JPH05166849A - Semiconductor element - Google Patents

Semiconductor element

Info

Publication number
JPH05166849A
JPH05166849A JP3333046A JP33304691A JPH05166849A JP H05166849 A JPH05166849 A JP H05166849A JP 3333046 A JP3333046 A JP 3333046A JP 33304691 A JP33304691 A JP 33304691A JP H05166849 A JPH05166849 A JP H05166849A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor substrate
protruding
recessed parts
phs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3333046A
Other languages
Japanese (ja)
Inventor
Masaya Murayama
雅也 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3333046A priority Critical patent/JPH05166849A/en
Publication of JPH05166849A publication Critical patent/JPH05166849A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto

Abstract

PURPOSE:To obtain the title semiconductor element wherein the contact heat resistance of a semiconductor substrate with a PHS is reduced and the operating temperature of the element is lowered by a method wherein the following are formed: protruding and recessed parts which are formed on the rear side of the semiconductor substrate and whose depth does not reach an action region; and a metal layer for heat-dissipating use which is formed on the protruding and recessed parts so as to come into close contact with them. CONSTITUTION:The title semiconductor element is provided with the following: an action region 11 which is formed on one main face side of a semiconductor substrate 10; protruding and recessed parts which are formed on the other main face side of the semiconductor substrate 10 and whose depth does not reach the action region 11; and a metal layer 17 for heat-dissipating use which is formed on the protruding and recessed parts so as to come into close contact with them. For example, an n-type action layer 11, a source electrode 12s, a drain electrode 12d and a gate electrode 13 are formed on a semi-insulating GaAs substrate 10. Then, the substrate 10 is polished from the rear so as to obtain a thickness of 30mum; after that, the rear is etched selectively by an RIE method; grooves whose width and interval (w) are 2mum and whose depth (d) is 2mum are formed. Then, the rear is plated with Au whose thickness is 30mum; a PHS 17 is formed; a high-output GaAs FET is completed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体素子に係り、特に
高出力の砒化ガリウム電界効果トランジスタ(以下、G
aAsFETと略称)の構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a high power gallium arsenide field effect transistor (hereinafter referred to as G
It is related to the structure of aAsFET (abbreviation).

【0002】[0002]

【従来の技術】高出力の半導体素子では動作時に多量の
熱が発生する。この熱はしばしば出力の低下や信頼性の
劣化をもたらし、時には熱暴走によって素子を破壊させ
ることがある。よって放熱を少しでも良くすることが、
信頼性をも含めた素子の性能を向上させる鍵となる。特
に高出力GaAsFETにおいては、Si等の材料で作
られた素子と比較して材料自体の熱抵抗が高いため放熱
が悪く、高集積化を阻害する要因の一つとなっている。
2. Description of the Related Art A high power semiconductor device generates a large amount of heat during operation. This heat often causes a reduction in output and a deterioration in reliability, and sometimes causes thermal runaway to destroy the device. Therefore, to improve heat dissipation as much as possible,
It is the key to improve the device performance including reliability. Particularly in a high-power GaAs FET, the heat resistance of the material itself is higher than that of an element made of a material such as Si, so that heat dissipation is poor, which is one of the factors that hinder high integration.

