JPH04119968A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH04119968A
JPH04119968A JP2297937A JP29793790A JPH04119968A JP H04119968 A JPH04119968 A JP H04119968A JP 2297937 A JP2297937 A JP 2297937A JP 29793790 A JP29793790 A JP 29793790A JP H04119968 A JPH04119968 A JP H04119968A
Authority
JP
Japan
Prior art keywords
oxide superconductor
phase
cooled
heated
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2297937A
Other languages
Japanese (ja)
Other versions
JPH0751463B2 (en
Inventor
Masahito Murakami
雅人 村上
Hisaji Koyama
央二 小山
Hiroyuki Fujimoto
浩之 藤本
Toru Shiobara
融 塩原
Naoki Koshizuka
直己 腰塚
Shoji Tanaka
昭二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Railway Technical Research Institute
Shikoku Electric Power Co Inc
Nippon Steel Corp
Original Assignee
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Railway Technical Research Institute
Shikoku Electric Power Co Inc
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER, Railway Technical Research Institute, Shikoku Electric Power Co Inc, Nippon Steel Corp filed Critical KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Publication of JPH04119968A publication Critical patent/JPH04119968A/en
Publication of JPH0751463B2 publication Critical patent/JPH0751463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain an oxide superconductor having high critical current density by heating a mixture of source powders for RE-Ba-Cu-O oxide superconductor (RE is a rare earth element including Y) under specified conditions and cooling, then pulverizing and mixing the obtd. solidified material, molding, and again heating this molded body under specified conditions. CONSTITUTION:A mixture of source powders for RE-Ba-Cu-O oxide superconductor (RE is a rare earth element including Y) is heated in a high temp. region where the mixture partly changes into a liquid phase, and then cooled to obtain a solidified material. This solidified material is pulverized and mixed to uniformly disperse the structure. Then the mixture powder is compacted into a specified shape and then again heated in a high temp. region where the body partly changes into a liquid phase to grow the superconductor phase.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、臨界電流密度の高い酸化物超電導体の製造方
法に関し、特に、超電導相内部に微細なRE2BaCu
O5が均一に分散している酸化物超電導体の製造方法に
関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing an oxide superconductor with a high critical current density, and in particular, to
The present invention relates to a method for producing an oxide superconductor in which O5 is uniformly dispersed.

(従来の技術) 臨界温度(Tc)が90Kを越えるYBaCuO系酸化
物超電導体の発見によって液体窒素を冷却剤として使用
することが可能になった。この結果、全世界的に実用化
の研究が展開されてきている。
(Prior Art) The discovery of a YBaCuO-based oxide superconductor with a critical temperature (Tc) exceeding 90K has made it possible to use liquid nitrogen as a coolant. As a result, research into practical application is being carried out worldwide.

しかし、現在までのところ実用上最も重要な臨界電流密
度(J c)が低いために液体窒素雰囲気での実用化に
は至っていない。
However, to date, it has not been put to practical use in a liquid nitrogen atmosphere because the critical current density (J c ), which is most important in practice, is low.

ところが、最近になって溶融状態から超電導相を生成さ
せることによって、1テスラ(T)という高い磁場中に
おいてもl[)00(IA/cjを越える臨界基fi密
度が得られるようになってきており(M。
However, recently, by generating a superconducting phase from a molten state, it has become possible to obtain a critical group fi density exceeding l[)00 (IA/cj) even in a magnetic field as high as 1 Tesla (T). Ori (M.

Murakasi  et al、、  Japane
se Journal  orAppliedPhys
ics、 vol、29.1989. pH89) 、
実用レベルに近い臨界電流密度が得られるようになって
きている。
Murakashi et al., Japan
se Journal or Applied Phys.
ics, vol, 29.1989. pH89),
It is becoming possible to obtain critical current densities close to practical levels.

この方法は、超電導相(Y B a 2 Cu 30 
x )がY2BaCuO5(以下211相と略す)と液
相との包晶反応によって生成することに着目し、211
相を微細かつ均一に液相中に分散させる工夫を行うこと
によって超電導相の成長を促すと共に、超電導相中にピ
ンニングセンターとなりうる211相を分散させること
にも成功している。211相の均一微細分散化のために
は、211相の生成核となるY2O,相を微細分散させ
るため1200℃以上の高温に急速加熱した後、急冷す
る処理を行っている。
This method uses a superconducting phase (Y Ba 2 Cu 30
Focusing on the fact that 211
By devising a method to finely and uniformly disperse the phase in the liquid phase, we not only promoted the growth of the superconducting phase, but also succeeded in dispersing the 211 phase, which can serve as a pinning center, in the superconducting phase. In order to uniformly and finely disperse the 211 phase, a process of rapidly heating to a high temperature of 1200° C. or higher and then rapidly cooling is performed in order to finely disperse the Y2O phase, which is the nucleus of the 211 phase.

しかしながら、上記従来の技術手段では、1200℃以
上に加熱した場合、Y2O,は凝集粗大化する傾向にあ
り、また液相よりも蚤いため沈むので、Y2O3の均一
分散化が難しいという問題があった。また、急冷した材
料の形状の制限から、任意の形状の成形体の製造が困難
であった。
However, with the above-mentioned conventional technical means, when heated to 1200°C or higher, Y2O tends to aggregate and coarsen, and it also sinks because it is more fluffy than the liquid phase, so there was a problem that it was difficult to uniformly disperse Y2O3. . Furthermore, it has been difficult to manufacture molded bodies of arbitrary shapes due to limitations on the shape of the rapidly cooled material.

(発明か解決しようとする課8) 本発明は、前記問題点を解決するためになされたもので
あって、目的とするところは、超電導相内部に微細なR
E2BaCuOsが均一に分散している酸化物超電導体
を製造する技術を提供することにある。
(Question 8) The present invention has been made to solve the above-mentioned problems, and the purpose is to create a fine R inside the superconducting phase.
An object of the present invention is to provide a technology for manufacturing an oxide superconductor in which E2BaCuOs is uniformly dispersed.

さらに、本発明は臨界電流密度が高く、かつむらがない
と共に、機械的特性や熱的安定性にすぐれた任意形状の
酸化物超電導体を製造することを目的とする。
Furthermore, it is an object of the present invention to produce an oxide superconductor having a high critical current density, uniformity, and an arbitrary shape having excellent mechanical properties and thermal stability.

(課題を解決するだめの手段) 前記目的を達成するために、本発明は、REBa−Cu
−0系酸化物超電導体(REはYを含む希土類元素)を
生成するための原料粉あるいは通常の焼結法で作製した
材料を、高温に加熱し、加熱された材料を凝固させるた
めに冷却し、凝固した材料を粉砕し、REBaCuO系
の原材料粉混合物を1050℃もしくはそれ以上に再加
熱したときにRE2O3あるいはRE2 B a Cu
 O%相が液相中に微細かつ均一に分散するようにこの
粉砕材混合物を所望の形状に成形し、前記粉砕材を十分
に撹拌混合し、そしてこの成形体に再加熱処理を施して
超電導相を成長させること、を特徴とする。
(Means for solving the problem) In order to achieve the above object, the present invention provides REBa-Cu
- Raw material powder for producing 0-based oxide superconductor (RE is a rare earth element containing Y) or a material made by normal sintering method is heated to high temperature and then cooled to solidify the heated material. When the solidified material is crushed and the REBaCuO raw material powder mixture is reheated to 1050°C or higher, RE2O3 or RE2 Ba Cu
The pulverized material mixture is molded into a desired shape so that the O% phase is finely and uniformly dispersed in the liquid phase, the pulverized material is sufficiently stirred and mixed, and the molded product is reheated to form a superconductor. It is characterized by growing a phase.

