JPH06268264A - Manufacture of peltier element - Google Patents

Manufacture of peltier element

Info

Publication number
JPH06268264A
JPH06268264A JP5049446A JP4944693A JPH06268264A JP H06268264 A JPH06268264 A JP H06268264A JP 5049446 A JP5049446 A JP 5049446A JP 4944693 A JP4944693 A JP 4944693A JP H06268264 A JPH06268264 A JP H06268264A
Authority
JP
Japan
Prior art keywords
powder
electrode layer
layer
mixed
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5049446A
Other languages
Japanese (ja)
Inventor
Tatsuo Tokiai
健生 時合
Takahiro Yoneyama
恭弘 米山
Takashi Uesugi
隆 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP5049446A priority Critical patent/JPH06268264A/en
Publication of JPH06268264A publication Critical patent/JPH06268264A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a diffusion preventing layer and an electrode layer to be provided excellent in adhesion inside a sintered body in one piece by a method wherein material powder is co-ground, mixed together, and molded into a body, a diffusion preventing layer and an electrode layer are laminated on both the end faces of the molded body, and the molded body provided with the diffusion preventing layers and the electrode layers are sintered by plasma. CONSTITUTION:Thermoelectric conversion material material powder is co-ground and mixed, and electrode layer b-2 forming powder, for instance, copper powder is filled so as to obtain an electrode layer b-2 prescribed in thickness on a lower punch 3 along a mold in a PAS apparatus. The same as above, diffusion preventing layer forming powder, for instance, nickel powder is filled. Then, a prescribed amount of material power co-ground and mixed is filled. Furthermore, a diffusion preventing layer b-1 and an electrode layer b-2 are laminated, and then the upper and the lower punch, 2 and 3, are clamped to mold the laminated molding powder layers into a body, and the molded body is sintered by plasma. By this setup, molding, sintering, and formation of conductive layers B are carried out at a time, so that a Peltier element can be manufactured high in efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ペルチェ素子の製造方
法に関する。さらに詳しくは、熱電特性に優れるととも
に、拡散防止層及び電極層を含む導電層が強力に接着さ
れたペルチェ素子をプロセスの単純化によって、効率よ
くペルチェ素子を製造することができる方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a Peltier device. More specifically, the present invention relates to a method for efficiently manufacturing a Peltier element having excellent thermoelectric properties and having a strongly adhered conductive layer including a diffusion prevention layer and an electrode layer, by simplifying the process. .

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ペルチ
ェ素子は、ペルチェ効果を利用した素子であって、素子
間に電流を流すことによって電力を熱エネルギーに変換
し、温度を制御する機能を有するものである。このよう
な特性を有するペルチェ素子は、発熱を伴うデバイス、
特に、半導体素子と接合して用いることによって、該半
導体素子の熱を除去して一定温度に保持し、該半導体素
子の性能の安定化に寄与し、構造が簡単でかつ取扱が容
易であることから、広く使用されるようになってきた。
このペルチェ素子を製造する工程は、一般的に、熱電変
換材料からなる焼結体を製造し、次いで、ニッケル層等
の拡散防止層を施し、これに銅板等の電極材料をハンダ
によって接合する方法、あるいは焼結体に上記機能を持
つ金属蒸着層を設けるなどの方法が採られている。この
ようにして得られるペルチェ素子は、組立時のハンダ付
け工程あるいは使用中に激しい温度変化が起きると、熱
膨張率の差によって、拡散防止層あるいは電極の剥離や
熱電変換材料からなる焼結体自体が損傷することがあ
る。このような問題を解消する方法としては、例えば、
特開平4−249385号公報に改良技術が開示されて
いる。ここには、熱電変換素子において、素子断面の一
辺の長さの相加平均をbとしたとき、ニッケル層の膜厚
tが、b/t≦100の式を満たすように構成すること
によって、破損や脱落を防止する方法が提案されてい
る。しかるに、この提案の方法では、ニッケル層の膜厚
が大きく、熱伝導性が不利になり、また、素子表面での
ニッケル層の接着力も充分でない欠点がある。したがっ
て、最近ではこのペルチェ素子には、さらなる性能の向
上が要望されると同時に、低コスト化が要求されてきて
おり、その効率的な製造方法の開発が要望されている。
2. Description of the Related Art A Peltier element is an element utilizing the Peltier effect, and has a function of converting electric power into heat energy by flowing a current between the elements and controlling temperature. It is a thing. Peltier devices having such characteristics are devices that generate heat,
In particular, by being used by being bonded to a semiconductor element, the heat of the semiconductor element is removed and the temperature is maintained at a constant temperature, which contributes to stabilization of the performance of the semiconductor element and has a simple structure and easy handling. Since then, it has been widely used.
The process for manufacturing this Peltier element is generally a method in which a sintered body made of a thermoelectric conversion material is manufactured, and then a diffusion prevention layer such as a nickel layer is applied, and an electrode material such as a copper plate is soldered to this. Alternatively, a method such as providing a metal vapor deposition layer having the above-mentioned function on the sintered body is adopted. The Peltier element obtained in this way is a sintered body made of a thermoelectric conversion material or exfoliation of the diffusion preventive layer due to the difference in the coefficient of thermal expansion when a drastic temperature change occurs during the soldering process during assembly or during use. It can be damaged. As a method of solving such a problem, for example,
Japanese Patent Application Laid-Open No. 4-249385 discloses an improved technique. Here, in the thermoelectric conversion element, when the arithmetic average of the length of one side of the element cross section is b, the nickel layer thickness t is configured to satisfy the equation of b / t ≦ 100, Methods have been proposed to prevent damage and dropout. However, this proposed method has the disadvantages that the nickel layer has a large film thickness, the thermal conductivity is disadvantageous, and the adhesion of the nickel layer on the device surface is not sufficient. Therefore, recently, the Peltier device is required to have further improved performance and at the same time, it is required to reduce the cost, and the development of an efficient manufacturing method thereof is demanded.