【0003】放熱を良くするために従来から採られてき
た方法の一つは、熱抵抗の高い半導体基板を極力薄く削
るというものであった。ここで、従来の高出力GaAs
FETの断面構造を図4に示す。図中300は半絶縁性
GaAs基板であり、通常30〜50μm程度の厚さを
有する。半絶縁性基板300の上にn型動作層301、
ソース電極302s、ドレイン電極302d、ゲート電
極303が形成されており、動作時はn型動作層301
に電流が流れて熱が発生する。半絶縁性GaAs基板3
00の下にはPHS(Plated Heat Sin
k)と呼ばれる放熱のための金属層307を、主にAu
等の材料を用いて30〜50μm程度の厚さに形成する
のが一般的である。素子はこの金属層307を介して回
路基板や外囲器に半田付けにより固定されているので、
n型動作層301より発生した熱は半絶縁性基板300
から金属層307を経て外部に放出される。
One of the conventional methods for improving heat dissipation has been to cut a semiconductor substrate having a high thermal resistance as thin as possible. Here, conventional high-power GaAs
The sectional structure of the FET is shown in FIG. In the figure, 300 is a semi-insulating GaAs substrate, and usually has a thickness of about 30 to 50 μm. An n-type operating layer 301 on the semi-insulating substrate 300,
A source electrode 302s, a drain electrode 302d, and a gate electrode 303 are formed, and the n-type operating layer 301 is in operation.
An electric current flows through and heat is generated. Semi-insulating GaAs substrate 3
Below 00, PHS (Plated Heat Sin)
The metal layer 307 for heat dissipation called k) is mainly composed of Au.
It is common to form such a material with a thickness of about 30 to 50 μm. Since the element is fixed to the circuit board or the enclosure by soldering via the metal layer 307,
The heat generated from the n-type operating layer 301 is generated by the semi-insulating substrate 300.
Is emitted to the outside through the metal layer 307.

【0004】[0004]

【発明が解決しようとする課題】素子の熱抵抗は、ここ
で主に半絶縁性GaAs基板300(以下、基板と略
称)の熱抵抗、及び基板とPHSの接触部分の熱抵抗に
よって決まる。基板の厚さが薄く、また基板とPHSの
接触面積が大きいほど熱抵抗が低くなるので動作温度を
低くすることができ、高性能の素子が得られる。
The thermal resistance of the device is mainly determined by the thermal resistance of the semi-insulating GaAs substrate 300 (hereinafter abbreviated as substrate) and the thermal resistance of the contact portion between the substrate and PHS. The thinner the substrate is, and the larger the contact area between the substrate and PHS is, the lower the thermal resistance is, so that the operating temperature can be lowered and a high performance element can be obtained.

【0005】しかし、製造工程での基板強度の制約、素
子完成後の取扱いの問題等から基板の厚さを薄くするこ
とはほぼ限界にきており、基板をこれ以上薄くすること
で熱抵抗を下げることは困難である。また、基板とPH
Sの接触面積を増やす為に単に素子の大きさを増大させ
ると実装密度が低下するという問題がある。
However, it is almost the limit to reduce the thickness of the substrate due to restrictions on the strength of the substrate in the manufacturing process, handling problems after completion of the element, etc. It is difficult to lower. Also, the substrate and PH
If the size of the element is simply increased in order to increase the contact area of S, there is a problem that the mounting density is reduced.

【0006】本発明は上記問題点を解決するために、半
導体基板とPHSとの接触熱抵抗を低減させ素子の動作
温度を低下させた構造の半導体素子を提供することを目
的とする。
In order to solve the above problems, it is an object of the present invention to provide a semiconductor device having a structure in which the contact thermal resistance between the semiconductor substrate and PHS is reduced and the operating temperature of the device is lowered.

【0007】[0007]

【課題を解決するための手段】本発明に係る半導体素子
は、半導体基板の一方の主面側に形成された動作領域
と、前記半導体基板の他の主面側に形成され前記動作領
域に達しない深さの凹凸面部と、前記凹凸面部に密着し
形成された放熱用金属層とを具備したことを特徴とす
る。
A semiconductor device according to the present invention has an operating region formed on one main surface side of a semiconductor substrate and an operating region formed on the other main surface side of the semiconductor substrate. It is characterized in that it is provided with an uneven surface portion having a depth which does not exist and a heat dissipation metal layer formed in close contact with the uneven surface portion.