さらに、本発明は、RE−Ba −Cu −0系酸化物
超電導体の原料のみを加熱し、加熱された材料を冷却し
凝固し、凝固した材料を粉砕してその粉体を混合する段
階で銀もしくは酸化銀を添加し、このようにして銀もし
くは酸化銀の微細分散した前駆体を作製し、この混合物
(前駆体)を所定の形状に成形し、この成形体を再加熱
処理して超電導相を成長させること、を特徴とする。
Furthermore, the present invention provides a step in which only the raw material of the RE-Ba-Cu-0 based oxide superconductor is heated, the heated material is cooled and solidified, the solidified material is pulverized, and the powder is mixed. Silver or silver oxide is added to create a finely dispersed precursor of silver or silver oxide, this mixture (precursor) is molded into a predetermined shape, and this molded body is reheated to create superconductivity. It is characterized by growing a phase.

(作  用) 第1図(擬二元系状態図)に示すように、超電導相は2
11相と液相(Bad、あるいはBaCuO2とCub
)の反応によって生成することが知られている(M、 
Murakami et at、。
(Function) As shown in Figure 1 (quasi-binary system phase diagram), the superconducting phase is
11 phase and liquid phase (Bad, or BaCuO2 and Cub
) is known to be produced by the reaction of (M,
Murakami et at.

Japanese Journal orApplie
d Physjcs、 vol、2g 。
Japanese Journal orApplie
d Physjcs, vol, 2g.

1989、 l、399)。1989, l, 399).

超電導相を連続的に成長させるためには、211相と液
相が両方供給される必要がある。そこで、211相か微
細かつ均一に液相中に分散していることが必要である。
In order to continuously grow the superconducting phase, both the 211 phase and the liquid phase need to be supplied. Therefore, it is necessary that the 211 phase is finely and uniformly dispersed in the liquid phase.

この均一分散化の一つの方法として、211相の生成の
核となるRE2O3を液相中に均一に分散させた組織を
冷却して固相に持ち来たらしめ、これを再加熱すること
によって211相を生成させることが考えられる。従来
の技術では、第1図のRE2O3と液相りの安定領域に
急速に加熱した後急冷凝固することによって、このよう
な組織を得ていた。しかし、前述したようにY2O,は
凝集粗大化しやすく、均一に分散した組織が得られにく
いという問題かあり、従来技術による製品は部分的には
均一であるが、全体としては不均一なものであった。
One way to achieve this uniform dispersion is to cool a structure in which RE2O3, which is the nucleus for the production of the 211 phase, is uniformly dispersed in the liquid phase to bring it to the solid phase, and then reheat the structure to bring the 211 It is possible to generate a phase. In the conventional technology, such a structure was obtained by rapidly heating to a stable region of liquid phase with RE2O3 as shown in FIG. 1, and then rapidly solidifying it. However, as mentioned above, Y2O tends to aggregate and coarsen, making it difficult to obtain a uniformly dispersed structure, and while products made using conventional technology are partially uniform, they are non-uniform as a whole. there were.

ところが、本発明者の研究により急冷状態で不均一な領
域を含んでいても、急冷したままの状態よりもRE2O
3かより均一に分散した状態を得ることか可能であるこ
とが判明した。
However, research by the present inventor revealed that even if the quenched state contains non-uniform regions, the RE2O is lower than that in the quenched state.
It has been found that it is possible to obtain a more uniformly dispersed state.

すなわち、RE20□が不均一に分散した急冷凝固体を
粉砕、混合してRE2O3を機械的に均一分散せしめる
と、この状態で211相が生成する温度領域(1050
〜1200℃)に再加熱することにより、より均一に発
達した超電導組織が得られることがわかった。また、部
分的に液相を呈する高温領域に加熱された材料の高温組
織を急冷してそのまま凝固させることは不必要であるこ
ともわかった。すなわち、たとえば、その固液共存状態
の加熱された材料を坩堝に入れて置いて大気中で放冷さ
れるのであっても、RE2O3の均一分散を目的とする
粉砕と機械的な混合を凝固後に行うかぎり、急冷凝固の
場合と同一の組織が得られうるのである。
In other words, when a rapidly solidified solidified body in which RE20
It was found that a more uniformly developed superconducting structure could be obtained by reheating the sample to a temperature of ~1200°C. It has also been found that it is unnecessary to rapidly cool the high-temperature structure of a material that has been heated to a high-temperature region where it partially exhibits a liquid phase and solidify it as it is. In other words, for example, even if heated materials in a solid-liquid coexistence state are placed in a crucible and left to cool in the atmosphere, pulverization and mechanical mixing for the purpose of uniform dispersion of RE2O3 are not performed after solidification. As long as this is done, the same structure as in the case of rapid solidification can be obtained.

そこて、RE2O3と液相の共存領域すなわち1200
℃以上の領域に加熱した後急冷あるいは放冷したものを
、粉砕して0.1μ〜50μの粒径とし、RE2O3が
微細かつ均一に分散するまで良く撹拌混合し、任意の形
状の成形体を作製した後、211相が生成する温度領域
すなわち1050〜1200℃の温度領域に再加熱する
と、粉砕しなかった場合に比べて、211相か液相中に
はるかに均一に分散した組織が得られる。この状態から
超電導相が生成する950〜1000℃の温度領域まで
徐冷すると、超電導相のよく発達した、かつその内部に
微細な211相が均一に分散した酸化物超電導体を作製
することができる。
Therefore, the coexistence region of RE2O3 and liquid phase, that is, 1200
After heating to a temperature above ℃, the product is rapidly cooled or left to cool, then crushed to a particle size of 0.1μ to 50μ, stirred and mixed well until RE2O3 is finely and uniformly dispersed, and molded bodies of any shape are formed. After fabrication, if the material is reheated to a temperature range where the 211 phase is generated, that is, 1050 to 1200°C, a structure that is much more uniformly dispersed in the 211 phase or liquid phase can be obtained than when it is not crushed. . By slowly cooling this state to a temperature range of 950 to 1000°C where a superconducting phase is generated, an oxide superconductor with a well-developed superconducting phase and fine 211 phases uniformly dispersed inside it can be produced. .

