JPH01252571A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH01252571A
JPH01252571A JP63081969A JP8196988A JPH01252571A JP H01252571 A JPH01252571 A JP H01252571A JP 63081969 A JP63081969 A JP 63081969A JP 8196988 A JP8196988 A JP 8196988A JP H01252571 A JPH01252571 A JP H01252571A
Authority
JP
Japan
Prior art keywords
superconductor
superconducting
oxide
oxide superconductor
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63081969A
Other languages
Japanese (ja)
Inventor
Tetsuo Oka
徹雄 岡
Masami Ishii
石井 正巳
Yoshitaka Ito
佳孝 伊藤
Uichiro Mizutani
宇一郎 水谷
Yutaka Yamada
裕 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP63081969A priority Critical patent/JPH01252571A/en
Publication of JPH01252571A publication Critical patent/JPH01252571A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the title superconductor improved in critical current density, by strongly grinding, through a mechanical alloying technique, the constituent metallic simple substances or alloys therefrom. CONSTITUTION:The objective superconductor consisting of L-M-Cu-O-based oxides (where, L is at least one metallic element selected from lanthanoids and Y; M is Sr or Ba or the both). The raw materials to be used are constituent metallic simple substances or alloys therefrom; for example, in the case of La-Sr-Cu-O-based superconductor, high-purity metals La, Sr and Cu are used. Said raw materials are strongly ground using a ball mill or planet-type grinder to cause solid phase diffusion to effect homogenization followed by press forming and then carrying out sintering in an oxygen atmosphere, thus obtaining the objective oxide superconductor. The above-mentioned process will eliminate the moisture absorption for the raw material, reduce the characteristics deterioration of the final superconductor due to moisture and variation in the manufacturing, also preventing the contamination of impurities.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は高温超電導酸化物の製造方法に関するもので高
温超電導相の含有率が高く、より均質な組織をもつ酸化
物超電導体の製造に利用されるものである。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a method for producing a high-temperature superconducting oxide, which has a high content of high-temperature superconducting phase and a more homogeneous structure. It is used for body manufacturing.

(従来の技術) 高温超電導酸化物には、例えばY−Ba−Cu−0+ 
La−5r−Cu−0などのペロブスカイト系セラミッ
クスがあり、それらの超電導遷移温度(以下Tcという
)は前者で約90にで後者は約40にである。
(Prior art) High temperature superconducting oxides include, for example, Y-Ba-Cu-0+
There are perovskite ceramics such as La-5r-Cu-0, and their superconducting transition temperatures (hereinafter referred to as Tc) are about 90 for the former and about 40 for the latter.

これらの製法としては、原料としてイツトリア。These manufacturing methods use Ittria as the raw material.

炭酸ストロンチウム、炭酸バリウム、酸化銅等の金属酸
化物の粉末を用意し天秤等により、例えばY−Ba−C
u−0系ではY : Ba : Cuが1:2:3のモ
ル比になるように秤量し混合する。
Prepare powders of metal oxides such as strontium carbonate, barium carbonate, copper oxide, etc., and use a balance etc. to
In the u-0 system, Y:Ba:Cu is weighed and mixed in a molar ratio of 1:2:3.

次にこれをプレス成形した後に焼成炉を用い大気中で焼
結する。炉から取り出し後十分細かく粉砕した後に再び
プレス成形し焼成する。この操作を数回繰り返して焼結
体となる、之の酸化物焼結体が超電導特性を示す。
Next, this is press-molded and then sintered in the atmosphere using a firing furnace. After taking it out of the furnace, it is ground sufficiently finely and then press-formed and fired again. This operation is repeated several times to obtain a sintered body, and this oxide sintered body exhibits superconducting properties.

この様にして製造した高温超電導酸化物はその内部に高
温で超電導現象をおこす相をある体積率で含んでおり、
電気抵抗を測定した場合にはそれらが連なって超電導電
流の通り道を形成するためにゼロ抵抗が現われる。
The high-temperature superconducting oxide produced in this way contains a certain volume fraction of a phase that causes superconductivity at high temperatures.
When measuring electrical resistance, zero resistance appears because they connect together to form a path for superconducting current.