【0008】[0008]

【作用】本発明に係る半導体装置は、半導体基板に凹凸
を設けることによって素子の大きさは従来のままで、半
導体基板とPHSとの接触面積を増大させることが可能
となる。これによって半導体基板とPHSとの接触熱抵
抗が減少し、素子の動作温度が低下するので良好な性能
が得られる。
The semiconductor device according to the present invention can increase the contact area between the PHS and the semiconductor substrate while maintaining the size of the element by providing the semiconductor substrate with irregularities. As a result, the contact thermal resistance between the semiconductor substrate and PHS is reduced and the operating temperature of the device is lowered, so that good performance is obtained.

【0009】[0009]

【実施例】(実施例1)以下、本発明の一実施例に係る
高出力GaAsFETの構造を図1に断面図で示し、さ
らにその形成方法を工程順に図2および図3にいずれも
断面図で示す。
(Embodiment 1) Hereinafter, the structure of a high-power GaAs FET according to an embodiment of the present invention is shown in a sectional view in FIG. 1, and a method of forming the same is shown in FIG. 2 and FIG. Indicate.

【0010】一例の高出力GaAsFETの構造は、図
1に示されるように、半絶縁性GaAs基板10にはこ
れがPHS17と接する面に深さd、幅wの溝が間隔w
で形成されている。この場合、d=wなる寸法の溝を形
成することで、半絶縁性GaAs基板10とPHS11
の接触面積は、溝を形成しなかった場合の2倍となる。
As shown in FIG. 1, the structure of an example of a high-power GaAs FET has a semi-insulating GaAs substrate 10 in which a groove having a depth d and a width w is formed on a surface in contact with the PHS 17 at intervals w.
Is formed by. In this case, the semi-insulating GaAs substrate 10 and the PHS 11 are formed by forming a groove having a size of d = w.
The contact area of is twice as large as that when the groove is not formed.

【0011】次に一実施例の高出力GaAsFETの構
造についてその製造工程を図2、および図3を参照して
説明する。
Next, the manufacturing process of the structure of the high-power GaAs FET of one embodiment will be described with reference to FIGS. 2 and 3.

【0012】先ず、半絶縁性GaAs基板200上の所
定の位置に、例えばイオン注入法によりn型不純物を注
入した後に不純物活性化のための熱処理を行い、n型動
作層201を形成する(図2(a))。
First, an n-type impurity is implanted at a predetermined position on the semi-insulating GaAs substrate 200 by, for example, an ion implantation method, and then a heat treatment for activating the impurity is performed to form an n-type operating layer 201 (see FIG. 2 (a)).

【0013】次に、公知のフォトリソグラフィ技術、リ
フトオフ法等を用いてソース電極202s、ドレイン電
極202dを形成し、熱処理による合金化を施してオー
ム性接触を得る(図2(b))。
Next, the source electrode 202s and the drain electrode 202d are formed by using a known photolithography technique, lift-off method or the like, and alloying is performed by heat treatment to obtain ohmic contact (FIG. 2B).

【0014】次に、これも公知のフォトリソグラフィ技
術、リフトオフ法を用いてゲート電極203を形成する
(図2(c))。
Next, the gate electrode 203 is formed using the well-known photolithography technique and lift-off method (FIG. 2C).

【0015】次に、半絶縁性GaAs基板200を厚さ
が例えば30μmになるように裏面より研磨した後、表
面及び裏面にフォトレジスト層204a,204bを塗
布し、裏面の所定位置のフォトレジスト層204bに露
光を施して例えば幅2μmの開口部205を形成する
(図3(a))。
Next, the semi-insulating GaAs substrate 200 is polished from the back surface so that the thickness is, for example, 30 μm, then photoresist layers 204a and 204b are applied to the front surface and the back surface, and the photoresist layer at predetermined positions on the back surface. 204b is exposed to form an opening 205 having a width of 2 μm, for example (FIG. 3A).

【0016】次に、例えばRIE(反応性イオンエッチ
ング)法により、半絶縁性基板200を選択的にエッチ
ング除去し、幅2μm、深さ2μmの溝206を形成す
る(図3(b))。
Next, the semi-insulating substrate 200 is selectively etched and removed by, for example, RIE (reactive ion etching) method to form a groove 206 having a width of 2 μm and a depth of 2 μm (FIG. 3B).