また、第1図の211相と液相りの共存領域に加熱後冷
却した場合には、急冷もしくは空冷のままの組織は、R
E2O3相と液相の共存領域から冷却した場合よりは不
均一となるが、この場合もその後粉砕して機械的に混合
することにより211相が均一に分散した組織が得られ
る。この混合粉を再加熱して超電導相を成長させると、
超電導相がよく発達し、かつその内部に微細な211相
が均一に分散した酸化物超電導体を前述の方法と同様に
作製することができる。どちらの場合(RE203相利
用も口利用211相利用)でも、30000A/c−も
しくはそれ以上の極めて高い臨界電流密度(J c)を
得ることができる。
In addition, when cooling after heating to the coexistence region of 211 phase and liquid phase as shown in Fig. 1, the structure that remains rapidly cooled or air-cooled has R
Although the result is more non-uniform than when cooling from a region where the E2O3 phase and liquid phase coexist, a structure in which the 211 phase is uniformly dispersed can be obtained by subsequently crushing and mechanically mixing. When this mixed powder is reheated to grow a superconducting phase,
An oxide superconductor in which the superconducting phase is well developed and the fine 211 phase is uniformly dispersed therein can be produced in the same manner as in the above-described method. In either case (RE203 phase use or RE211 phase use), an extremely high critical current density (J c ) of 30000 A/c- or more can be obtained.

このように、本発明によると比較的簡単に211相の均
一に分散した前駆体か得られるうえ、いろいろな成形体
を二相領域法により作製することが可能となる。
As described above, according to the present invention, a uniformly dispersed 211-phase precursor can be obtained relatively easily, and various molded bodies can be produced by the two-phase region method.

次に、本発明に係る製造方法の手順について具体的に説
明する。
Next, the steps of the manufacturing method according to the present invention will be specifically explained.

〔工程 ■〕[Process ■]

Y2O,、HO20,などのRE20hの原料粉とBa
CO3、CuOなどの原料粉からなるRE−Ba −C
u −0系超電導材料の原料粉を、1200℃以上15
00℃以下の温度範囲で1〜60分間保持してRE2O
3相と液相(Bad。
RE20h raw material powder such as Y2O, HO20, etc. and Ba
RE-Ba -C made of raw material powder such as CO3 and CuO
Raw material powder for u-0 type superconducting material is heated to 1200°C or higher 15
Hold at a temperature range of 00℃ or less for 1 to 60 minutes to release RE2O.
Three phases and liquid phase (Bad.

BaCuO2+CuOなどで構成されている)を生成せ
しめるか、または1050〜1200℃の温度範囲で1
5分〜60分間保持して211相と液相を生成せしめる
(consisting of BaCuO2 + CuO, etc.) or
Hold for 5 to 60 minutes to generate 211 phase and liquid phase.

〔工程 ■〕[Process ■]

上記の固液共存領域の材料を、空冷、または空冷と同等
以上の冷却速度で冷却して凝固させる。
The material in the solid-liquid coexistence region is solidified by air cooling or cooling at a cooling rate equal to or higher than air cooling.

〔工程 ■〕[Process ■]

こうして得られた凝固材をそれぞれ粉砕して0.1〜5
01tmの粒径とし、再加熱後にRE2O3相または2
11相と液相の各成分が均一に分散するように、充分に
撹拌混合して微細混合粉を形成し、かかる粉体を所望の
形状に成形する。
Each of the coagulated materials obtained in this way is crushed to give a 0.1 to 5
The particle size is 01tm, and after reheating, RE2O3 phase or 2
The components of the 11th phase and the liquid phase are sufficiently stirred and mixed to uniformly disperse them to form a fine mixed powder, and this powder is molded into a desired shape.

〔工程 ■〕[Process ■]

ついで、上記成形体を211相が生成する1050〜1
200℃の温度範囲に加熱し、その温度に15〜60分
間保持し、その温度から1000℃/hrの、IO〜1
000℃/hrの冷却速度で冷却し、さらに950℃/
hrの、0.2〜b 〔工程 ■〕 その後、950℃より室温までは任意の冷却条件・方法
で冷却する。必要に応じて、材料への酸素導入付加のた
めに材料を、酸素富化雰囲気下において、600〜20
0℃の温度範囲で2〜200時間保持するか、もしくは
最高600℃、最低200℃の温度範囲を2〜200時
間をかけて実質的に徐冷して、その後は任意の冷却速度
で冷却するという熱処理をしてもよい。
Next, the above molded body is processed into 1050-1 in which 211 phase is generated.
Heat to a temperature range of 200°C, hold at that temperature for 15-60 minutes, and from that temperature 1000°C/hr, IO ~ 1
Cooled at a cooling rate of 000℃/hr, and further cooled to 950℃/hr.
hr, 0.2 to b [Step (1)] Thereafter, cooling is performed from 950° C. to room temperature using any cooling conditions and method. If necessary, the material is heated to 600 to 20
Either hold in a temperature range of 0°C for 2 to 200 hours, or substantially slowly cool in a temperature range of 600°C to 200°C for 2 to 200 hours, and then cool at any cooling rate. Heat treatment may be performed.

超電導材料を実際に応用するには、多くの場合、臨界電
流密度だけでなく、機械的特性や安定性などが要求され
る。酸化物超電導体は本質的にはセラミックスと同様に
靭性が低いという特性を有しており、その単結晶などで
もへき開しやすいことが報告されている。液相中におけ
る211相の分散は、このようなりラックの発生を抑え
るという効果をも有しているが、やはり材料がセラミッ
クスの一種であるため、前記の効果には限界があり、材
料全体としてのクラック防止効果としては、はなはだ不
満足なものである。
Practical applications of superconducting materials often require not only critical current density but also mechanical properties and stability. Oxide superconductors essentially have a characteristic of low toughness, similar to ceramics, and it has been reported that even their single crystals are susceptible to cleavage. The dispersion of the 211 phase in the liquid phase also has the effect of suppressing the occurrence of racks, but since the material is a type of ceramic, there is a limit to this effect, and the material as a whole Its crack prevention effect is extremely unsatisfactory.

一方、超電導材料ではよく熱的な安定性か問題となる。On the other hand, thermal stability is often a problem with superconducting materials.

すなわち、何らかの原因で超電導体の一部が常電導とな
って熱か発生した時、冷却剤によって速やかに熱が除去
されないと、常電導部が超電導体全体に拡大し、超電導
状態か破れてしまうのである。
In other words, when a part of a superconductor becomes normal conductor for some reason and generates heat, if the heat is not quickly removed by a coolant, the normal conductor will spread throughout the superconductor and break the superconducting state. It is.

従来の超電導線(金属系超電導体)では、熱伝導性に優
れた銅との複合体を作り込むことでこの問題を解決して
いる。
Conventional superconducting wires (metallic superconductors) solve this problem by incorporating a composite with copper, which has excellent thermal conductivity.

セラミックスだけではやはり熱的安定性の問題かあるの
で、酸化物超電導体においては、機械的特性および熱的
安定性の向上を行なうために、金属との複合体を作るこ
とか考えられている。例えば、銀シースの中に超電導粉
を詰めて線引き加工する方法が用いられているか、線径
が充分細ければ銀の強度で線としての形状を保つことが
できる。
Since ceramics alone have problems with thermal stability, it is being considered to create composites with metals in order to improve the mechanical properties and thermal stability of oxide superconductors. For example, a method of filling a silver sheath with superconducting powder and drawing it is used, or if the wire diameter is sufficiently small, the strength of the silver can maintain the shape of the wire.

また、銀は熱電導性に優れたいるため熱的な安定性を向
上させる効果をも有している。
Furthermore, since silver has excellent thermal conductivity, it also has the effect of improving thermal stability.