しかし臨界電流密度(以下Tcという)やマイスナー効
果を測定する場合には超電導相の体積率が高い程高いT
cや大きなマイスナー効果を得ることができる。
However, when measuring the critical current density (hereinafter referred to as Tc) and the Meissner effect, the higher the volume fraction of the superconducting phase, the higher the Tc.
c and a large Meissner effect can be obtained.

(発明が解決しようとする課題) 現在酸化物超電導体における実用化に対し、最も大きな
課題はJcが小さいことであり、実用に際して必要な電
流を流すとその超電導状態がこわれてしまうという問題
点がある。
(Problem to be solved by the invention) Currently, the biggest problem with practical application of oxide superconductors is that Jc is small, and the problem is that the superconducting state is destroyed when the necessary current is passed for practical use. be.

Jcは超電導相の体積率が大きいほど、酸化物の緻密性
が良好なほど高くなると考えられており、より高圧でプ
レス成形して緻密性を向上させるという努力がなされて
いる。にも拘らず現在得られている最高のJcは約10
00八/CrAという比較的低い値にとどまっている。
It is believed that Jc increases as the volume fraction of the superconducting phase increases and as the density of the oxide improves, and efforts are being made to improve the density by press-molding at higher pressures. Despite this, the highest JC currently available is approximately 10.
It remains at a relatively low value of 008/CrA.

マイスナー効果、即ち帯磁率の測定によって超電導相が
どの程度酸化物の中に含まれるかが測られており、例え
ばJapanese Journal of Appl
iedPhysics(J J A P) VOL、2
6  N114. April、 19B?。
The extent to which superconducting phases are contained in oxides is measured by measuring the Meissner effect, that is, magnetic susceptibility; for example, Japanese Journal of Appl.
iedPhysics(JJAP) VOL, 2
6 N114. April, 19B? .

pp、L345〜L346によれば、上述の方法によっ
て得られた超電導相は全体の9%にすぎないことが記さ
れている、この含有率を向上させることによってJcを
改良することができる。
pp, L345-L346, it is stated that the superconducting phase obtained by the above method accounts for only 9% of the total, and Jc can be improved by increasing this content.

本発明は前記酸化物超電導体に含まれる高温超電導相の
体積率を向上させる方法を提供するものである。
The present invention provides a method for increasing the volume fraction of the high temperature superconducting phase contained in the oxide superconductor.

従来の製造プロセスではイツトリア等の酸化物粉末を混
合することで均一な混合物を得ようとしているため、そ
の粒度などにより原子の拡散が制限されていると考えら
れ、原子レベルでの本来の混合がなされていると考えら
れない。つまり複数種の酸化物粉末の粒子の接触する部
分での拡散により超電導相が生成されるため、超電導相
の体積率には自ら限界があった。
In the conventional manufacturing process, it is attempted to obtain a homogeneous mixture by mixing oxide powders such as ittria, so it is thought that the diffusion of atoms is restricted by the particle size, etc., and the original mixing at the atomic level is not possible. I can't imagine it being done. In other words, since a superconducting phase is generated by diffusion in a portion where particles of multiple types of oxide powder come into contact, there is a limit to the volume fraction of the superconducting phase.

本発明者らは、この部分に着眼し酸化物の状態で粉末を
混合するという方法をやめ、金属元素単体で混合し、合
金化して複数種の金属を互いに固溶せしめて理想的な混
合を行い、後に酸化させて均一な超電導体を製造するこ
とを試みた。
Focusing on this point, the present inventors abandoned the method of mixing powders in the oxide state and instead mixed single metal elements and alloyed them to form an ideal mixture of multiple metals in solid solution. They attempted to produce a uniform superconductor by oxidizing the material and later oxidizing it.