【0017】最後に、半絶縁性GaAs基板200の裏
面にAuを厚さ30μmになるようにめっきを施してP
HS207を形成し、高出力GaAsFETが完成する
(図3(c))。
Finally, the back surface of the semi-insulating GaAs substrate 200 is plated with Au to a thickness of 30 μm, and P is formed.
The HS 207 is formed, and the high power GaAs FET is completed (FIG. 3C).

【0018】本発明はGaAsFETを例に説明した
が、本発明はこれに限定されるものではなく、他の半導
体材料にも同様に適用することが可能である。
Although the present invention has been described by taking the GaAs FET as an example, the present invention is not limited to this and can be similarly applied to other semiconductor materials.

【0019】また、ここでは半導体基板の裏面に形成す
る凹凸を、各々が平行に形成された直線の溝であるとし
て説明したが、溝はその平面形状が曲線でも構わず、ま
た各々の溝が交差していても良い。さらに、断面形状は
本実施例に図示したような矩形である必要はなく、三角
形、半円、メサ形等であっても構わない。
Further, although the irregularities formed on the back surface of the semiconductor substrate are described here as linear grooves formed in parallel with each other, the grooves may have a curved plane shape, or each groove may have a curved shape. You may cross. Furthermore, the cross-sectional shape does not have to be rectangular as shown in this embodiment, and may be triangular, semicircular, mesa-shaped, or the like.

【0020】[0020]

【発明の効果】以上述べたように本発明によれば、素子
の大きさを変えることなく熱抵抗の低い素子を製造する
ことが可能となり、高出力素子の出力低下、信頼性の劣
化などを防止することができる。
As described above, according to the present invention, it becomes possible to manufacture an element having a low thermal resistance without changing the size of the element, and it is possible to reduce the output of a high output element and the deterioration of reliability. Can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る高出力GaAsFETの一実施例
の構造を示す断面図。
FIG. 1 is a sectional view showing the structure of an embodiment of a high-power GaAs FET according to the present invention.

【図2】本発明に係る一実施例のGaAsFETの製造
工程を工程順に示す断面図。
2A to 2C are cross-sectional views showing a step-by-step manufacturing process of a GaAs FET according to an embodiment of the present invention.

【図3】本発明に係る一実施例のGaAsFETの製造
工程を図2に続いて工程順に示す断面図。
3A to 3C are cross-sectional views showing a manufacturing process of a GaAs FET of one embodiment according to the present invention in the order of processes subsequent to FIG.

【図4】従来のGaAsFETの構造を示す断面図。FIG. 4 is a sectional view showing the structure of a conventional GaAs FET.

【符号の説明】[Explanation of symbols]

10,200,300 半絶縁性GaAs基板 11,201,301 n型動作層 12s,202s,302s ソース電極 12d,202d,302d ドレイン電極 13,203,303 ゲート電極 205 レジスト開口部 206 溝 17,207,307 PHS 10, 200, 300 semi-insulating GaAs substrate 11, 201, 301 n-type operating layer 12s, 202s, 302s source electrode 12d, 202d, 302d drain electrode 13, 203, 303 gate electrode 205 resist opening 206 groove 17, 207, 307 PHS

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/36 29/44 C 7738−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 23/36 29/44 C 7738-4M

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の一方の主面側に形成された
動作領域と、前記半導体基板の他方の主面側に形成され
前記動作領域に達しない深さの凹凸面部と、前記凹凸面
部に密着し形成された放熱用金属層とを具備した半導体
素子。
1. An operating region formed on one main surface side of a semiconductor substrate, an uneven surface portion formed on the other main surface side of the semiconductor substrate and having a depth not reaching the operating region, and the uneven surface portion. A semiconductor element comprising a heat-dissipating metal layer formed in close contact.
JP3333046A 1991-12-17 1991-12-17 Semiconductor element Pending JPH05166849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3333046A JPH05166849A (en) 1991-12-17 1991-12-17 Semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3333046A JPH05166849A (en) 1991-12-17 1991-12-17 Semiconductor element

