうからである。しかし、一方で
は、真空又は不活性ガス等の雰囲気を維持するためのラ
ンニングコストが高くなり、製造費用の上昇を招く問題
があった。
Sintering by hot pressing generally involves
About 2 in vacuum or in an atmosphere of an inert gas such as Ar gas or in an atmosphere containing a reducing gas such as H 2 or CO
It is carried out for about 20 minutes or longer under the conditions of a pressure of 00 to 450 kg / cm 2 and a temperature at which crystallization is possible (depending on the material system, for example, about 350 to 600 ° C.). The reason why sintering is performed in a vacuum or an atmosphere of an inert gas is that the raw material powder has a very small particle size, and is oxidized when contacted with the atmosphere to form an oxide film having a large electric resistance on the surface. This is because the electric resistance of the sintered body increases, and as a result, the thermoelectric figure of merit decreases. However, on the other hand, there is a problem that the running cost for maintaining an atmosphere such as a vacuum or an inert gas becomes high, which causes an increase in manufacturing cost.

【0005】[0005]

【発明が解決しようとする課題】本発明は、ホットプレ
スによる熱電材料の製造方法において、不活性ガス又は
還元性ガスを導入することなく、大気雰囲気下でも、大
きな熱電性能指数を有する熱電材料を製造できる方法を
提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a thermoelectric material having a large thermoelectric figure of merit in an atmosphere without introducing an inert gas or a reducing gas in a method for producing a thermoelectric material by hot pressing. It is an object to provide a method that can be manufactured.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の熱電材料製造方法においては、ホットプレ
スによる焼結を、圧力1000kg/cm2以上の条件で行な
うことにより、大気中でも焼結できるようにしたもので
ある。
In order to achieve the above object, in the method for producing a thermoelectric material of the present invention, sintering by hot pressing is carried out under a condition of a pressure of 1000 kg / cm 2 or more so that the material is burned in the atmosphere. It was made possible to tie.

【0007】原料粉末は粒径が比較的小さいため、大気
に接すると酸化され、粉末表面に酸化膜が形成される
が、ホットプレスによる焼結時、原料粉末に対して10
00kg/cm2以上の大きな圧力が作用するから、粉末表面
の酸化膜は一気に破壊され、実質的に酸化膜の影響を受
けない焼結体が形成される。
Since the raw material powder has a relatively small particle size, it is oxidized when exposed to the atmosphere and an oxide film is formed on the powder surface.
Since a large pressure of 00 kg / cm 2 or more acts, the oxide film on the powder surface is destroyed at once, and a sintered body that is substantially unaffected by the oxide film is formed.

【0008】[0008]

【発明の実施の形態】本発明の熱電材料として、例え
ば、Bi、Te、Se及びSbからなる群から選択され
る3種又は4種の元素からなる構成を示すことができ
る。所望成分の元素を化学量論的に秤量し、これらを石
英管等に封入し、溶融し、冷却し、これにより得られた
インゴットを粉砕し、原料粉末を得る。或は、所望成分
の元素を化学量論的に秤量し、これを高エネルギー型ボ
ールミル又は転動ボールミルの中で均一に混合したもの
を原料粉末とすることもできる。
BEST MODE FOR CARRYING OUT THE INVENTION As the thermoelectric material of the present invention, for example, a structure composed of three or four elements selected from the group consisting of Bi, Te, Se and Sb can be shown. The elements of the desired components are stoichiometrically weighed, sealed in a quartz tube or the like, melted and cooled, and the ingot thus obtained is crushed to obtain a raw material powder. Alternatively, the raw material powder may be obtained by weighing the elements of the desired components stoichiometrically and uniformly mixing them in a high energy type ball mill or a rolling ball mill.