これに対して酸化物超電導体内に、直接銀を添加するこ
とが、例えば溶解法による添加として、METALLL
IRGICAL TRANSACTION A  (v
ol、21A、 Jan。
On the other hand, it is possible to add silver directly into the oxide superconductor, for example by adding it by a dissolution method.
IRGICAL TRANSACTION A (v
ol, 21A, Jan.

1990.257〜260頁)に開示されており、また
、焼結法においても試みられたことの報告があるが、こ
れらの方法では、マトリックスに銀か粗大に偏析してお
り(前記文献に示されたPig、  5のミクロ写真で
は、はぼ50〜100 lIAの銀が偏析している。)
十分な超電導特性が得られない。
1990, pp. 257-260), and there are reports that sintering methods have also been attempted, but in these methods, silver is coarsely segregated in the matrix (as shown in the above literature). In the microphotograph of Pig 5, approximately 50 to 100 lIA of silver is segregated.)
Sufficient superconducting properties cannot be obtained.

本発明者らは、銀かマトリックスの超電導特性を劣化さ
せないという利点を有し、熱電導性にも優れていること
に着眼し、銀をうまく超電導体内に分散できれば熱的安
定性の向上を図ることか可能になること、さらに、マト
リックス内へ微細分散すれば、分散した銀の変形によっ
て歪を緩和することができるため機械的特性をも向上さ
せることが可能となることを見出した。すなわち、本発
明者らは、前述の固相液相共存領域への加熱−冷却・凝
固−粉砕・混合−再加熱という工程の中で、液相中に2
11相の分散を維持したまま、銀をマトリックス中に微
細分散させることにより、酸化物超電導体の機械的特性
および熱的安定性を向上せしめることに成功したのであ
る。
The present inventors focused on the fact that silver has the advantage of not deteriorating the superconducting properties of the matrix and also has excellent thermal conductivity, and if silver can be successfully dispersed within the superconductor, thermal stability will be improved. Furthermore, we have discovered that if silver is finely dispersed within a matrix, it is possible to alleviate strain by deformation of the dispersed silver, thereby improving mechanical properties. That is, the present inventors discovered that during the above-mentioned heating-cooling/solidification-pulverization/mixing-reheating process in the solid-liquid coexistence region, 2.
By finely dispersing silver in the matrix while maintaining the dispersion of the 11 phases, they succeeded in improving the mechanical properties and thermal stability of the oxide superconductor.

次に、その工程を具体的に説明する。Next, the process will be specifically explained.

REBaCuOの原料粉を適当な比で調製したのち、1
200℃以上に加熱し、冷却・凝固せしめ、その凝固し
た材料を粉砕し、この粉体にAg2OまたはAgを添加
して混合する。そして、この混合物を成形し、1050
〜1200℃に再加熱し、その温度から1000℃/h
rの冷却し、さらに、1000℃から950℃/hrの
徐冷するものである。
After preparing the raw material powder of REBaCuO in an appropriate ratio, 1
The material is heated to 200°C or higher, cooled and solidified, and the solidified material is pulverized, and Ag2O or Ag is added to this powder and mixed. Then, mold this mixture to 1050
Reheat to ~1200℃, then 1000℃/h from that temperature
cooling at 1000°C and then slow cooling at 950°C/hr.

上記の方法によれば、第2図に示すように銀か超電導マ
トリックスの中に微細に分散したREBa−Cu−0系
酸化物超電導体を作製することが可能となり、しかも所
望の形状の成形体を作製することができる。
According to the above method, as shown in Fig. 2, it is possible to produce a REBa-Cu-0 based oxide superconductor finely dispersed in a silver or superconducting matrix, and moreover, it is possible to produce a molded body in a desired shape. can be created.

第2図(a)は光学顕微鏡組織であり、超電導相内に2
11相が微細に分散していることがわかる。
Figure 2(a) shows the structure under an optical microscope, with 2
It can be seen that 11 phases are finely dispersed.

同図(b)も同様な顕微鏡組織であるが超電導相内に銀
が微細(平均粒径はほぼ5如)に分散していることを示
している。本発明の銀の分散は、従来の組織におけるそ
れが50〜100za+aである(従ってクラックの発
生を有効に阻止できない)のに比し、はるかに微細であ
ることがわかる。このような銀の微細分散化によりクラ
ックの生成か抑えられるうえ、超電導体の熱伝導性が向
上するため、熱的安定性の向上が得られる。また、微細
分散した銀が新たなピン止め点として働くという効果を
も付与することができる。
Figure (b) shows a similar microscopic structure, but shows that silver is finely dispersed (average grain size is approximately 5 mm) within the superconducting phase. It can be seen that the silver dispersion of the present invention is much finer than that in the conventional structure, which is 50 to 100 za+a (therefore, the generation of cracks cannot be effectively prevented). Such fine dispersion of silver suppresses the generation of cracks and also improves the thermal conductivity of the superconductor, resulting in improved thermal stability. Furthermore, the effect that finely dispersed silver acts as a new pinning point can also be imparted.

本発明者らはまた、RE2O3あるいは211相を、溶
融状態である液相(第1図)に後から添加することによ
って、超電導相を形成することか可能であるという知見
を得た。第3図よりBaCuO2とCub、の共晶を利
用すれば約900℃で液相が得られることかわかる。こ
の状態から超電導相が生成する温度領域(1000〜9
50℃)を徐冷すると超電導相がよく発達し、かつその
内部に211相が分散した酸化物超電導体を作製するこ
とかできる。
The present inventors have also found that it is possible to form a superconducting phase by later adding RE2O3 or 211 phase to the molten liquid phase (FIG. 1). It can be seen from FIG. 3 that a liquid phase can be obtained at about 900° C. by using the eutectic of BaCuO2 and Cub. The temperature range (1000 to 9
When the superconducting phase is slowly cooled to 50° C., the superconducting phase is well developed, and an oxide superconductor in which the 211 phase is dispersed can be produced.

すなわち、BaCO3,CuO等の原材料粉を混合した
後、900℃前後で仮焼し、次いで950〜1200℃
の温度範囲に加熱して溶融せしめ、その溶融物にRE2
O3の粉体を添加して所定時間保持したのち冷却するも
ので、線材などの連続的長尺物を低温域で形成するのに
適している。この場合でも2000OA/cdという高
い臨界電流密度(J o)を得ることができる(実施例
5.6参照)。
That is, after mixing raw material powders such as BaCO3 and CuO, they are calcined at around 900°C, and then heated at 950 to 1200°C.
The melt is heated to a temperature range of
O3 powder is added, held for a predetermined period of time, and then cooled, making it suitable for forming continuous long objects such as wire rods at low temperatures. Even in this case, a high critical current density (J o ) of 2000 OA/cd can be obtained (see Example 5.6).

あるいは、あらかしめREBaCuO系の原材料粉を混
合し、その混合体を予備焼結し、この焼結体を1050
〜1200℃の温度範囲に再加熱して211相を形成し
ておき、別途、BaCO3、CuOの原材料粉を混合し
仮焼し、1100℃前後の温度に加熱してこの混合物を
溶融し、得られた溶融体へ前記211相を添加し、所定
時間保持後に冷却するという手順も採用可能である(実
施例7参照)。
Alternatively, a rough REBaCuO-based raw material powder is mixed, the mixture is pre-sintered, and this sintered body is made into a 1050
The 211 phase is formed by reheating to a temperature range of ~1200°C, and separately, raw material powders of BaCO3 and CuO are mixed and calcined, and the mixture is melted by heating to a temperature of around 1100°C. It is also possible to adopt a procedure in which the 211 phase is added to the obtained melt, held for a predetermined period of time, and then cooled (see Example 7).

