JPS6123350A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6123350A
JPS6123350A JP14468884A JP14468884A JPS6123350A JP S6123350 A JPS6123350 A JP S6123350A JP 14468884 A JP14468884 A JP 14468884A JP 14468884 A JP14468884 A JP 14468884A JP S6123350 A JPS6123350 A JP S6123350A
Authority
JP
Japan
Prior art keywords
substrate
pellet
active region
gaas
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14468884A
Other languages
Japanese (ja)
Inventor
Kazunao Tokunaga
徳永 一直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP14468884A priority Critical patent/JPS6123350A/en
Publication of JPS6123350A publication Critical patent/JPS6123350A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To simultaneously improve reduction in thermal resistance and suppression of warpage of pellet which are contradictory phenomena for thickness of pellet by forming a recessed portion at the rear surface of semiconductor substrate in such a manner that the semiconductor substrate just under the active region becomes thinner than the peripheral region and filling such recessed portion with metal. CONSTITUTION:A recessed portion is provided at the rear surface of a GaAs substrate 1 in such a manner that the substrate just under the active region 3 of the GaAs substrate 1 is thin and the periphery thereof is thick. Thereafter, this recessed region is filled with metal 2 by the selective plating of Au or Ag in order to make flat the rear surface. The heat radiation character from the active region 3 is improved and mechanical strength is also maintained by such metal 2. Since the active region 3 is thin, warpage of substrate due to heat generation is less than the other region. Therefore, characteristic of a high output GaAs MESFET and reliability can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野)        ゛一本発明は半
導体装置の形状、特に放熱効果の改善された基板形状に
′関するものである。  □(従来の技術) 一般に、高出力GaAsショットキー接合ゲート轍−葬
効巣トランジスタ(以゛下、ME8FETという)のベ
レット構造は、以下に示す”様−に二種類に大別゛でき
る゛。            ′] ・la)  厚
さ400〜500μmのG a A sウニ/’−表面
にPETとして必要な電極、パッシベーション膜を形成
し、その後機械的研摩によ、!>tSOμm程度まで薄
くする。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the shape of a semiconductor device, particularly to a substrate shape with improved heat dissipation effect. □ (Prior Art) In general, the bullet structure of a high-power GaAs Schottky junction gate rut-effect transistor (hereinafter referred to as ME8FET) can be roughly divided into two types as shown below. '] ・la) Electrodes and a passivation film necessary for PET are formed on the surface of Ga As sea urchin/'- with a thickness of 400 to 500 μm, and then the thickness is reduced to about !>tSO μm by mechanical polishing.

(b)  機械的研摩により150μm 程度まで薄七
°した後、ケミカルエツチングによシ3o〜50′μm
程度までさらに薄くする。但し、ペレットの機械的強度
を補強するため、゛例えばAuあるいはAgなどをメッ
キし、最終的なベレットあ厚さをlOOμm程度とする
。      ゛ □(a)の構造の特徴は、利点とし
てペレットマウン4,57デイ7夛時。、変化1強く、
6ツyhl’ラツク、電極あるいは゛パッシベーション
膜層基板との剥れを抑えたり、残留応力低減を図れるが
、欠蕉と1では熱伝導の゛低いG a A sの基板の
厚さが厚い′fch臓抵抗及高゛くなることである。一
方、(b)“の゛構造の特徴ば、利点゛としてG a 
A sの基板の′−さが薄い元め熱抵抗低減を図れるが
、゛欠点としてはGaAsとマウ′ント扇゛ソルダー!
’ G’a’A sと裏iメッために加熱処理時にベレ
ットの「反シ」が大きくなシ易いことである。
(b) After being thinned to a thickness of about 150 μm by mechanical polishing, it is etched by chemical etching to a thickness of 30 to 50 μm.
Make it even thinner to a certain extent. However, in order to reinforce the mechanical strength of the pellet, it is plated with, for example, Au or Ag, so that the final pellet thickness is about 100 μm.゛ □The structure of (a) has the advantage of having a pellet mount of 4,57 days and 7 times. , change 1 strongly,
6. Easy to use, it is possible to suppress peeling from the electrode or passivation film layer substrate and reduce residual stress, but in 1 and 1, the thickness of the GaAs substrate, which has low thermal conductivity, is thick. 'fch visceral resistance increases. On the other hand, in (b) "characteristics of the structure", Ga
As the As substrate is thin, it can reduce thermal resistance, but the disadvantage is that it requires GaAs and mounting fan solder.
Because of the ``G'a'As'' and lining, the ``reverse'' of the pellet tends to become large during heat treatment.