【0009】前記構成の原料粉末はホットプレスで加圧
焼結する。ホットプレスは、圧力1000kg/cm2以上の
条件で行ない、例えば350〜550℃の温度にて、大
気雰囲気下で行なうことができる。圧力を1000kg/c
m2以上とする理由は、粉末表面に形成される酸化膜を破
壊し、電気抵抗が大きくなるのを防止し、性能指数の高
い熱電材料を得られるようにするためである。なお、ホ
ットプレスでの焼結は、金型等の強度面で支障をきたさ
ない範囲内でより高い圧力で行なうことが望ましい。焼
結時間をより短くすることができ、粉末表面に発生する
酸化膜の発生量が少なくなると共に、酸化膜を破壊する
力がより強力になるからである。具体的には、2000
kg/cm2以上がより望ましく、3000kg/cm2以上がさら
に望ましい。
The raw material powder having the above structure is pressure-sintered by hot pressing. The hot pressing can be performed under a condition of a pressure of 1000 kg / cm 2 or more, for example, at a temperature of 350 to 550 ° C. in an air atmosphere. Pressure is 1000kg / c
The reason for setting m 2 or more is to destroy the oxide film formed on the powder surface, prevent the electric resistance from increasing, and obtain a thermoelectric material having a high figure of merit. It is desirable that the sintering by hot pressing is performed at a higher pressure within a range that does not hinder the strength of the mold or the like. This is because the sintering time can be shortened, the amount of oxide film generated on the powder surface can be reduced, and the force for destroying the oxide film can be increased. Specifically, 2000
kg / cm 2 or more is more preferable, and 3000 kg / cm 2 or more is further preferable.

【0010】ホットプレスでの加圧時間は、時間を長く
するほど密度比の大きな熱電材料が得られるが、本発明
では、高い圧力でホットプレスを実施するため、約20
秒以上約3分以内の短い加圧時間で十分に高密度(例え
ば密度比約97%以上)の焼結品を得ることができる。
なお、これらの時間は、原料粉末の種類、プレス温度、
プレス圧力等の条件によっても異なり、緻密な焼結体を
得られる限り、例えば20秒より短い時間でもよい。
As for the pressing time in the hot press, the longer the time, the greater the density ratio of the thermoelectric material can be obtained. In the present invention, however, since the hot press is carried out at a high pressure, it is about 20.
It is possible to obtain a sintered product having a sufficiently high density (for example, a density ratio of about 97% or more) in a short pressing time of not less than 2 seconds and not more than about 3 minutes.
These times are based on the type of raw material powder, the pressing temperature,
The time may be shorter than 20 seconds, for example, as long as a dense sintered body can be obtained, depending on conditions such as pressing pressure.

【0011】[0011]

【実施例】(Bi2Te3)0.25(Sb2Te3)0.75の組成と
なるように、Bi、Te及びSbの元素を化学量論的に
秤量し、これらを石英管に封入し、溶融し、冷却し、こ
れにより得られたインゴットを粉砕し、平均粒径約40
μmの原料粉末を得た。原料粉末を、表1に示す通り、
ホットプレスの処理条件を種々変えて、供試用の熱電材
料を作製した。得られた熱電材料の密度比と物性値を表
1に併せて示す。
EXAMPLE The elements of Bi, Te and Sb were stoichiometrically weighed so that the composition was (Bi 2 Te 3 ) 0.25 (Sb 2 Te 3 ) 0.75 , and these were sealed in a quartz tube and melted. The resulting ingot is crushed to obtain an average particle size of about 40
A μm raw material powder was obtained. As shown in Table 1, the raw material powder was
Various thermoelectric materials were prepared by changing the treatment conditions of the hot press. The density ratio and physical property values of the obtained thermoelectric material are also shown in Table 1.

【0012】[0012]

【表1】 [Table 1]

【0013】表1中、供試No.1はArガス雰囲気中に
て従来の圧力条件でホットプレスを行なった例、No.2
は大気中にて従来の圧力条件でホットプレスを行なった
例、No.3乃至No.6は大気中にて本発明の圧力条件でホ
ットプレスを行なった例である。
In Table 1, Test No. 1 is an example in which hot pressing was performed under conventional pressure conditions in an Ar gas atmosphere, No. 2
Is an example of hot pressing under the conventional pressure conditions in the atmosphere, and No. 3 to No. 6 are examples of hot pressing under the pressure conditions of the present invention in the atmosphere.

【0014】密度比については、どの供試熱電材料も十
分に高い値を有しており、十分に緻密化されていた。な
お、密度比は、完全緻密体の密度に対する成形品の密度
の比を表わすもので、成形品の密度はアルキメデス法に
より測定した。
Regarding the density ratio, all the thermoelectric materials under test had sufficiently high values and were sufficiently densified. The density ratio represents the ratio of the density of a molded article to the density of a completely dense body, and the density of the molded article was measured by the Archimedes method.