(実施例1) 本実施例1の酸化物超電導体は、第4図(プロセスの模
式図)に示す方法により作製された。すなわち、Y2O
,、BaCO3、CuOを原材料粉として陽イオンの比
がほぼ1:2:3となるように混合し、900℃で24
時間仮焼したのち、1400℃に10分間加熱し、銅製
のハンマーを用いて急冷した。急冷した材料を粉砕して
0,1μ〜50μの粒径とし、RE2O3が微細かつ均
一に分散するまで良く撹拌混合し、その後直径30m層
、高さ3011のベレットに成形し、再び1100℃に
30分間再加熱したのち、1000℃/hrの100℃
/時(hr)で冷却してから5℃/hrで950℃/h
rの徐冷したのち炉冷した。
(Example 1) The oxide superconductor of Example 1 was produced by the method shown in FIG. 4 (schematic diagram of the process). That is, Y2O
, BaCO3 and CuO were mixed as raw material powders so that the ratio of cations was approximately 1:2:3, and heated at 900℃ for 24 hours.
After calcining for an hour, it was heated to 1400° C. for 10 minutes and rapidly cooled using a copper hammer. The quenched material was pulverized to a particle size of 0.1μ to 50μ, stirred and mixed well until RE2O3 was finely and uniformly dispersed, then formed into a pellet with a diameter of 30m and a height of 3011, and heated again to 1100℃ for 30 minutes. After reheating for minutes, 100℃ of 1000℃/hr
/ hour (hr) and then 5℃/hr to 950℃/h
The mixture was slowly cooled to 100 ml and then cooled in a furnace.

さらに酸素を充分富化させるため、−気圧の酸素中で6
00℃で1時間保持した。
Furthermore, in order to sufficiently enrich oxygen, 6
It was held at 00°C for 1 hour.

この試料は、ゼロ抵抗温度が93にであり、磁化#J定
によると、77に、  1テスラ(T)で30000A
 / cシの高い臨界電流密度を示した。これは、粉砕
混合せずに作製した場合の100OOA/c−よりもは
るかに高い臨界電流密度である。
This sample has zero resistance temperature of 93 and magnetization #J constant of 77 and 30000 A at 1 Tesla (T).
/c showed a high critical current density. This is a much higher critical current density than 100OOA/c- when produced without grinding and mixing.

(実施例2) 本実施例2の試料は、実施例1と同様に予備調製(原材
料粉を混合して仮焼)し、白金坩堝に入れ1300℃に
20分加熱し、炉から取り出してそのまま空気中で放冷
し、この冷却した塊を粉砕し、この粉体を充分に混合し
たのち直径10關のベレットに成形し、このベレットを
1150℃に再加熱し、1000℃/hrの50℃/h
rて冷却してから2℃/hrで950℃/hrの徐冷し
たのち炉冷して作製した。この試料はゼロ抵抗温度が9
3TCであり、磁化測定によると77に、ITで250
00A/cdの高い臨界電流密度を示した。
(Example 2) The sample of this Example 2 was prepared in the same manner as in Example 1 (mixing raw material powder and calcining), placed in a platinum crucible, heated to 1300°C for 20 minutes, taken out from the furnace, and left as is. Allow to cool in air, crush the cooled mass, thoroughly mix this powder, form into pellets with a diameter of 10 mm, reheat the pellets to 1150°C, and heat at 50°C at a rate of 1000°C/hr. /h
After cooling at 2° C./hr and slow cooling at 950° C./hr, the sample was cooled in a furnace. This sample has a zero resistance temperature of 9
3TC, 77 according to magnetization measurements, 250 in IT
It showed a high critical current density of 00A/cd.

(実施例3) 本実施例3の酸化物超電導体は、第5図(プロセスの模
式図)に示す方法により作製された。すなわち、Ho2
0* 、BaCO3、CuOの粉体をHo:Ba:Cu
の比が1 :2:3となるように混合し、この混合体を
1150℃で1時間保持した後に空冷し、その誤、冷却
された材料をジェットミルにより粉砕し、混合したのち
等方圧力(CIP)装置により直径10!11+長さ5
0I+mの棒状の試料に成形し、1100℃に30分間
再加熱してから、1000℃/hrの50℃/hrで冷
却した後、20℃/cmの温度勾配のなかで1000℃
から950℃/hrの棒を移動させながら徐冷した。こ
れにより超電導相は一方向に成長した・この材料の臨界
電流密度CJ)6)をパルス電流電源をもちいて四端子
法により測定したところ77に、ITで33000A/
cシの値が得られた。
(Example 3) The oxide superconductor of this Example 3 was produced by the method shown in FIG. 5 (schematic diagram of the process). That is, Ho2
0*, BaCO3, CuO powder as Ho:Ba:Cu
The mixture was kept at 1150°C for 1 hour, then air cooled, and the cooled material was pulverized with a jet mill, mixed, and then heated under isostatic pressure. (CIP)Diameter 10!11+Length 5 depending on the device
It was molded into a rod-shaped sample of 0I+m, reheated to 1100℃ for 30 minutes, cooled at 50℃/hr of 1000℃/hr, and heated to 1000℃ in a temperature gradient of 20℃/cm.
It was slowly cooled while moving a bar at 950°C/hr. As a result, the superconducting phase grew in one direction.The critical current density CJ)6) of this material was measured by the four-terminal method using a pulsed current power supply77, and was found to be 33000 A/
A value of c was obtained.

また、前記ジェットミルによる粉砕で得られた粉体を充
分に混合したのち、例えばゴム、銅、銀等の可撓管に充
填し、その可撓管を棒状、コイル状等の所定の形状に形
成して、それを等方圧力(CI P)装置により棒状、
コイル状等の所定の形状の試料に成形することかできた
In addition, after thoroughly mixing the powder obtained by pulverization using the jet mill, it is filled into a flexible tube made of rubber, copper, silver, etc., and the flexible tube is shaped into a predetermined shape such as a rod shape or a coil shape. It is then shaped into a rod using an isostatic pressure (CI P) device.
It was possible to mold the sample into a predetermined shape such as a coil shape.

なお、Hoサイトを他のランタナイド元素で置換しても
、従来の超電導体より高いJcの値が得られた。それら
の結果を第1表に示す。
Note that even when the Ho site was replaced with another lanthanide element, a higher Jc value than that of conventional superconductors was obtained. The results are shown in Table 1.

第 表 以上の説明かられかるように、前記実施例1〜3によれ
ば、RE−Ba −Cu−0系酸化物超電導体(REは
Yを含む希土類元素)において、超電導相内部に微細な
RE2BaCuO1が均一に分散していることから臨界
電流密度が高い酸化物超電導体を得ることができる。
As can be seen from the explanations in Table 1 and above, according to Examples 1 to 3, in the RE-Ba-Cu-0 based oxide superconductor (RE is a rare earth element containing Y), there are fine particles inside the superconducting phase. Since RE2BaCuO1 is uniformly dispersed, an oxide superconductor with a high critical current density can be obtained.