(発明が解決しようとする問題点) 高出力GaAsMESFETの性能向上を図る上で、熱
抵抗低減は重要な要素であシ、ベレットの厚さを薄くす
ることが最も効果を発揮する。一方。
(Problems to be Solved by the Invention) Reducing thermal resistance is an important element in improving the performance of high-power GaAs MESFETs, and reducing the thickness of the pellet is most effective. on the other hand.

ベレットの厚さを薄くすると、加熱処理時にベレットの
1反)」が太きくなシ、その結果ベレットクラック、電
極あるいはパッシベーション膜と基板との剥れ、残留応
力などの原因とな如、PETの特性、信頼度に支障を来
たす。
If the thickness of the pellet is made thinner, the thickness of the pellet (1 roll) will not be as thick during heat treatment, which may cause pellet cracks, peeling of the electrode or passivation film from the substrate, residual stress, etc. The characteristics and reliability will be affected.

本発明の目的は、ベレットの厚さに関し相反する事象で
ある熱抵抗低減とベレットのr反シ」の抑制を同時に改
善した半導体装置を提案するものである。
An object of the present invention is to propose a semiconductor device that simultaneously improves the reduction in thermal resistance and the suppression of the r-reflection of the pellet, which are contradictory phenomena related to the thickness of the pellet.

(問題点を解決するだめの手段) 本発明によれば、能動領域直下の半導体基板の厚さをそ
の周辺部よシ薄くなるように半導体基板裏面に窪み部を
有し、この窪み部に金属を充填した半導体装置を得る。
(Means for Solving the Problem) According to the present invention, a recess is provided on the back surface of the semiconductor substrate so that the thickness of the semiconductor substrate directly under the active region is thinner than that of the surrounding area, and the recess is filled with metal. A semiconductor device filled with is obtained.

(実施例) 次に、図面を参照して本発明をより詳細に説明する。(Example) Next, the present invention will be explained in more detail with reference to the drawings.

N個のゲート電極が同一半導体基板上で接続された高出
力GaAs ME8FETの熱抵抗几+hは実験的に次
式で示すことができる。
The thermal resistance +h of a high-power GaAs ME8FET in which N gate electrodes are connected on the same semiconductor substrate can be experimentally expressed by the following equation.

・・・・・・+1) ここで、Zは単位ゲート幅、Lsdはソース及びドレイ
ンオーミック電極間距離、Bはソース及びドレイン電極
幅、にはG a A sの熱伝導率、aはGaAsの厚
みである。
・・・・・・+1) Here, Z is the unit gate width, Lsd is the distance between the source and drain ohmic electrodes, B is the source and drain electrode width, is the thermal conductivity of GaAs, and a is the thermal conductivity of GaAs. It is thick.

また、ベレットの「反り」を表わす量として、第2図に
示す様にベレット20の中心から、Xの距離にある点の
「反)」による変位量yを用いると、変位量yは次式で
示すことができる。
Furthermore, if we use the amount of displacement y due to the "curvature" of a point located at a distance of X from the center of the pellet 20 as shown in Figure 2 as the amount representing the "warpage" of the pellet, then the displacement y can be calculated using the following formula: It can be shown as

(0≦X≦e) ここでWは加熱処理時にベレット20に加わる力。(0≦X≦e) Here, W is the force applied to the pellet 20 during the heat treatment.

EはGaAsのヤング率、bはベレットの幅、eはベレ
ット20の長さである。(1]式より、熱抵抗低減を図
るためにはペレッ)20の厚さを薄くスることが有効で
あるが、(2)式よシ、ペレッ)20の厚さを薄くする
と、ベレン)20のr反シ」は著しく大きくなることが
判る。この様にベレット20の厚さに関し、熱抵抗低減
とベレッ)20の「反シ」の抑制は相反する事象であシ
、一般には同時に改善されない。
E is the Young's modulus of GaAs, b is the width of the pellet, and e is the length of the pellet 20. From equation (1), it is effective to reduce the thickness of Pellet 20 in order to reduce the thermal resistance, but according to equation (2), reducing the thickness of Pellet 20 results in lower thermal resistance. It can be seen that the value of 20 becomes significantly large. As described above, regarding the thickness of the beret 20, reducing the thermal resistance and suppressing the "reflection" of the beret 20 are contradictory phenomena, and are generally not improved at the same time.