【0003】[0003]

【課題を解決するための手段】そこで、本発明者らは、
従来法の欠点を解消して、熱電特性に優れるとともに、
熱電変換材料からなる焼結体と導電層との接着力に優れ
たペルチェ素子を、プロセスの単純化によって低価格で
効率よく製造することができるペルチェ素子の製造方法
を開発すべく鋭意研究を重ねた。その結果、原料粉末を
共粉砕・混合した後、成形し、成形体に導電層を積層
し、これらを同時に焼結することによって、焼結体の製
造と同時に導電層を覆設することができ、プロセスを単
純化するとともに、上記特性を有する素子を得ることが
できることを見出した。本発明はかかる知見に基いて完
成したものである。
Therefore, the present inventors have
By eliminating the drawbacks of the conventional method, it has excellent thermoelectric properties,
We have conducted intensive research to develop a Peltier element manufacturing method that can efficiently manufacture a Peltier element with excellent adhesion between a sintered body made of thermoelectric conversion material and a conductive layer at a low cost by simplifying the process. It was As a result, it is possible to cover the conductive layer at the same time as the production of the sintered body, by co-milling and mixing the raw material powders, molding, laminating the conductive layer on the molded body, and simultaneously sintering these. , It was found that an element having the above characteristics can be obtained while simplifying the process. The present invention has been completed based on such findings.

【0004】すなわち、本発明は、熱電変換材料からな
る焼結体の両端部に導電層を有するペルチェ素子の製造
方法において、該焼結体に供される熱電変換材料の原料
粉末を共粉砕・混合した後、共粉砕・混合された原料粉
末を成形し、得られる成形体の両端部に導電層を積層し
てプラズマ焼結することを特徴とするペルチェ素子の製
造方法を提供するものである。
That is, according to the present invention, in a method of manufacturing a Peltier device having conductive layers at both ends of a sintered body made of a thermoelectric conversion material, raw material powder of the thermoelectric conversion material used for the sintered body is co-ground. A method for manufacturing a Peltier device, characterized in that, after mixing, raw material powders that have been co-ground and mixed are molded, and conductive layers are laminated on both ends of the obtained molded body and plasma-sintered. .