【0015】供試No.1は、Arガス中でホットプレス
を行なっているから、450kg/cm2の圧力でも、良好な
性能指数を得られたが、大気雰囲気中でホットプレスを
行なった供試No.2は、電気抵抗が大きく性能指数は小
さかった。供試No.2の電気抵抗が大きくなったのは、
酸化膜の影響を大きく受けているものと考えられる。一
方、供試No.2乃至No.6の比較から明らかなように、大
気雰囲気下でも、圧力を大きくするにつれて電気抵抗が
小さくなり、性能指数が大きくなることを示している。
これは、圧力を大きくするにつれてホットプレスの処理
時間が短くなり、酸化膜の発生量が少なくなること、及
び酸化膜の破壊力が高まることにより、電気抵抗の大き
な酸化膜の影響がより少なくなるためと考えられる。
Since the sample No. 1 was hot-pressed in Ar gas, a good figure of merit was obtained even at a pressure of 450 kg / cm 2 , but the sample was hot-pressed in the atmosphere. Test No. 2 had a large electric resistance and a small figure of merit. The increase in the electrical resistance of sample No. 2 is
It is considered that the influence of the oxide film is great. On the other hand, as is clear from the comparison of the test samples No. 2 to No. 6, it is shown that the electrical resistance decreases and the figure of merit increases with increasing pressure even in the air atmosphere.
This is because the processing time of hot pressing becomes shorter as the pressure increases, the amount of oxide film generated decreases, and the destructive force of the oxide film increases, so that the influence of the oxide film having high electric resistance becomes smaller. It is thought to be because.

【0016】上記の結果より、(Bi2Te3)0.25(Sb2
Te3)0.75の熱電材料の場合、1000kg/cm2以上の圧
力でホットプレスを実施することにより、約2.5×1
-3/K以上の高い性能指数を得られることがわかる。
また、より大きな性能指数を得るには、圧力は2000
kg/cm2以上が望ましく、3000kg/cm2がさらに望まし
いことがわかる。
From the above results, (Bi 2 Te 3 ) 0.25 (Sb 2
In the case of Te 3 ) 0.75 thermoelectric material, by performing hot pressing at a pressure of 1000 kg / cm 2 or more, about 2.5 x 1
It can be seen that a high figure of merit of 0 -3 / K or more can be obtained.
Also, to obtain a larger figure of merit, the pressure is 2000
It can be seen that kg / cm 2 or more is desirable, and 3000 kg / cm 2 is even more desirable.

【0017】[0017]

【発明の効果】本発明の製法は、ホットプレスを大気雰
囲気下で実施するから、Arガスのような高価な雰囲気
ガスを使用せずにすみ、ランニングコストを低減でき
る。また、従来のホットプレスの処理時間に比べて、遥
かに短い時間で高密度の焼結品を得られるから、生産能
率の向上を達成できる。本発明の製法によれば、酸化膜
の影響を殆んど受けずに、電気抵抗が小さく性能指数の
大きな熱電材料を得ることができる。従って、熱電発電
や熱電冷却、温度センサーや半導体プロセスにおける恒
温装置、エレクトロニクスデバイスの冷却など、幅広い
分野で有効な利用を図ることができる。
According to the manufacturing method of the present invention, the hot pressing is carried out in the atmosphere, so that it is not necessary to use an expensive atmosphere gas such as Ar gas, and the running cost can be reduced. Further, since a high density sintered product can be obtained in a much shorter time than the processing time of the conventional hot press, the improvement of the production efficiency can be achieved. According to the manufacturing method of the present invention, a thermoelectric material having a small electric resistance and a large figure of merit can be obtained with almost no influence of an oxide film. Therefore, it can be effectively used in a wide range of fields such as thermoelectric power generation, thermoelectric cooling, temperature sensors, thermostatic devices in semiconductor processes, and cooling of electronic devices.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 道夫 兵庫県尼崎市浜1丁目1番1号 株式会社 クボタ技術開発研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Michio Yamaguchi 1-1-1 Hama, Amagasaki City, Hyogo Prefecture Kubota Technology Development Laboratory Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原料金属粉末をホットプレスによって加
圧焼結する熱電材料の製造方法において、ホットプレス
を、1000kg/cm2以上の圧力で行なうことを特徴とす
る熱電材料の製造方法。
1. A method for producing a thermoelectric material, comprising press-sintering a raw metal powder by hot pressing, wherein the hot pressing is performed at a pressure of 1000 kg / cm 2 or more.
JP8019535A 1996-02-06 1996-02-06 Manufacturing method of thermoelectric material Withdrawn JPH09214006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8019535A JPH09214006A (en) 1996-02-06 1996-02-06 Manufacturing method of thermoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8019535A JPH09214006A (en) 1996-02-06 1996-02-06 Manufacturing method of thermoelectric material