金属元素を固溶合金化して均一に混合する手法の一つに
液体急冷法を利用した例がJapaneseJourn
al of Applied Physics (J 
J A P ) VOL、26゜11h4 April
、 1987. pp、L334〜L336に提示され
ている。
Japanese Journal is an example of using liquid quenching method as one of the methods to uniformly mix metal elements by solid solution alloying.
al of Applied Physics (J
JAP) VOL, 26゜11h4 April
, 1987. pp. L334-L336.

La−5r−Cuの金属の混合物を高温で融解させ、均
一にとけあったところで単ロール法等の液体急冷法によ
って急速に固化させ微細組織や固溶体、アモルファス相
をリボン状に形成する。
A metal mixture of La-5r-Cu is melted at a high temperature, and once it is uniformly melted, it is rapidly solidified by a liquid quenching method such as a single roll method to form a fine structure, a solid solution, and an amorphous phase in a ribbon shape.

これを酸素処理して超電導相を得る方法で、粉末を焼結
するという工程を経ずして超電導体を製造でき、本発明
者らの目的と同等な効果が期待できる。しかしこの方法
による場合は必ず高温で溶融させるので、液相での溶解
度をお互いに持たないイツトリウム(Y)とバリウム(
Ba)では液相で相分離が起こり混合することは不可能
である。
By treating this with oxygen to obtain a superconducting phase, a superconductor can be produced without the step of sintering the powder, and an effect equivalent to the purpose of the present inventors can be expected. However, this method always requires melting at high temperatures, so yttrium (Y) and barium (Y) and barium (Y) do not have solubility in the liquid phase.
In Ba), phase separation occurs in the liquid phase and mixing is impossible.

この意味で、液体急冷法による混合は液相で分離する系
(例えばYとBa系)では意味をなさないという問題点
がある。
In this sense, there is a problem in that mixing by the liquid quenching method does not make sense in systems that separate in the liquid phase (for example, Y and Ba systems).

本発明は前記問題点を解消し、金属元素単体をいかに均
一に混合できるかということが技術的課題である。
The technical problem of the present invention is to solve the above-mentioned problems and to find out how uniformly single metal elements can be mixed.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 前記課題を解決するために講じた技術的手段は次のとお
りである。すなわち、L−M−Cu−0系なる酸化物超
電導体、但しここにLはランタンイド,イットリウムの
うち1種の金属元素2Mはストロンチウム又はバリウム
のうちの1種の金属元素で、それらの製造に際して構成
される金属元素又はそれらのうちより選択される合金を
その原材料とし、以下に述べるメカニカル・アロイング
法によって強力に粉砕することによって固相拡散を起こ
して均質化し、更にプレス成形後酸素中で焼結して製造
するものである。
(Means for solving the problem) The technical means taken to solve the above problem are as follows. That is, an oxide superconductor of the LM-Cu-0 system, where L is a lanthanide, one metal element among yttrium, 2M is one metal element among strontium or barium, and the manufacturing process thereof The raw materials are metal elements or alloys selected from them, and are strongly crushed by the mechanical alloying method described below to cause solid phase diffusion and homogenization, and then press-formed in oxygen. It is manufactured by sintering.

(作用) メカニカル・アロイング法(又はメカニカル・グライン
ディング法、以下MA法という)とはボールミルや遊星
型粉砕機を用い、粉砕時の強力な衝撃で複数種の金属や
合金をその固相状態の拡散反応を利用して混合し、合金
化やアモルファス化を行うものであり、金属元素同士を
ほぼ完全に均一に混合できるものである。
(Function) Mechanical alloying method (or mechanical grinding method, hereinafter referred to as MA method) uses a ball mill or planetary crusher to grind multiple metals and alloys into their solid state using strong impact during crushing. This method uses diffusion reactions to mix, alloy, and amorphize metal elements, and allows metal elements to be mixed almost completely and uniformly.

第1図にMA法に用いる遊星型粉砕機の略図を示した。FIG. 1 shows a schematic diagram of a planetary crusher used in the MA method.

図中1は小型のボールミルに使用するケースで中に試料
となる粉末2とボール3が数個納められている。
In the figure, 1 is a case used for a small ball mill, and a powder 2 to be a sample and several balls 3 are stored inside.