【0005】ペルチェ素子は、熱電変換材料からなる焼
結体の両端面に導電層が設けられるが、本発明の製造方
法においては、焼結体を得る前の熱電変換材料からなる
成形体の両端面に導電層を積層してから焼結することを
特徴とする。この結果、該成形体の焼結と同時に、導電
層を一体的に設けることができ、製造プロセスを単純化
できるとともに、導電層の焼結体への接着力に優れたペ
ルチェ素子が得られる。このように導電層が、強力に一
体的に設けられたペルチェ素子を製造するには、本発明
の製造方法においては、初めに、熱電変換材料からなる
成形体を製造する。この熱電変換材料からなる成形体
は、種々の方法で製造されるが、先ず、熱電変換材料の
原料粉末を共粉砕・混合する。本発明において、熱電変
換材料の原料粉末としては、ビスマス,テルル,アンチ
モン,セレン,ゲルマニウム,シリコン,鉛あるいは鉄
等の金属粒子から幅広く選択使用される。また、必要に
応じてドーパントが配合使用される。ここで、ドーパン
トとしては、例えば、ヨウ素,臭素,ゲルマニウム,ス
ズ,鉛,銀,水銀,インジウム,マンガン,コバルト,
クロム,銅及びこれら元素のハロゲン化物などが挙げら
れる。これらの原料粉末は、上記金属粒子及びドーパン
トから選ばれる少なくとも2種類の金属(元素)からな
り、その平均粒径が0.05〜100μmの原料粉末が使
用される。そして、これらの金属粒子は、適宜割合で混
合し、共粉砕・混合されるが、その組成は、例えば、 (Bi2 Te3)x (Sb2 Te3)1-x 〔式中、xは0<x<0.95を満足する値である。〕で
表される組成に調製される。この他、例えば、次のよう
な組成で調製される。 1)(Bi2 Te3)1-x (Bi2 Se3)x 〔式中、xは0<x<0.95を満足する値である。〕 2) PbTe+PbI2 /Na 3) Si0.800 Ge0.200 +GaP/B 4) Fe0.92Mn0.08Si2.00 5) Fe0.95Co0.05Si2.00
In the Peltier element, conductive layers are provided on both end surfaces of a sintered body made of a thermoelectric conversion material. In the manufacturing method of the present invention, both ends of a molded body made of a thermoelectric conversion material before the sintered body is obtained. It is characterized in that a conductive layer is laminated on the surface and then sintered. As a result, the conductive layer can be integrally provided at the same time as the sintering of the molded body, the manufacturing process can be simplified, and a Peltier element excellent in the adhesive force of the conductive layer to the sintered body can be obtained. In order to manufacture the Peltier element in which the conductive layer is strongly and integrally provided as described above, in the manufacturing method of the present invention, first, a molded body made of a thermoelectric conversion material is manufactured. The molded body made of this thermoelectric conversion material is manufactured by various methods. First, the raw material powder of the thermoelectric conversion material is co-ground and mixed. In the present invention, the raw material powder of the thermoelectric conversion material is widely selected and used from metal particles such as bismuth, tellurium, antimony, selenium, germanium, silicon, lead or iron. Moreover, a dopant is compounded and used as needed. Here, as the dopant, for example, iodine, bromine, germanium, tin, lead, silver, mercury, indium, manganese, cobalt,
Examples thereof include chromium, copper and halides of these elements. These raw material powders are composed of at least two kinds of metals (elements) selected from the above metal particles and dopants, and the raw material powders having an average particle diameter of 0.05 to 100 μm are used. Then, these metal particles are mixed at an appropriate ratio and co-ground and mixed, and the composition thereof is, for example, (Bi 2 Te 3 ) x (Sb 2 Te 3 ) 1-x [wherein, x is It is a value that satisfies 0 <x <0.95. ] The composition represented by this is prepared. In addition to this, for example, the following composition is prepared. 1) (Bi 2 Te 3 ) 1-x (Bi 2 Se 3 ) x [In the formula, x is a value satisfying 0 <x <0.95. 2) PbTe + PbI 2 / Na 3) Si 0.800 Ge 0.200 + GaP / B 4) Fe 0.92 Mn 0.08 Si 2.00 5) Fe 0.95 Co 0.05 Si 2.00

【0006】原料粉末の共粉砕・混合は、前記金属粒子
を適宜割合で混合し、共粉砕・混合して充分に混合させ
る。この際、混合・粉砕を同時に進行させて原料の粒子
径をさらに小さくすることが望ましい。この場合、共粉
砕・混合は、ボールミル,衝撃微粉砕機,ジェット粉砕
機,塔式摩擦機等の混合と粉砕を同時に行う手段により
行うことができる。これらの手段のなかではボールミ
ル,特に、落下式でなく遊星型強力ボールミルを使用す
ることが好ましい。また、混合時の状態は、乾式あるい
は湿式のいずれでもよく、例えば、湿式で行うキルン等
の場合には、混合助剤としては、エタノールやブタノー
ル等のアルコール類や各種の溶媒を用いて行うことがで
きる。上記共粉砕・混合の混合力や混合時間は、 粉砕・
混合後の原料粉末の平均粒径が0.05〜100μm、 好
ましくは0.05〜30μm程度となるように設定するこ
とが望ましい。ここで、粒径が100μmを超えると、
均一性の低下を招き好ましくない。また、原料粉末の粒
径は、小さい方がよいが、0.05μm以下にするために
は多大のエネルギーを消費し、そのエネルギー消費の割
には、それに見合う特性の向上は見られず、したがって
0.05〜100μm程度で十分である。
For co-grinding and mixing of the raw material powder, the metal particles are mixed at an appropriate ratio and co-pulverized and mixed to be sufficiently mixed. At this time, it is desirable to further advance the mixing and pulverization at the same time to further reduce the particle size of the raw material. In this case, the co-pulverization / mixing can be performed by means such as a ball mill, an impact fine pulverizer, a jet pulverizer, a tower friction machine, and the like for simultaneously performing the pulverization and mixing. Among these means, it is preferable to use a ball mill, especially a planetary type high-intensity ball mill rather than a drop type. The state of mixing may be either dry or wet. For example, in the case of a wet kiln, alcohols such as ethanol and butanol and various solvents may be used as a mixing aid. You can The mixing force and mixing time for the above co-milling / mixing are
It is desirable to set the average particle diameter of the raw material powder after mixing to be about 0.05 to 100 μm, preferably about 0.05 to 30 μm. Here, if the particle size exceeds 100 μm,
This is not preferable because it causes deterioration of uniformity. Further, the particle size of the raw material powder is preferably small, but a large amount of energy is consumed in order to reduce the particle size to 0.05 μm or less.
About 0.05 to 100 μm is sufficient.