Publications (1)

Publication Number Publication Date
JPH09214006A true JPH09214006A (en) 1997-08-15

Family

ID=12002032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8019535A Withdrawn JPH09214006A (en) 1996-02-06 1996-02-06 Manufacturing method of thermoelectric material

Country Status (1)

Country Link
JP (1) JPH09214006A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035026B2 (en) 2003-08-26 2011-10-11 Kyocera Corporation Thermoelectric material, thermoelectric element, thermoelectric module and methods for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035026B2 (en) 2003-08-26 2011-10-11 Kyocera Corporation Thermoelectric material, thermoelectric element, thermoelectric module and methods for manufacturing the same
US8519256B2 (en) 2003-08-26 2013-08-27 Kyocera Corporation Thermoelectric material, thermoelectric element, thermoelectric module and method for manufacturing the same

Similar Documents

Publication Publication Date Title
Seo et al. Microstructure and thermoelectric properties of p-type Bi0. 5Sb0. 5Te0. 5 compounds fabricated by hot pressing and hot extrusion
US20060118161A1 (en) Thermoelectric material having crystal grains well oriented in certain direction and process for producing the same
US5318743A (en) Processes for producing a thermoelectric material and a thermoelectric element
EP3246959B1 (en) Compound semiconductor thermoelectric material and method for manufacturing same
US20040187905A1 (en) Thermoelectric materials with enhanced seebeck coefficient
WO1990016086A1 (en) Thermoelectric semiconductor material and method of producing the same
Seo et al. Thermoelectric properties of hot-pressed n-type Bi2Te2. 85Se0. 15 compounds doped with SbI3
US20020062853A1 (en) Method of manufacturing a thermoelectric element and a thermoelectric module
Seo et al. Thermoelectric properties of n-type SbI3-doped Bi2Te2. 85Se0. 15 compound fabricated by hot pressing and hot extrusion
Murata et al. Magnetic-Field Dependence of Thermoelectric Properties of Sintered Bi 90 Sb 10 Alloy
US20040217333A1 (en) N-type thermoelectric material and method of preparing thereof
Seo et al. Fabrication and thermoelectric properties of n-type SbI3-doped Bi2Te2. 85Se0. 15 compounds by hot extrusion
JP3572939B2 (en) Thermoelectric material and method for manufacturing the same
Seo et al. Effect of extrusion temperature and dopant on thermoelectric properties for hot-extruded p-type Te-doped Bi0. 5Sb1. 5Te3 and n-type SbI3-doped Bi2Te2. 85Se0. 15
US20130105725A1 (en) Thermoelectric material, thermoelectric device using the same, and method of manufacturing thereof
JPH09214006A (en) Manufacturing method of thermoelectric material
US3059040A (en) Method for producing sintered semiconductor bodies
JP2001250990A (en) Thermoelectric material and its manufacturing method
JP3319338B2 (en) Thermoelectric material and method of manufacturing the same
JPH09275228A (en) Sb-containing thermoelectric material molding and manufacturing method thereof
Seo et al. Characteristics of p-type Bi0. 5Sb1. 5Te3 compounds doped with Te
JPH06268264A (en) Manufacture of peltier element
JP2004211125A (en) Thermoelectric material and its producing method
Su Semiconductor to metal transition in the solids/melts of Te and pseudo-binary of Hg
JP2000036627A (en) Thermoelectric material and thermoelectric transfer element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030506