このケースは軸4を中心に5に示す回転方向に高速で回
転する。更にこのケースは円板6上に固定されており、
この円板6自体も軸7のまわりを8の回転方向に沿って
猛烈に回転し、結果としてボールミルのケース1は強い
遊星型の回転が加わることになりケース内のボールは同
ケース内の試料籾に強力な衝撃を加える。
This case rotates at high speed around an axis 4 in the direction of rotation shown at 5. Furthermore, this case is fixed on the disk 6,
The disk 6 itself rotates violently around the axis 7 in the direction of rotation of the disk 8, and as a result, the case 1 of the ball mill is subjected to strong planetary rotation, and the balls inside the case are rotated around the sample inside the case. A strong impact is applied to the paddy.

この衝撃によって粉末は更に細かく粉砕されついには固
相拡散が起こって異種金属の合金化やアモルファス化が
起こるものである。
This impact causes the powder to become more finely pulverized, and finally solid-phase diffusion occurs, resulting in alloying of different metals and amorphous formation.

このようにして製造された合金やアモルファスは溶融状
態を通らないために偏析や析出相とは全く無関係で理想
的に均質化されており、更に粉末の枝糸も1μm以下と
非常に細かくできる。
Since the alloys and amorphous materials produced in this way do not pass through the molten state, they are completely unrelated to segregation or precipitated phases and are ideally homogenized, and furthermore, the branch fibers of the powder can be extremely fine as 1 μm or less.

YやBa、 Laといった超電導酸化物を構成する金属
元素はこのMA法を利用して合金化することによって理
想的な混合がなされた。
The metal elements constituting the superconducting oxide, such as Y, Ba, and La, were alloyed using this MA method to achieve an ideal mixture.

通常のイツトリアや炭酸バリウムを乳鉢等で粉砕混合す
る場合には粒同士は依然としてイツトリアや炭酸バリウ
ムの粒であり、焼結時の原子の拡散は粒と粒の接触部の
みより起こり、当然のこととして大径の粒では拡散反応
によって生じるY−Ba−Cu−0系の超電導相の生成
は粒界付近に限られる。
When ordinary ittria and barium carbonate are crushed and mixed in a mortar etc., the grains are still ittria and barium carbonate grains, and the diffusion of atoms during sintering occurs only from the contact area between grains, which is natural. For large-diameter grains, the formation of a Y-Ba-Cu-0-based superconducting phase caused by a diffusion reaction is limited to the vicinity of grain boundaries.

これは超電導相の体積率を向上させるには大きな制限と
なることを意味する。
This means that there is a big restriction on increasing the volume fraction of the superconducting phase.

イツトリアや炭酸バリウム、酸化銅を乳鉢等で混合した
後の粉末をX線回折によって解析すれば当然、各々の粒
の組織を示すピークが現れるが、Y、 Ba、 Cuを
MA法によって均一に合金化した粉末はX線回折試験に
よっても通常のY、 Ba、 Cuのピークは現れず、
ピーク全体が低強度で裾を大きく引いたハローパターン
がみられ、アモルファス状態に近い均質な組織を得るこ
とができた。
If you analyze the powder by X-ray diffraction after mixing itria, barium carbonate, and copper oxide in a mortar or the like, peaks indicating the structure of each grain will naturally appear, but Y, Ba, and Cu are uniformly alloyed by the MA method. The normal Y, Ba, and Cu peaks did not appear in the X-ray diffraction test of the powder.
A halo pattern with a low intensity peak and a large tail was observed, and a homogeneous structure close to an amorphous state was obtained.

このようにして製造した合金粉末を成形型に入れてプレ
ス成形し、酸素雰囲気中で焼成することによって例えば
Y−Ba−Cu系合金粉末は酸素を得てY−Ba−Cu
−0系ペロプスカイトとなり、超電導相の含有率の高い
酸化物超電導体が製造できるものである。
The alloy powder produced in this way is put into a mold, press-formed, and fired in an oxygen atmosphere. For example, the Y-Ba-Cu alloy powder obtains oxygen and becomes
-0 series perovskite, and an oxide superconductor with a high content of superconducting phase can be produced.