(実施例4) RE2O3,BaCO3,CuOの各粉体をRE:Ba
:Cuの比が1.4: 2 : 3となるように混合し
、950℃で24hr空気中で予備焼結を行なった。な
お、REとしては第2表に示すようなY、Ho、SIl
、Er、Eu、Gd、Dy、NdT+a、Ybの適当な
混合比を選んだ。予備焼結体はアルミするつぼで130
0℃で、20m1n加熱後銅製の板で挟んで急冷した。
(Example 4) Each powder of RE2O3, BaCO3, and CuO was
:Cu ratio was 1.4:2:3, and preliminary sintering was performed in air at 950° C. for 24 hours. In addition, as RE, Y, Ho, SIl as shown in Table 2 are used.
, Er, Eu, Gd, Dy, NdT+a, and Yb were selected at an appropriate mixing ratio. The preliminary sintered body is an aluminum crucible of 130
After heating for 20 ml at 0° C., it was sandwiched between copper plates and rapidly cooled.

次に、冷却された材料を粉砕し、重量比で0.1だけA
gを添加し、よく混合した。その後この混合体を108
0℃で30m1n加熱後1000℃/hrの80℃/h
rの速度で冷却したのち、950℃/hrのは2℃/h
rの速度で冷却して空中に取り出し放冷した。冷却され
た材料は、550℃で1hr酸素気流中で加熱し、その
後は炉冷した。
Next, the cooled material is pulverized and A by 0.1 in weight ratio is
g and mixed well. Then this mixture was added to 108
80℃/h of 1000℃/hr after heating 30ml at 0℃
After cooling at a rate of r, 950℃/hr is 2℃/h
It was cooled at a rate of r and then taken out into the air and left to cool. The cooled material was heated in a stream of oxygen at 550° C. for 1 hr and then furnace cooled.

磁化測定によるといずれの試料も77に、ITで270
00 A/cd以上の臨界電流密度Jcを示した。
According to magnetization measurements, all samples had a value of 77, and IT had a value of 270.
It showed a critical current density Jc of 00 A/cd or more.

地上1mからの煉瓦上への落下試験をしたところ、いず
れの試料にも破損が認められなかった。また、液体窒素
浸漬による熱伝導を測定した。
When a drop test was performed on bricks from 1 m above ground, no damage was observed in any of the samples. We also measured heat conduction by immersion in liquid nitrogen.

液体窒素に浸すとバブリングが起きるが、浸漬からバブ
リングが停止する(バブリングは超電導体が液体窒素温
度に達すると停止する)までの時間を測定することによ
って、熱伝導の相対比較が可能となる。銀添加した試料
では、銀無添加の試料に比してこの時間3/4であり、
また、液体窒素温度から取り出して、磁石の上での浮上
時間を測定すると浸漬実験と同様に、銀添加した試料の
方が保持時間が3/4であって、いずれも熱伝導度か向
上したことを示している。
Bubbling occurs when immersed in liquid nitrogen, but by measuring the time from immersion until bubbling stops (bubbling stops when the superconductor reaches the temperature of liquid nitrogen), it is possible to make a relative comparison of heat conduction. In the sample with silver addition, this time is 3/4 compared to the sample without silver addition,
In addition, when the sample was taken out from the liquid nitrogen temperature and the floating time was measured on a magnet, as in the immersion experiment, the holding time was 3/4 that of the sample with silver added, and the thermal conductivity of both samples was improved. It is shown that.

(実施例5) BaCO3とCuOを原材料粉として陽イオンの比かほ
ぼ2:3となるように準備し、BaCO3とCuOを混
合し、′900℃で12時間予備焼結した後、1100
℃に再加熱したところに、原材料としてのY2O,の粉
体を添加し、その混合物をその温度に20分保った後、
1000℃/hrの100℃/hrで冷却してから5℃
/hrて950℃/hrの徐冷したのち炉冷した。さら
に、材料に酸素を十分富化させるため、1気圧の酸素中
で600℃で1時間加熱後炉冷した。この試料はゼロ抵
抗温度が93にであり、磁化測定によると77に、IT
て220(t。
(Example 5) BaCO3 and CuO were prepared as raw material powder so that the ratio of cations was approximately 2:3, BaCO3 and CuO were mixed, pre-sintered at 900°C for 12 hours, and then heated to 1100°C.
After being reheated to ℃, powder of Y2O, as raw material was added, and the mixture was kept at that temperature for 20 minutes.
5℃ after cooling at 100℃/hr of 1000℃/hr
After slow cooling at 950°C/hr, the mixture was cooled in a furnace. Further, in order to sufficiently enrich the material with oxygen, the material was heated at 600° C. for 1 hour in oxygen at 1 atm and then cooled in a furnace. This sample has a zero resistance temperature of 93, and magnetization measurements indicate an IT of 77.
te 220 (t.

A / c−の臨界電流密度を示した。The critical current density of A/c- is shown.

(実施例6) B a CO3とCuOとを作成し、これらを原材料粉
として両者の質量比かほぼ3.8となるように混合し、
銀(Ag>テープの上にこの混合粉を載置し、950℃
で1時間加熱して該混合粉を溶融状態とし、その後95
0℃に保持しつつY2O,粉を前記溶融状態物中に添加
し、ついて50℃/hrで300℃/hrの除冷し、3
00℃からは放冷して、超電導相(YBa2CLI30
X )を生成せしめた。この銀テープの超電導体試料は
、4端子法による測定において、77に、ゼロ磁場の臨
界電流密度は2100OA/c−を示した。
(Example 6) Create B a CO3 and CuO, mix them as raw material powder so that the mass ratio of both is approximately 3.8,
Place this mixed powder on a silver (Ag> tape and heat it at 950°C.
The mixed powder was heated for 1 hour at
While maintaining the temperature at 0°C, Y2O and powder were added to the molten material, followed by slow cooling at 50°C/hr and 300°C/hr.
From 00℃, the superconducting phase (YBa2CLI30
X) was generated. This silver tape superconductor sample showed a critical current density of 77 and 2100 OA/c at zero magnetic field when measured by the four-probe method.

(実施例7) Y203 、BaCO3とCuOを原材料粉として陽イ
オンの比かほぼ1:2:3となるように混合し、900
℃で24時間予備焼結した後、1050℃に急速加熱し
てから急冷して211相を準備し、次に、BaCO5と
CuOを原材料粉として比がほぼ3:5となるように混
合し900℃で12時間予備焼結した後、1100℃に
再加熱したところに準備された211相を添加し、20
分保った後、1000℃/hrの100’C/hrで冷
却してから5℃/hrで950℃/hrの冷却したのち
炉冷した。さらに酸素を十分富化させるため、1気圧の
酸素中で600℃で1時間加熱後炉冷した。
(Example 7) Y203, BaCO3 and CuO were mixed as raw material powder so that the ratio of cations was approximately 1:2:3, and 900
After pre-sintering at 1050°C for 24 hours, the 211 phase was prepared by rapidly heating to 1050°C and then quenching, and then BaCO5 and CuO were mixed as raw material powders at a ratio of approximately 3:5 to 900°C. After pre-sintering at 12 hours at ℃, the prepared 211 phase was added to the 211 phase, which was reheated to 1100 ℃.
After the temperature was maintained for 10 minutes, it was cooled at 100'C/hr at 1000°C/hr, then cooled at 950°C/hr at 5°C/hr, and then cooled in a furnace. Furthermore, in order to sufficiently enrich oxygen, the mixture was heated in oxygen at 1 atm at 600° C. for 1 hour and then cooled in a furnace.