【0007】次いで、本発明の方法では、上記のように
共粉砕・混合された原料粉末(微粉末)を成形する。こ
の成形にあたっては、共粉砕・混合された原料粉末を、
例えば、図1に示すようなPAS(Plazma Activated S
intering)装置を用いて成形する。上記のPAS装置で
は、装置を構成する型に、電極層用粉末,拡散防止層用
粉末及び原料粉末、又はそれらの薄板を入れ、成形体の
両端面に導電層を同時に積層してから、プラズマ焼結す
ると、プロセスが単純化されるとともに、成形体表面に
導電層が一体的に強力に接着されたペルチェ素子を効率
よく製造することができる。
Next, in the method of the present invention, the raw material powder (fine powder) co-ground and mixed as described above is molded. In this molding, the raw material powder co-crushed and mixed,
For example, PAS (Plazma Activated S
molding using an intering device. In the above PAS device, the electrode layer powder, the diffusion prevention layer powder and the raw material powder, or their thin plates are put in a mold that constitutes the device, and a conductive layer is simultaneously laminated on both end surfaces of the molded body, and then plasma is formed. Sintering simplifies the process and makes it possible to efficiently manufacture a Peltier element in which a conductive layer is integrally and strongly adhered to the surface of a molded body.

【0008】また、共粉砕・混合された原料粉末を成形
し、これに拡散防止層や電極層用の金属粉末を予め薄層
体に成形してから積層し、プラズマ焼結することもでき
る。この場合、共粉砕・混合された原料粉末を成形する
には、常圧あるいは加圧下、例えば、プレス成形や冷間
等方加圧成形(CIP成形)等の加圧手段により希望す
る形状、例えば、直径2〜200mm、長さ2〜200
mmの棒状に、あるいは角柱に加圧成形することができ
る。この加圧成形は、必要に応じて、ポリビニルアルコ
ール等のバインダー成分を添加して行うことができる。
そして、加圧成形時の圧力は、原料粉末の種類や粒径に
より異なるが、通常は、0.2〜20ton /cm2 、好ま
しくは0.5〜15ton /cm2 である。成形方法として
は、上記加圧成形の他、押出成形,射出成形を採用する
ことができる。また、拡散防止層や電極層の成形方法に
は、コーティング,スクリーン印刷法など任意の成形方
法を採用することができる。
It is also possible to form the co-pulverized and mixed raw material powder, and to form metal powder for the diffusion prevention layer and the electrode layer in advance to form a thin layered body, and laminate and plasma sinter. In this case, in order to shape the co-crushed and mixed raw material powder, a desired shape such as press molding or cold isostatic pressing (CIP molding) can be applied under normal pressure or pressure. , Diameter 2-200mm, length 2-200
It can be pressure-molded into a rod shape of mm or a prism. This pressure molding can be performed by adding a binder component such as polyvinyl alcohol, if necessary.
The pressure during the pressure molding is different depending of the raw material powder types and particle sizes, usually, 0.2~20ton / cm 2, preferably 0.5~15ton / cm 2. As the molding method, extrusion molding or injection molding can be adopted in addition to the above pressure molding. Further, as the method for forming the diffusion prevention layer and the electrode layer, any forming method such as coating or screen printing can be adopted.