Publications (1)

Publication Number Publication Date
JPH05166849A true JPH05166849A (en) 1993-07-02

Family

ID=18261667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3333046A Pending JPH05166849A (en) 1991-12-17 1991-12-17 Semiconductor element

Country Status (1)

Country Link
JP (1) JPH05166849A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461889B1 (en) 1998-08-17 2002-10-08 Nec Corporation Method of fabricating semiconductor device with diamond substrate
JP2004186651A (en) * 2002-12-06 2004-07-02 Nec Corp Semiconductor device and its manufacture
JP2008252061A (en) * 2007-03-08 2008-10-16 Nissan Motor Co Ltd Semiconductor device and method of manufacturing the same
JP2011155164A (en) * 2010-01-28 2011-08-11 Toyota Central R&D Labs Inc Nitride semiconductor device, and method of manufacturing the same
US9082742B2 (en) 2011-11-04 2015-07-14 Sumitomo Electric Device Innovations, Inc. Semiconductor device
WO2019017163A1 (en) * 2017-07-21 2019-01-24 株式会社村田製作所 Semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461889B1 (en) 1998-08-17 2002-10-08 Nec Corporation Method of fabricating semiconductor device with diamond substrate
JP2004186651A (en) * 2002-12-06 2004-07-02 Nec Corp Semiconductor device and its manufacture
JP2008252061A (en) * 2007-03-08 2008-10-16 Nissan Motor Co Ltd Semiconductor device and method of manufacturing the same
JP2011155164A (en) * 2010-01-28 2011-08-11 Toyota Central R&D Labs Inc Nitride semiconductor device, and method of manufacturing the same
US9082742B2 (en) 2011-11-04 2015-07-14 Sumitomo Electric Device Innovations, Inc. Semiconductor device
US9401284B2 (en) 2011-11-04 2016-07-26 Sumitomo Electric Device Innovations, Inc. Semiconductor device
WO2019017163A1 (en) * 2017-07-21 2019-01-24 株式会社村田製作所 Semiconductor device

Similar Documents

Publication Publication Date Title
US5449930A (en) High power, compound semiconductor device and fabrication process
WO1989006444A2 (en) Vertical power transistor and fabrication methods
JP3144387B2 (en) Method for manufacturing semiconductor device
JPH05166849A (en) Semiconductor element
JP2868008B1 (en) Semiconductor device and manufacturing method thereof
JPS59123270A (en) Monolithic circuit
JPH05175247A (en) Manufacture of semiconductor device
JPS58197825A (en) Method of forming semiconductor protecting layer
JP2510544B2 (en) Manufacturing method of monolithic microwave IC
JP2845232B2 (en) Semiconductor device
JPH06326330A (en) Semiconductor device and its manufacture
JPH09266215A (en) Semiconductor device for high frequency high output and manufacture thereof
JPS6123350A (en) Semiconductor device
JP2833788B2 (en) Method for manufacturing semiconductor device
JPS5810874B2 (en) Hand Thai Hatsukousoshi
JPS6252957B2 (en)
JP3302811B2 (en) Microwave semiconductor device
JPH05152340A (en) Field-effect transistor
JP3338215B2 (en) Superconducting base transistor and method of manufacturing the same
JP3236386B2 (en) Method for manufacturing semiconductor device
JPH0529357A (en) Field-effect transistor
JPH03227527A (en) Semiconductor integrated circuit and manufacture thereof
JPS60160176A (en) Field effect semiconductor device
KR100232152B1 (en) Manufacturing method of mesfet
JPH05275455A (en) Semiconductor device and its manufacture