この試料は、ゼロ抵抗温度が93にであり、磁化測定に
よると、77に、ITで23000A/cdの臨界電流
密度を示した。
This sample had a zero resistance temperature of 93°C and a critical current density of 23000 A/cd at 77°C according to magnetization measurements.

(効  果) 以上のように、本発明によれば、臨界電流密度の高い酸
化物超電導体、また、これに加えて機械的特性や熱的安
定性にも優れた酸化物超電導体を製造することが可能で
あり、産業の発達に多大の寄与をなすことか期待される
(Effects) As described above, according to the present invention, an oxide superconductor with a high critical current density and an oxide superconductor with excellent mechanical properties and thermal stability can be manufactured. It is expected that this will make a significant contribution to the development of industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、RE −Ba −Cu −0系酸化物超電導
体(REはYを含む希土類元素)における擬二元系状態
図、 す顕微鏡写真、 第3図はB a O,Cu OX系の状態図、第4図は
、実施例1のY−Ba −Cu −0系酸化物超電導体
の製造プロセスを示す模式図、第5図は、実施例3のR
E−Ba −Cu −0系酸化物超電導体の製造プロセ
スを示す模式図である。 出 願 人 復代理人 新日本製鐵株式会社
Figure 1 is a pseudo-binary phase diagram of the RE-Ba-Cu-0 based oxide superconductor (RE is a rare earth element containing Y), and a micrograph is shown in Figure 3. The phase diagram, FIG. 4 is a schematic diagram showing the manufacturing process of the Y-Ba-Cu-0 based oxide superconductor of Example 1, and FIG. 5 is the R phase diagram of Example 3.
FIG. 2 is a schematic diagram showing a manufacturing process of an E-Ba-Cu-0 based oxide superconductor. Applicant sub-agent Nippon Steel Corporation

Claims (12)

【特許請求の範囲】[Claims] (1)RE−Ba−Cu−O系酸化物超電導体(REは
Yを含む希土類元素)を形成するための原材料粉混合体
を部分的に液相を呈する高温領域に加熱し、この加熱さ
れた材料を冷却して凝固状態の材料を形成し、この凝固
した材料を粉砕し混合して組織を均一に分散し、この混
合粉を所定の形状に成形し、その成形体を部分的に液相
を呈する高温領域に再加熱して超電導相を成長させるこ
とを特徴とする酸化物超電導体の製造方法。
(1) A raw material powder mixture for forming an RE-Ba-Cu-O-based oxide superconductor (RE is a rare earth element containing Y) is heated to a high temperature region where it partially exhibits a liquid phase, and this heated The solidified material is cooled to form a solidified material, the solidified material is crushed and mixed to uniformly disperse the structure, the mixed powder is molded into a predetermined shape, and the molded body is partially liquefied. 1. A method for producing an oxide superconductor, which comprises growing a superconducting phase by reheating in a high-temperature region where a superconducting phase is formed.
(2)前記の原材料粉混合体を1200℃以上に加熱し
てRE_2O_3相と液相とを形成し、しかる後に冷却
することを特徴とする請求項1の酸化物超電導体の製造
方法。
(2) The method for producing an oxide superconductor according to claim 1, characterized in that the raw material powder mixture is heated to 1200° C. or higher to form a RE_2O_3 phase and a liquid phase, and then cooled.
(3)前記の原材料粉混合体を1050℃から1200
℃の温度領域に加熱してRE_2BaCuO_5相と液
相とを形成し、しかる後に冷却することを特徴とする請
求項1記載の酸化物超電導体の製造方法。
(3) Heat the raw material powder mixture above from 1050°C to 1200°C.
2. The method for manufacturing an oxide superconductor according to claim 1, wherein the RE_2BaCuO_5 phase and the liquid phase are formed by heating to a temperature range of 0.degree.
(4)前記のRE_2O_3相と液相とからなる加熱さ
れた材料を冷却して凝固した後、この凝固した材料を粉
砕して混合し、この混合粉を所定の形状に成形し、この
成形体を1050℃から1200℃の温度領域に再加熱
してRE_2BaCuO_5相と液相とを形成し、この
再加熱した材料を10〜1000℃/hrの冷却速度で
1000℃まで冷却し、0.2〜20℃/hrの冷却速
度で950℃まで冷却してしかる後に任意の冷却速度で
室温まで冷却することを特徴とする請求項2記載の酸化
物超電導体の製造方法。
(4) After the heated material consisting of the RE_2O_3 phase and the liquid phase is cooled and solidified, the solidified material is crushed and mixed, the mixed powder is molded into a predetermined shape, and the molded object is is reheated to a temperature range of 1050°C to 1200°C to form a RE_2BaCuO_5 phase and a liquid phase, and this reheated material is cooled to 1000°C at a cooling rate of 10 to 1000°C/hr, and then 3. The method for producing an oxide superconductor according to claim 2, wherein the oxide superconductor is cooled to 950° C. at a cooling rate of 20° C./hr, and then cooled to room temperature at an arbitrary cooling rate.
(5)前記のRE_2BaCuO_5相と液相とからな
る加熱された材料を冷却して凝固した後、この凝固した
材料を粉砕して混合し、この混合粉を所定の形状に成形
し、この成形体を1050℃から1200℃の温度領域
に再加熱してRE_2BaCuO_5相と液相とを再び
形成し、この再加熱した材料を10〜1000℃/hr
の冷却速度で1000℃まで冷却し、0.2〜20℃/
hrの冷却速度で950℃まで冷却してしかる後に任意
の冷却速度で室温まで冷却することを特徴とする請求項
3記載の酸化物超電導体の製造方法。
(5) After the heated material consisting of the RE_2BaCuO_5 phase and the liquid phase is cooled and solidified, the solidified material is pulverized and mixed, and the mixed powder is molded into a predetermined shape. is reheated to a temperature range of 1050°C to 1200°C to form the RE_2BaCuO_5 phase and liquid phase again, and the reheated material is heated at 10 to 1000°C/hr.
Cool to 1000℃ at a cooling rate of 0.2 to 20℃/
4. The method for producing an oxide superconductor according to claim 3, wherein the oxide superconductor is cooled to 950° C. at a cooling rate of hr, and then cooled to room temperature at an arbitrary cooling rate.
(6)前記のRE−Ba−Cu−O系の原材料粉混合体
を予備仮焼の後に高温領域に加熱することを特徴とする
請求項1記載の酸化物超電導体の製造方法。
(6) The method for manufacturing an oxide superconductor according to claim 1, characterized in that the RE-Ba-Cu-O-based raw material powder mixture is heated to a high temperature range after preliminary calcination.
(7)室温まで冷却した後に、その製造物を酸素富化雰
囲気下で600℃から200℃の温度領域で2時間から
200時間保持することを特徴とする請求項4記載の酸
化物超電導体の製造方法。
(7) The oxide superconductor according to claim 4, wherein after cooling to room temperature, the manufactured product is held in an oxygen-enriched atmosphere in a temperature range of 600°C to 200°C for 2 to 200 hours. Production method.
(8)室温まで冷却した後に、その製造物を酸素富化雰
囲気下で600℃から200℃の温度領域で2時間から
200時間保持することを特徴とする請求項5記載の酸
化物超電導体の製造方法。
(8) The oxide superconductor according to claim 5, wherein after cooling to room temperature, the manufactured product is held in an oxygen-enriched atmosphere in a temperature range of 600°C to 200°C for 2 to 200 hours. Production method.
(9)前記のRE−Ba−Cu−O系の原材料粉はRE
_2O_3,BaCO_3,CuOの粉体からなること
を特徴とする請求項1記載の酸化物超電導体の製造方法
(9) The above RE-Ba-Cu-O based raw material powder is RE
2. The method for producing an oxide superconductor according to claim 1, wherein the superconductor is made of powder of _2O_3, BaCO_3, and CuO.
(10)前記のRE−Ba−Cu−O系の原材料粉混合
体は1050℃以上に加熱され、冷却・凝固され、粉砕
され、酸化銀もしくは銀と混合され、成形され、しかる
後に再加熱されることを特徴とする請求項記載1の酸化
物超電導体の製造方法。
(10) The RE-Ba-Cu-O raw material powder mixture described above is heated to 1050°C or higher, cooled and solidified, pulverized, mixed with silver oxide or silver, molded, and then reheated. The method for producing an oxide superconductor according to claim 1, characterized in that:
(11)RE−Ba−Cu−O系の原材料粉のうちのB
aCO_3とCuOの粉体を混合し、この混合物を約9
00℃で仮焼し、この混合物を1000℃から1200
℃の温度範囲に加熱して溶融し、この溶融物にRE_2
O_3もしくはRE_2BaCuO_5の粉体を添加し
、この混合体を前記の温度で所定時間保持し、この材料
を10〜1000℃/hrの冷却速度で1000℃まで
冷却し、0.2〜20℃/hrの冷却速度で950℃ま
で冷却してしかる後に任意の冷却速度で室温まで冷却す
ることを特徴とする酸化物超電導体の製造方法。
(11) B of RE-Ba-Cu-O based raw material powder
Mix aCO_3 and CuO powder, and add this mixture to about 9
The mixture was calcined at 1000°C to 1200°C.
It is heated to a temperature range of ℃ to melt it, and this melt is given RE_2
Add powder of O_3 or RE_2BaCuO_5, hold this mixture at the above temperature for a predetermined time, cool the material to 1000°C at a cooling rate of 10-1000°C/hr, and cool it at a cooling rate of 0.2-20°C/hr. 1. A method for producing an oxide superconductor, which comprises cooling to 950° C. at a cooling rate, and then cooling to room temperature at an arbitrary cooling rate.
(12)前記のRE_2BaCuO_5の粉体は、RE
−Ba−Cu−O系の原材料粉を混合し、この混合体を
予備焼結し、この焼結体を1050℃から1200℃の
温度領域に再加熱して211相を形成し、この材料を冷
却して凝固し、この凝固した材料を粉砕する方法によっ
て作製することを特徴とする請求項11記載の酸化物超
電導体の製造方法。
(12) The powder of RE_2BaCuO_5 is
-Ba-Cu-O based raw material powders are mixed, this mixture is pre-sintered, this sintered body is reheated to a temperature range of 1050°C to 1200°C to form a 211 phase, and this material is 12. The method for producing an oxide superconductor according to claim 11, wherein the oxide superconductor is produced by cooling and solidifying the material and pulverizing the solidified material.
JP2297937A 1989-11-02 1990-11-02 Method for manufacturing oxide superconductor Expired - Lifetime JPH0751463B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP28676089 1989-11-02
JP1-286760 1990-05-17
JP2-127502 1990-05-17
JP1-329489 1990-05-17