(実施例) 以下実施例について説明する。(Example) Examples will be described below.

La−5r−Cu−0系超電導体の場合、高純度の金属
ランタンと金属ストロンチウム及び銅を粒状又は板状で
用意し、これを上皿天秤を用いそれらのモル比がLa 
: Sr : Cu= 9 : 1 : 5となるよう
に秤量する。
In the case of a La-5r-Cu-0 based superconductor, high-purity metal lanthanum, metal strontium and copper are prepared in the form of particles or plates, and the molar ratio of these is set to La using a top balance.
:Sr:Cu=9:1:5.

これを真空アーク溶解炉中で溶解して合金を得た。次に
この合金を粗く粉砕し200グラム採取して遊星型粉砕
機用ケースに、ボール、雰囲気ガスと共に封入し粉砕を
行う。
This was melted in a vacuum arc melting furnace to obtain an alloy. Next, this alloy is coarsely ground, 200 grams of the alloy is collected, and the alloy is sealed in a case for a planetary grinder together with balls and atmospheric gas for pulverization.

粉砕は10〜20時間にわたって続けられその間にメカ
ニカルアロイングが進行し、粉末は固相拡散により均質
に合金化される。この際のX線回折パターンには通常の
粉末法によるピークは現れず、アモルファス状態に近い
ハロー状のパターンが観察され固相拡散による合金化が
立証された。
Grinding continues for 10 to 20 hours, during which time mechanical alloying progresses and the powder is homogeneously alloyed by solid phase diffusion. In the X-ray diffraction pattern at this time, no peaks due to the usual powder method appeared, and a halo-like pattern close to an amorphous state was observed, proving alloying by solid phase diffusion.

この時の粉末の粒径はSEM観察の結果1μm以下の非
常に微細なものであった。
As a result of SEM observation, the particle size of the powder at this time was very fine, 1 μm or less.

次にこの粉末を成形型に供し、圧力200 kg/cj
のプレス成形を行った後、酸素雰囲気中で1000℃1
2時間の熱処理を行い、その後炉冷して焼結体を得た。
Next, this powder was applied to a mold, and the pressure was 200 kg/cj.
After press forming, the temperature was 1000℃1 in an oxygen atmosphere.
A heat treatment was performed for 2 hours, and then the material was cooled in a furnace to obtain a sintered body.

     ・ この超電導酸化物の抵抗温度変化を第2図の(イ)に示
した。Tcは31にであった。X線回折によってこの超
電導相を同定したところKJiF4構造をもつペロブス
カイト型酸化物であることが判明した。
- The temperature change in resistance of this superconducting oxide is shown in Figure 2 (a). Tc was 31. When this superconducting phase was identified by X-ray diffraction, it was found to be a perovskite-type oxide with a KJiF4 structure.

この焼結体の緒特性を第1表に示す。Table 1 shows the properties of this sintered body.

第   1   表 超電導相の占める体積率は磁化率の測定によって35%
であることが確かめられ、従来のLa−5r−Cu−0
系酸化物が18%であったことと比較して改善されてい
ることが判明した。
Table 1 The volume fraction occupied by the superconducting phase was determined to be 35% by magnetic susceptibility measurement.
It was confirmed that the conventional La-5r-Cu-0
It was found that this was improved compared to the system oxide content which was 18%.

次にY−Ba−Cu−0系酸化物超電導体の製造につい
ての実施例を説明する。
Next, an example of manufacturing a Y-Ba-Cu-0 based oxide superconductor will be described.

Y−Ba−Cu−0系ではLa系と異なり、YとBaが
液相で混ざり合わないために先ず、Y−Cu合金とBa
−Cu合金を各々アーク溶解により製造する。このとき
Y : Cu−1: L Ba:Cu=l : lの合
金を用いた。
In the Y-Ba-Cu-0 system, unlike the La system, Y and Ba do not mix in the liquid phase, so first the Y-Cu alloy and Ba are mixed.
-Cu alloys are each produced by arc melting. At this time, an alloy of Y:Cu-1:LBa:Cu=l:l was used.