【0009】次に、前記で得られた積層物をプラズマ焼
結することによってペルチェ素子を得ることができる。
すなわち、図1のPAS装置では、下段のパンチ上に型
に沿って、所定の厚さの電極層が得られるように電極層
形成用の粉末、例えば、銅粉末を秤量して入れる。同様
に、拡散防止層形成用の粉末、例えば、ニッケル粉末を
秤量して入れる。次いで、前記の共粉砕・混合された原
料粉末の所定量を秤量して入れる。さらに、上記と同様
にして拡散防止層及び電極層を積層した後、上段パンチ
を締め付け成形した後、プラズマ焼結すると、成形と焼
結ならびに導電層の形成を同時に行なうことができ、図
2のようなペルチェ素子を効率よく製造することができ
る。また、前記のように共粉砕・混合された原料粉末を
用い、予め成形して得られる成形体には、所定の厚さの
拡散防止層及び電極層が得られるように、それぞれ拡散
防止層形成用の粉末、例えば、ニッケル粉末及び電極層
形成用の粉末、例えば、銅粉末の層を積層してから、プ
ラズマ焼結することによってもペルチェ素子を製造する
ことができる。
Next, a Peltier element can be obtained by plasma-sintering the laminate obtained above.
That is, in the PAS apparatus of FIG. 1, powder for electrode layer formation, for example, copper powder, is weighed and placed along the die on the lower punch so that an electrode layer having a predetermined thickness can be obtained. Similarly, a powder for forming the diffusion prevention layer, for example, nickel powder is weighed and put. Next, a predetermined amount of the above-mentioned co-ground and mixed raw material powder is weighed and put. Further, when the diffusion prevention layer and the electrode layer are laminated in the same manner as above, the upper punch is tightened and formed, and then the plasma is sintered, the forming and the sintering and the formation of the conductive layer can be performed at the same time. Such a Peltier device can be efficiently manufactured. In addition, using the raw material powder co-pulverized and mixed as described above, a diffusion preventive layer is formed on the molded body obtained in advance so that a diffusion preventive layer and an electrode layer having a predetermined thickness can be obtained. The Peltier device can also be manufactured by stacking layers of powder for use, for example, nickel powder and electrode layer forming powder, for example, copper powder, and then performing plasma sintering.

【0010】ここで、成形と焼結を同時に行うことがで
きるプラズマ焼結処理は、前記のように原料粉末,拡散
防止層形成用の粉末及び電極層形成用の粉末を型に入
れ、加圧下、還元性雰囲気の水素ガスや不活性ガス中、
例えば、アルゴン,窒素,あるいはこれらの混合ガス等
の雰囲気下ならびに空気中で行われる。その焼結温度
は、原料粉末の種類,組成比等により適宜選択される
が、 通常は100〜3,000℃の範囲で行うことができ
る。かかる焼結ピーク温度に到達した後、該温度に所定
時間保持して、前記成形体を焼結することにより、目的
の熱電変換材料を得ることができる。
Here, in the plasma sintering process capable of simultaneously performing molding and sintering, as described above, the raw material powder, the diffusion preventing layer forming powder and the electrode layer forming powder are put into a mold and pressurized. , In a reducing atmosphere of hydrogen gas or inert gas,
For example, it is carried out in an atmosphere of argon, nitrogen, or a mixed gas thereof, or in the air. The sintering temperature is appropriately selected depending on the kind of raw material powder, composition ratio and the like, but it can be usually performed in the range of 100 to 3,000 ° C. After reaching the sintering peak temperature, the temperature is maintained for a predetermined time and the molded body is sintered to obtain the target thermoelectric conversion material.