Publications (2)

Publication Number Publication Date
JPH04119968A true JPH04119968A (en) 1992-04-21
JPH0751463B2 JPH0751463B2 (en) 1995-06-05

Family

ID=17708693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2297937A Expired - Lifetime JPH0751463B2 (en) 1989-11-02 1990-11-02 Method for manufacturing oxide superconductor

Country Status (1)

Country Link
JP (1) JPH0751463B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264531A (en) * 1988-04-14 1989-10-20 Toshiba Corp Distance relay
US5413988A (en) * 1993-04-16 1995-05-09 International Superconductivity Technology Center Method for manufacturing an oxide superconductor thin film and a target for use in the method
US5849668A (en) * 1996-06-21 1998-12-15 Dowa Mining Co., Ltd. Oxide superconductor and method for manufacturing the same
US6172007B1 (en) 1996-06-21 2001-01-09 Dowa Mining Co., Ltd. Oxide superconductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264531A (en) * 1988-04-14 1989-10-20 Toshiba Corp Distance relay
US5413988A (en) * 1993-04-16 1995-05-09 International Superconductivity Technology Center Method for manufacturing an oxide superconductor thin film and a target for use in the method
US5849668A (en) * 1996-06-21 1998-12-15 Dowa Mining Co., Ltd. Oxide superconductor and method for manufacturing the same
US6172007B1 (en) 1996-06-21 2001-01-09 Dowa Mining Co., Ltd. Oxide superconductor

Also Published As

Publication number Publication date
JPH0751463B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
US5306700A (en) Dense melt-based ceramic superconductors
JPH04504558A (en) High critical current oriented grained Y-Ba-Cu-O superconductor and its manufacturing method
JPH02153803A (en) Oxide superconductor bulk material and production thereof
JPH0672713A (en) Production of rare-earth superconducting composition
WO1992017407A1 (en) Oxide superconductor and production thereof
US5430010A (en) Process for preparing oxide superconductor
JPH04119968A (en) Production of oxide superconductor
JPH04224111A (en) Rare earth type oxide superconductor and its production
EP0427209B1 (en) Process for producing oxide superconductor
JP4794145B2 (en) Method for producing RE-Ba-Cu-O oxide superconductor
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JP2931446B2 (en) Method for producing rare earth oxide superconductor
JP3115695B2 (en) Manufacturing method of oxide superconductor having large magnetic levitation force
Rikel et al. Introduction to Bulk Firing Techniques
JPH08325013A (en) Neodymium based oxide superconducting formed body and its manufacture
McCallum et al. Phase diagram effects in rapid thermal processing of REBa/sub 2/Cu/sub 3/O/sub 7-delta
JP2854758B2 (en) Oxide superconductor with large magnetic levitation force
JP2914799B2 (en) Manufacturing method of oxide superconducting bulk material
JPH09110426A (en) Production of oxide superconductor
JPH04254466A (en) Production of yittrium-base superconducting bulk material
JPH07187671A (en) Oxide superconductor and its production
JPH04243917A (en) Preparation of oxide superconducting sintered compact
JPH04160062A (en) Production of superconducting material
JPH0524829A (en) Production of oxide superconductor
JPH01252571A (en) Production of oxide superconductor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 14

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100605

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100605

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110605

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110605

Year of fee payment: 16