次に全体のY : Ba : Cuのモル比が1:2:
3となるようにY−Cu、 Ba−Cu合金を秤量し、
遊星型粉砕機にボールとアルゴンガスと共に約20グラ
ム封入する。
Next, the overall molar ratio of Y:Ba:Cu is 1:2:
Weigh the Y-Cu and Ba-Cu alloys so that
Approximately 20 grams of the mixture is placed in a planetary crusher together with balls and argon gas.

粉砕は780r、p、m、の回転で約20時間行い、1
μm以下の細かい粉末を得た。この粉末のX線回折パタ
ーンもLa系と同様にアモルファスに近い微細な構造を
呈しており、固相拡散の進んでいることを示している。
Grinding was carried out for about 20 hours at 780r, p, m, and
A fine powder of less than μm was obtained. The X-ray diffraction pattern of this powder also exhibits a fine structure close to amorphous, similar to the La-based powder, indicating that solid phase diffusion is progressing.

続いて、このプレス型内にセットし、200 kg/−
の圧力でプレス成形し酸素雰囲気中にて890℃12時
間の熱処理を行い炉冷した。
Next, set it in this press mold and press 200 kg/-
The material was press-molded at a pressure of 200° C., heat treated at 890° C. for 12 hours in an oxygen atmosphere, and cooled in a furnace.

このサンプルの緒特性を前記第1表に並記し、その抵抗
温度変化を第2図(ロ)に示した。
The resistance characteristics of this sample are listed in Table 1 above, and the change in resistance with temperature is shown in Figure 2 (b).

この場合のTcは89にと高く、優秀な超電導体であっ
た。また磁化率の測定によって得られた超電導相の体積
率は50.9%と高く、従来の焼結法による値9%に比
べて優るものであった。
The Tc in this case was as high as 89, making it an excellent superconductor. Furthermore, the volume fraction of the superconducting phase obtained by measuring the magnetic susceptibility was as high as 50.9%, which was superior to the value of 9% obtained by the conventional sintering method.

第3図にこの場合の磁化率の測定結果を示す。FIG. 3 shows the measurement results of magnetic susceptibility in this case.

磁場を増加した時の反磁場の発生は印加磁場20000
eに対し、約−1,35emμ/gでありこの傾斜から
サンプル中の超電導相は50.9%と計算された。
The generation of demagnetizing field when the magnetic field is increased is the applied magnetic field of 20,000
The superconducting phase in the sample was calculated to be 50.9% from this slope.

このように本発明は超電導酸化物の特性向上に画期的な
ものである。
In this way, the present invention is revolutionary in improving the properties of superconducting oxides.

〔発明の効果〕〔Effect of the invention〕

本発明は次の効果を光する。 The present invention provides the following effects.

MA法によって酸化物超電導体の均質化をはかることに
より、 (1)  金属元素を出発点とするために原料に吸湿性
がなく、プレス成形、焼成のプロセスで水分による特性
劣下や製造のバラツキが少ない。
By homogenizing the oxide superconductor using the MA method, we can: (1) Since the starting material is a metal element, the raw material has no hygroscopicity, and there is no possibility of deterioration of properties due to moisture or manufacturing variations during the press forming and firing processes; Less is.

(2)  炭酸バリウムのように炭酸化合物やシュウ酸
化合物を用いる場合は炭素やシュウ素が不純物元素とし
て混入するために性能を劣下させるが、MA法によれば
、このような点は完全に防ぐことができる。
(2) When carbonate compounds or oxalate compounds such as barium carbonate are used, performance deteriorates due to the inclusion of carbon and oxalic acid as impurity elements, but according to the MA method, this point is completely eliminated. It can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMA法による装置の簡略化した説明図、第2図
は酸化物超電導体の抵抗の温度変化を示す図、第3図は
Y−Ba−Cu−0系の磁化率の測定結果を示す図であ
る。 1・・・小型ボールミル。 2・・・試料、3・・・ボール。
Figure 1 is a simplified explanatory diagram of the device using the MA method, Figure 2 is a diagram showing temperature changes in the resistance of an oxide superconductor, and Figure 3 is the measurement result of the magnetic susceptibility of the Y-Ba-Cu-0 system. FIG. 1...Small ball mill. 2...sample, 3...ball.