【0011】前記プラズマ焼結処理は、焼結圧力は、1
〜1,000tonf、好ましくは、2〜500tonf
で、また、入力密度1〜500kW/cm3 、好ましく
は5〜200kW/cm3 で焼結される。このプラズマ
焼結処理では、入力密度を1〜500kW/cm3 とす
ることによって、数十キロワットの低い電力により、数
tonの低圧力下で成形し、電極を粉体に接触させ、粒
子間の放電を利用して、従来の高周波ホットプレス法に
比べて焼結時間は短く、効率よく、はるかに均質性の良
い焼結体を得ることができるものである。そして、型入
れするだけで、特に融点以下の成形と焼結を同時に行う
ことができる。このようにプラズマ焼結することによっ
て、焼結時間は、10分前後と、従来法に比べて焼結時
間を大幅に短縮することができ、生産性を大幅に向上さ
せることができる。なお、拡散防止層には、例えば、ニ
ッケル,クロム,タングステン,モリブデン等の粒径
が、0.5〜100μmの粉末を用いることができる。ま
た、電極層には、例えば、銅,アルミニウム,金,銀等
の粒径が、0.5〜100μmの粉末を用いることができ
る。これらの拡散防止層及び電極層には、それぞれの粉
末に代えて、板状物を用いてもよい。そして、拡散防止
層及び電極層は、通常、それぞれ0.5〜2,000μmで
積層される。ここで、熱電変換材料と拡散防止層及び電
極層との組み合わせ及び焼結条件を例示すると、第1表
のようになる。
In the plasma sintering process, the sintering pressure is 1
~ 1,000 tonf, preferably 2-500 tonf
And also with an input density of 1 to 500 kW / cm 3 , preferably 5 to 200 kW / cm 3 . In this plasma sintering process, by setting the input density to be 1 to 500 kW / cm 3 , the low power of several tens of kilowatts is used for molding under a low pressure of several tons, the electrode is brought into contact with the powder, and By utilizing electric discharge, a sintering time is shorter than that of the conventional high frequency hot pressing method, and it is possible to efficiently obtain a sintered body with much better homogeneity. Then, only by molding, it is possible to perform molding and sintering at a melting point or less at the same time. By performing the plasma sintering in this manner, the sintering time is about 10 minutes, which is significantly shorter than that of the conventional method, and the productivity can be significantly improved. For the diffusion prevention layer, for example, powder of nickel, chromium, tungsten, molybdenum or the like having a particle size of 0.5 to 100 μm can be used. Further, for the electrode layer, for example, a powder of copper, aluminum, gold, silver or the like having a particle size of 0.5 to 100 μm can be used. A plate-like material may be used for these diffusion prevention layers and electrode layers instead of the respective powders. Then, the diffusion prevention layer and the electrode layer are usually laminated in a thickness of 0.5 to 2,000 μm. An example of the combination of the thermoelectric conversion material, the diffusion prevention layer and the electrode layer and the sintering conditions are shown in Table 1.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】このように、本発明によって得られるペル
チェ素子は、共粉砕・混合された原料粉末を用いること
によって、共粉砕・混合によって各原料粉末が、均一に
混合され微粒子化され、あるいはメカニカルアロイング
効果により原子レベルで合金化したものとなるため、焼
結体が均一となり、熱電特性に優れる。同時に、拡散防
止層及び電極層を一体的に強力に接着することができる
ので、機械的強度に優れたペルチェ素子が得られる。そ
して、本発明の製造方法は、単結晶を育成する溶融プロ
セスを経る従来法に比べると、プラズマ焼結によって、
成形と焼結を同時に行うことができ、製造工程が大幅に
簡略化され、しかもプラズマ焼結により短時間で焼結す
ることができるのでペルチェ素子を非常に効率よく製造
することができる。
As described above, in the Peltier element obtained by the present invention, by using the co-milled and mixed raw material powders, the co-pulverized and mixed raw material powders are uniformly mixed and made into fine particles, or the mechanical powder is mechanically mixed. Because of the alloying effect at the atomic level due to the ing effect, the sintered body becomes uniform and has excellent thermoelectric properties. At the same time, since the diffusion prevention layer and the electrode layer can be strongly bonded together, a Peltier element having excellent mechanical strength can be obtained. Then, the manufacturing method of the present invention, by plasma sintering, compared with the conventional method that goes through the melting process of growing a single crystal,
Since the molding and the sintering can be performed at the same time, the manufacturing process is greatly simplified, and the sintering can be performed in a short time by the plasma sintering, so that the Peltier device can be manufactured very efficiently.

【0015】[0015]

【実施例】更に、本発明を実施例により、詳しく説明す
るが、本発明は、これらの実施例によって限定されるも
のではない。 実施例1 (Bi2Te3)0.15(Sb2Te3)0.85 +Sb (5重量%)か
らなる系の原料粉末を調製した。この原料粉末100g
にエタノールを1ミリリットル/gの割合で加え、遊星
型湿式ボールミル(ボール径10mm×50個)にて2
0時間、共粉砕混合を行った。得られた粉末原料の粒径
は平均で約1.2μmであった。この共粉砕・混合した粉
末原料を直径20mm,長さ20mmになるように所定
量を型に入れた。次いで、拡散防止層用原料粉末とし
て、粒径約3.0μmのニッケル粉末を厚さ20μmにな
るように秤量し、続いて、粒径約3.0μmの銅粉末を厚
さ300μmになるように秤量し、両端面に積層した
後、プラズマ焼結を300kfg,773Kで約10分
間焼結した。得られた焼結体との接触抵抗を測定した。
その測定結果を熱電特性とともに、第2表に示す。
The present invention will be further described in detail with reference to examples, but the present invention is not limited to these examples. Example 1 A raw material powder of a system composed of (Bi 2 Te 3 ) 0.15 (Sb 2 Te 3 ) 0.85 + Sb (5% by weight) was prepared. 100g of this raw material powder
Ethanol was added at a rate of 1 ml / g to a planetary wet ball mill (ball diameter: 10 mm x 50 pieces), and 2
Co-grinding and mixing was performed for 0 hours. The average particle size of the obtained powder raw material was about 1.2 μm. The co-pulverized and mixed powder raw material was put into a mold in a predetermined amount so that the diameter was 20 mm and the length was 20 mm. Then, as a raw material powder for the diffusion prevention layer, nickel powder having a particle size of about 3.0 μm was weighed so as to have a thickness of 20 μm, and subsequently, copper powder having a particle size of about 3.0 μm was made to have a thickness of 300 μm. After weighing and laminating on both end faces, plasma sintering was performed at 300 kfg and 773 K for about 10 minutes. The contact resistance with the obtained sintered body was measured.
The measurement results are shown in Table 2 together with the thermoelectric characteristics.