ペレット内における熱の発生領域は第3図に示す様に、
ソース電極32.ゲート電極33.ドレイン電極34が
集まっているPETの能動領域35であシ、この能動領
域で発生した熱の放熱は、図中点線で示すように、主j
CG a A s基板31を伝わって行なわれるため、
熱の伝導領域は、はぼ能動領域35の直下と考えられる
。よって、能動領域35の直下のG a A s基板3
1の厚さを薄くし、残る領域のG a A s基板31
の厚さを厚くすることによシ、熱抵抗低減及びベレット
の1反)」を抑制できる。
The heat generation area within the pellet is shown in Figure 3.
Source electrode 32. Gate electrode 33. In the active region 35 of PET where the drain electrode 34 is gathered, the heat generated in this active region is mainly radiated as shown by the dotted line in the figure.
Since it is carried out through the CG a As substrate 31,
The heat conduction area is considered to be directly below the active area 35. Therefore, the GaAs substrate 3 directly below the active region 35
1 is thinned and the remaining area of the GaAs substrate 31 is
By increasing the thickness of the steel plate, it is possible to reduce the thermal resistance and suppress the occurrence of the bullet damage.

第1図に本発明によるPETの基板の構造の一例を示す
。G a A s基板lの能動領域3の直下の厚さを薄
くシ、その周囲の厚さを厚くするように、GaAs基板
1の裏面には窪みが設けられている。
FIG. 1 shows an example of the structure of a PET substrate according to the present invention. A recess is provided on the back surface of the GaAs substrate 1 so that the thickness immediately below the active region 3 of the GaAs substrate 1 is thinned and the thickness around it is thickened.

この結果、G a A s基板lの断面形状は凹型とな
っている。ここで、凹型形状は、GaAs基板1を貫通
するような溝とするのではなく、四辺の周囲が厚くなる
「くぼみ」状とする必要がある。これは凹部への応力の
集中を避けるためである。その後、凹領域12.Auあ
るいはAgの選択メッキによって金属2を充填し、裏面
の平坦化を行っている。
As a result, the cross-sectional shape of the GaAs substrate l is concave. Here, the concave shape should not be a groove penetrating the GaAs substrate 1, but a "concave" shape with thicker peripheries on all four sides. This is to avoid concentration of stress on the recess. After that, the recessed area 12. The metal 2 is filled by selective plating of Au or Ag, and the back surface is flattened.

この金属2によって、能動領域3からの放熱特性、は改
善され、機械的強度も保たれる。又能動領域3は薄いの
でここでの発熱による基板の「反シ」も少ない。
This metal 2 improves the heat dissipation characteristics from the active region 3 and maintains mechanical strength. Furthermore, since the active region 3 is thin, there is little "reflection" of the substrate due to heat generation here.

(発明の効果) 本発明による半導体装置は、特に高出力G a A s
MESF’ETにおける熱抵抗低減、及びベレットクラ
ック、電極やパッシベーション膜と基板との剥れ、残留
応力などの原因となるペレットマウント。
(Effects of the Invention) The semiconductor device according to the present invention has a particularly high output GaAs
Pellet mounting reduces thermal resistance in MESF'ET, and causes pellet cracks, peeling of electrodes and passivation films from substrates, and residual stress.

ボンディング時の加熱処理によるペレットの「反り」抑
制に寄与でき、高出力GaAsME8FETの特性、信
頼度の向上を図ることができる。
This can contribute to suppressing the "warping" of the pellets caused by heat treatment during bonding, and can improve the characteristics and reliability of high-output GaAsME8FETs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al、 lb)、 (C)は本発明の一実施例
に用いる半導体基板の平面図およびそれぞれの側面から
の断面図である。第2図は半導体基板のr反シ」を説明
する図、第3図は従来の半導体装置の放熱特性を示す断
面図である。 l、31・・・・・・G a A s基板、2・・・・
・・金属、3゜35・・・・・・能動領域、20・・・
・・・ペレット、32・・・・・・ソース電極、33・
・・・・・ゲート電極、34・・・・・・ドレイン電極 7一
FIGS. 1 (al, lb) and (C) are a plan view and a cross-sectional view from each side of a semiconductor substrate used in an embodiment of the present invention. FIG. 2 is a diagram illustrating the r-reflection of a semiconductor substrate, and FIG. 3 is a sectional view showing the heat dissipation characteristics of a conventional semiconductor device. l, 31...G a As substrate, 2...
...Metal, 3゜35...Active area, 20...
... Pellet, 32 ... Source electrode, 33.
...Gate electrode, 34...Drain electrode 7-