Claims (1)

【特許請求の範囲】[Claims] L−M−Cu−O系なる酸化物超電導体、但しここにL
はランタノイド,イットリウムのうち1種の金属元素,
Mはストロンチウム又はバリウムのうちの1種の元素で
、それの製造する場合に構成される金属元素、又はそれ
らのうちより選択される合金をその原材料とし、ボール
ミル又は遊星型粉砕機によつて強力に粉砕することによ
り固相拡散を起こして均質化させ、更にプレス成形後、
酸素中で焼結して製造した酸化物超電導体の製造方法。
LM-Cu-O system oxide superconductor, where L
is a metal element among lanthanoids and yttrium,
M is one of the elements strontium or barium, and its raw material is a metal element or an alloy selected from these when it is manufactured, and it is crushed by a ball mill or a planetary crusher. By pulverizing it, solid phase diffusion is caused and homogenized, and after press molding,
A method for manufacturing an oxide superconductor manufactured by sintering in oxygen.
JP63081969A 1988-04-01 1988-04-01 Production of oxide superconductor Pending JPH01252571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63081969A JPH01252571A (en) 1988-04-01 1988-04-01 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63081969A JPH01252571A (en) 1988-04-01 1988-04-01 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH01252571A true JPH01252571A (en) 1989-10-09

Family

ID=13761324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63081969A Pending JPH01252571A (en) 1988-04-01 1988-04-01 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH01252571A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199521A (en) * 1989-12-22 1994-07-19 Inco Alloys Internatl Inc Formation of superconducting precursor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234306A (en) * 1988-03-14 1989-09-19 Takeshi Masumoto Production of metal oxide superconducting material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234306A (en) * 1988-03-14 1989-09-19 Takeshi Masumoto Production of metal oxide superconducting material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199521A (en) * 1989-12-22 1994-07-19 Inco Alloys Internatl Inc Formation of superconducting precursor

Similar Documents

Publication Publication Date Title
JP2839415B2 (en) Method for producing rare earth superconducting composition
JPH05270827A (en) Oxide superconductor and its production
Varanasi et al. A comparison of the effects of PtO2 and BaSnO3 additions on the refinement of Y2BaCuO5 and magnetization of textured YBa2Cu3O6+ x
JP2688455B2 (en) Rare earth oxide superconductor and method for producing the same
KR100481234B1 (en) MgB2 BASED SUPERCONDUCTOR AND METHOD FOR PREPARATION THEREOF
JPH01252571A (en) Production of oxide superconductor
Muralidhar et al. Effect of platinum addition on the microstructure and critical current density in (Nd, Eu, Gd)-Ba-Cu-O
JPH075284B2 (en) Method for producing metal oxide superconducting material
JP2622123B2 (en) Method for producing flake-like oxide superconductor
EP0296893A2 (en) Superconducting material and a process for preparing the same
JP3157183B2 (en) Manufacturing method of oxide superconductor
JPH04119968A (en) Production of oxide superconductor
RU2091880C1 (en) Method for producing high-temperature superconducting parts
WO2021193481A1 (en) Method for producing thermoelectric conversion element
JP2828396B2 (en) Oxide superconductor and manufacturing method thereof
JP2931446B2 (en) Method for producing rare earth oxide superconductor
JPH06216415A (en) Manufacture of thermoelectric conversion material
EP1500148A2 (en) High-field superconductors
JP2821568B2 (en) Method for producing superconducting whisker composite
JPH09110426A (en) Production of oxide superconductor
JPH0412023A (en) Oxide superconductor
JPH09255332A (en) Production of oxide superconductor
JPH05193950A (en) Production of oxide superconducting material
Morita et al. Process and Properties of QMG Crystals
JPH04240116A (en) Method for converting bismuth base superconducting oxide to high critical temperature phase