【0016】実施例2 実施例1において、拡散防止層用として、ニッケル粉末
及び銅粉末の代わりに、それぞれ厚さ20μmのニッケ
ル板及び300μmの銅板を用いた以外は、実施例1と
同様に実施した。得られた焼結体との接触抵抗を測定し
た。その測定結果を熱電特性とともに、第2表に示す。
Example 2 Example 1 was repeated except that a nickel plate having a thickness of 20 μm and a copper plate having a thickness of 300 μm were used instead of the nickel powder and the copper powder for the diffusion prevention layer. did. The contact resistance with the obtained sintered body was measured. The measurement results are shown in Table 2 together with the thermoelectric characteristics.

【0017】[0017]

【表3】 [Table 3]

【0018】なお、Z(性能指数)=α2 /ρκ ,
α:ゼーベック係数,ρ:比抵抗,κ:熱伝導率であ
る。また、Rrは接触抵抗である。
Z (performance index) = α 2 / ρκ,
α: Seebeck coefficient, ρ: resistivity, κ: thermal conductivity. Rr is a contact resistance.

【0019】[0019]

【発明の効果】以上説明したように、原料粉末を共粉砕
・混合し、成形体の両面に拡散防止層及び電極層を積層
し、プラズマ焼結することにより、焼結体に拡散防止層
及び電極層を強力に接着性よく、一体的に設けることが
でき、しかも、効率よくペルチェ素子を得ることができ
る。従って、本発明の製造方法によるペルチェ素子は、
性能が優れ、固体撮像素子(CCD),レーザーダイオ
ード,発光ダイオード,赤外線検出素子,マイクロ波検
出素子,高分解能分光計(Si,Ge),CPU基板,
LSI基板,パラメトリックアンプ,マイクロ波トラン
ジスターアンプ,PbEuTeレーザー(4〜5.5μ
m),2次元CIPアレイ,CO2 レーザー検出器,C
oMgF2 レーザー(1.5〜2.3μm),X線回折計の
粉体解析用サンプルホルダーの冷却,ラマン分光用サン
プルホルダーの冷却,軍用発電器(携帯用,潜水艦
用),車載用発電器(車,列車等)等に応用した場合、
その効果を十分に期待することができる。
As described above, the raw material powders are co-pulverized and mixed, the diffusion prevention layer and the electrode layer are laminated on both surfaces of the molded body, and plasma-sintered. The electrode layer can be strongly provided with good adhesiveness and integrally provided, and a Peltier element can be efficiently obtained. Therefore, the Peltier device according to the manufacturing method of the present invention,
Excellent performance, solid-state image sensor (CCD), laser diode, light emitting diode, infrared detector, microwave detector, high resolution spectrometer (Si, Ge), CPU board,
LSI substrate, parametric amplifier, microwave transistor amplifier, PbEuTe laser (4 to 5.5μ
m), two-dimensional CIP array, CO 2 laser detector, C
oMgF 2 laser (1.5-2.3 μm), cooling of sample holder for powder analysis of X-ray diffractometer, cooling of sample holder for Raman spectroscopy, military generator (portable, submarine), vehicle-mounted generator When applied to (cars, trains, etc.),
The effect can be expected sufficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のペルチェ素子の製造方法における、
プラズマ焼結を説明するための模式図の一例である。
FIG. 1 is a perspective view showing a method of manufacturing a Peltier device according to the present invention.
It is an example of a schematic diagram for explaining plasma sintering.

【図2】 本発明の製造方法によって得られるペルチェ
素子を示す模式図の一例である。
FIG. 2 is an example of a schematic view showing a Peltier device obtained by the manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1:型 2:上段パンチ 3:下段パンチ 4:上段電極 5:下段電極 A:熱電変換材料の焼結体 B:導電層 b−1:拡散防止層 b−2:電極層 l:素子の長さ φ:直径 1: Mold 2: Upper punch 3: Lower punch 4: Upper electrode 5: Lower electrode A: Sintered body of thermoelectric conversion material B: Conductive layer b-1: Diffusion prevention layer b-2: Electrode layer l: Element length Φ: diameter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱電変換材料からなる焼結体の両端部に
導電層を有するペルチェ素子の製造方法において、該焼
結体に供される熱電変換材料の原料粉末を共粉砕・混合
した後、共粉砕・混合された原料粉末を成形し、得られ
る成形体の両端部に導電層を積層してプラズマ焼結する
ことを特徴とするペルチェ素子の製造方法。
1. A method of manufacturing a Peltier element having a conductive layer at both ends of a sintered body made of a thermoelectric conversion material, wherein after co-pulverizing and mixing raw material powder of the thermoelectric conversion material used for the sintered body, A method for manufacturing a Peltier element, which comprises molding the co-pulverized and mixed raw material powder, laminating a conductive layer on both ends of the obtained molded body, and performing plasma sintering.
JP5049446A 1993-03-10 1993-03-10 Manufacture of peltier element Pending JPH06268264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5049446A JPH06268264A (en) 1993-03-10 1993-03-10 Manufacture of peltier element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5049446A JPH06268264A (en) 1993-03-10 1993-03-10 Manufacture of peltier element