Claims (1)

【特許請求の範囲】[Claims]  能動領域直下の半導体基板の厚さを周囲領域よりも薄
くなるように前記半導体基板に窪み部を有し、該窪み部
に金属を充填したことを特徴とする半導体装置。
1. A semiconductor device, characterized in that the semiconductor substrate has a recessed portion so that the thickness of the semiconductor substrate immediately below the active region is thinner than the surrounding region, and the recessed portion is filled with metal.
JP14468884A 1984-07-12 1984-07-12 Semiconductor device Pending JPS6123350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14468884A JPS6123350A (en) 1984-07-12 1984-07-12 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14468884A JPS6123350A (en) 1984-07-12 1984-07-12 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6123350A true JPS6123350A (en) 1986-01-31

Family

ID=15367944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14468884A Pending JPS6123350A (en) 1984-07-12 1984-07-12 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6123350A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5200641A (en) * 1990-10-04 1993-04-06 Mitsubishi Denki Kabushiki Kaisha Semiconductor device structure including bending-resistant radiating layer
US5338967A (en) * 1993-01-12 1994-08-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor device structure with plated heat sink and supporting substrate
US5438212A (en) * 1993-02-25 1995-08-01 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with heat dissipation structure
US6316827B1 (en) 1997-09-12 2001-11-13 Nec Corporation Semiconductor device having improved temperature distribution
US7504707B2 (en) 2003-06-05 2009-03-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof
JP2010098251A (en) * 2008-10-20 2010-04-30 Fujitsu Ltd Semiconductor device and method of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5200641A (en) * 1990-10-04 1993-04-06 Mitsubishi Denki Kabushiki Kaisha Semiconductor device structure including bending-resistant radiating layer
US5338967A (en) * 1993-01-12 1994-08-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor device structure with plated heat sink and supporting substrate
US5770468A (en) * 1993-01-12 1998-06-23 Mitsubishi Denki Kabushiki Kaisha Process for mounting a semiconductor chip to a chip carrier by exposing a solder layer to a reducing atmosphere
US5438212A (en) * 1993-02-25 1995-08-01 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with heat dissipation structure
US6316827B1 (en) 1997-09-12 2001-11-13 Nec Corporation Semiconductor device having improved temperature distribution
US7504707B2 (en) 2003-06-05 2009-03-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US7629226B2 (en) 2003-06-05 2009-12-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof
JP2010098251A (en) * 2008-10-20 2010-04-30 Fujitsu Ltd Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2757805B2 (en) Semiconductor device
JP3144387B2 (en) Method for manufacturing semiconductor device
JP2005033131A (en) Semiconductor device
JPS6123350A (en) Semiconductor device
JPH05175247A (en) Manufacture of semiconductor device
JP2713200B2 (en) Semiconductor device and manufacturing method thereof
JPH05166849A (en) Semiconductor element
JP3302811B2 (en) Microwave semiconductor device
EP0090651A2 (en) Semiconductor chip assembly including a thermal radiator plate
JPH0529506A (en) Semiconductor device
JPH11238870A (en) Semiconductor device and manufacture thereof
JPH09266215A (en) Semiconductor device for high frequency high output and manufacture thereof
JPH06326330A (en) Semiconductor device and its manufacture
JP2833788B2 (en) Method for manufacturing semiconductor device
JPH01120853A (en) Semiconductor device
JPS62150869A (en) Compound semiconductor device
JPH05152340A (en) Field-effect transistor
JPS58101466A (en) Manufacture of semiconductor device
JPH10199900A (en) Semiconductor device
JPH04116836A (en) Microwave semiconductor device
JP2890841B2 (en) Resin-sealed semiconductor device
JPH0529357A (en) Field-effect transistor
JPH05275501A (en) Semiconductor device
JPS63198377A (en) Mes field-effect transistor
JPS58199533A (en) Semiconductor device