Publications (1)

Publication Number Publication Date
JPH06268264A true JPH06268264A (en) 1994-09-22

Family

ID=12831363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5049446A Pending JPH06268264A (en) 1993-03-10 1993-03-10 Manufacture of peltier element

Country Status (1)

Country Link
JP (1) JPH06268264A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098364A (en) * 1995-06-26 1997-01-10 Saamobonitsuku:Kk Production of thermoelectric conversion element
JP2002299702A (en) * 2001-03-30 2002-10-11 Ishikawajima Harima Heavy Ind Co Ltd Method of manufacturing thermoelectric element
JP2006019355A (en) * 2004-06-30 2006-01-19 Central Res Inst Of Electric Power Ind Lead-tellurium-based thermoelectric material and thermoelement
JP2010212579A (en) * 2009-03-12 2010-09-24 Atsumi Tec:Kk Method for producing thermoelectric conversion element
WO2011148686A1 (en) * 2010-05-28 2011-12-01 学校法人東京理科大学 Method for production of thermoelectric conversion module, and thermoelectric conversion module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098364A (en) * 1995-06-26 1997-01-10 Saamobonitsuku:Kk Production of thermoelectric conversion element
JP2002299702A (en) * 2001-03-30 2002-10-11 Ishikawajima Harima Heavy Ind Co Ltd Method of manufacturing thermoelectric element
JP4656271B2 (en) * 2001-03-30 2011-03-23 株式会社Ihi Method for manufacturing thermoelectric element
JP2006019355A (en) * 2004-06-30 2006-01-19 Central Res Inst Of Electric Power Ind Lead-tellurium-based thermoelectric material and thermoelement
JP4630012B2 (en) * 2004-06-30 2011-02-09 財団法人電力中央研究所 Lead / tellurium-based thermoelectric materials and thermoelectric elements
JP2010212579A (en) * 2009-03-12 2010-09-24 Atsumi Tec:Kk Method for producing thermoelectric conversion element
EP2408032A1 (en) * 2009-03-12 2012-01-18 Kabushiki Kaisha Atsumitec Method of producing thermoelectric conversion device
CN102422448A (en) * 2009-03-12 2012-04-18 株式会社渥美精机 Method of producing thermoelectric conversion device
EP2408032A4 (en) * 2009-03-12 2014-01-22 Atsumitec Kk Method of producing thermoelectric conversion device
WO2011148686A1 (en) * 2010-05-28 2011-12-01 学校法人東京理科大学 Method for production of thermoelectric conversion module, and thermoelectric conversion module

Similar Documents

Publication Publication Date Title
JP6798339B2 (en) Manufacturing method of magnesium-based thermoelectric conversion material, manufacturing method of magnesium-based thermoelectric conversion element, magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, thermoelectric conversion device
Toprak et al. The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3
US5318743A (en) Processes for producing a thermoelectric material and a thermoelectric element
US11114600B2 (en) Polycrystalline magnesium silicide and use thereof
EP1083610A1 (en) Thermoelectric conversion material and method of producing the same
US20110120517A1 (en) Synthesis of High-Efficiency Thermoelectric Materials
CN110366784B (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for producing thermoelectric conversion material
JP7121230B2 (en) Method for producing magnesium-based thermoelectric conversion material
WO2017159842A1 (en) Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, thermoelectric conversion device, and method for manufacturing magnesium-based thermoelectric conversion material
US20020062853A1 (en) Method of manufacturing a thermoelectric element and a thermoelectric module
CN108886081B (en) Compound and thermoelectric conversion material
JPH077186A (en) Production of thermoelectric conversion material
JPH06268264A (en) Manufacture of peltier element
CN108701749B (en) Method for producing magnesium-based thermoelectric conversion material, method for producing magnesium-based thermoelectric conversion element, magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and thermoelectric conversion device
US20040217333A1 (en) N-type thermoelectric material and method of preparing thereof
KR20170067457A (en) Bi-Sb-Te based thermoelectric powder and materials with improved thermostability and manufacturing methods thereof
US8986566B2 (en) Thermoelectric material, thermoelectric device using the same, and method of manufacturing thereof
TWI768045B (en) Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and method for producing magnesium-based thermoelectric conversion material
WO2019163807A1 (en) Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module
JP2007173852A (en) Method of manufacturing thermoelectric material
JP4671553B2 (en) Thermoelectric semiconductor manufacturing method
JPH0697513A (en) Peltier element and its manufacture
WO2022259759A1 (en) Thermoelectric conversion element, thermoelectric conversion module, and method for producing thermoelectric conversion element
JP2017043847A (en) Alloy material
JP2021019032A (en) Thermionic element and manufacturing method of the same