JPH05166731A - プラズマプロセス装置 - Google Patents

プラズマプロセス装置

Info

Publication number
JPH05166731A
JPH05166731A JP3353998A JP35399891A JPH05166731A JP H05166731 A JPH05166731 A JP H05166731A JP 3353998 A JP3353998 A JP 3353998A JP 35399891 A JP35399891 A JP 35399891A JP H05166731 A JPH05166731 A JP H05166731A
Authority
JP
Japan
Prior art keywords
layer
film forming
forming chamber
tin
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3353998A
Other languages
English (en)
Other versions
JP3221025B2 (ja
Inventor
Junichi Sato
淳一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP35399891A priority Critical patent/JP3221025B2/ja
Priority to US07/992,978 priority patent/US5326404A/en
Publication of JPH05166731A publication Critical patent/JPH05166731A/ja
Application granted granted Critical
Publication of JP3221025B2 publication Critical patent/JP3221025B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

(57)【要約】 (修正有) 【目的】パーティクルを生じさせず、半導体装置を高い
歩留まりで製造することができるプラズマプロセス装置
を提供する。 【構成】プラズマプロセス装置1は、プラズマを用いて
半導体ウエハを処理するものであり、成膜チャンバ10
を備えている。そして、成膜チャンバを加熱可能な加熱
装置50を具備する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明はプラズマ処理装置に関す
る。本発明の装置は、半導体装置等の電子デバイスの製
造時に、例えばTiN膜等の金属膜を形成する場合に使
用することができる。
【0002】
【従来の技術】半導体装置等の電子デバイスは年々微細
化している。特に半導体集積回路の微細化に伴い、コン
タクトホールやビアホール(以下、接続孔ともいう)の
寸法も小さくなり、例えばアルミニウムのバイアススパ
ッタ法等の従来技術では、もはや半導体集積回路の微細
化に対応できなくなってきている。それ故、カバレッジ
の良いブランケットタングステンCVD法が注目されて
いる。
【0003】ブランケットタングステンCVD法におい
ては、図4に示すように、拡散層102が形成されたシ
リコン基板100の上に層間絶縁層104を形成し、層
間絶縁層104に開口部106を形成する。その後、層
間絶縁層104の表面及び形成された開口部106にT
iN又はTiON等から成る密着層108を堆積させ
る。次いで、密着層108上にタングステン層110を
堆積させる。その後、タングステン層110をエッチン
グバックして、開口部106の内部にのみタングステン
層を残し、これによって接続孔が完成する。
【0004】タングステン層110はシリコン基板10
0との密着性が悪いため、TiN等から成る密着層10
8の形成は不可欠である。ところが、開口部106に対
する密着層108のカバレッジが悪い場合、図4に示す
ように、タングステン層110をCVD法にて堆積させ
たとき、層間絶縁層104に形成した開口部106中の
タングステンにボイド(中空)112が生じるという問
題がある。
【0005】また、通常、TiNから成る密着層をCV
D法にて形成するとき、TiCl4を原料として用いる
ため、密着層にClが取り込まれ易いという問題があ
る。これについては、例えば、"Photo Assisted LP-CVD
TiN For Deep Submicron Contact Using Organo-titan
ium Compound", Koichi Ikeda, et al, 1990 Symposium
on VLSI Technology, pp 61-62 を参照のこと。そのた
め、TiN層の成膜をECRプラズマCVD法によって
行なう技術が提案されている(1990年春 応用物理
学会予稿集 591頁の赤堀他 29a−ZA−6 参
照)。これによれば、カバレッジ良くTiN層を形成で
き、しかも650°C程度の温度で成膜することによ
り、TiN層中へのClの取り込み量が少なくなったと
されている。
【0006】
【発明が解決しようとする課題】しかし、TiNは高温
と低温では成長メカニズムが異なり、低温における成長
では、TiNは粗な膜、特に著しい場合は粉状になるこ
とが知られている(例えば、「CVDハンドブック」、
化学工学会編、1991年6月20日、株式会社朝倉書
店発行、第578〜583頁参照)。
【0007】ブランケットタングステンCVD法におい
ては、ウエハは成膜チャンバ内に置かれる。ウエハを上
述のように650°C程度に加熱すれば、ウエハ表面に
は良質なTiN層が成長する。ところが、成膜チャンバ
は加熱されていないため、成膜チャンバの内壁には粗な
TiN膜が成長してしまい、パーティクル発生の原因と
なる。このため、半導体装置の製造歩留まりを著しく低
下させてしまうという問題がある。従って、このパーテ
ィクルを発生させないTiN膜等の形成用のECR−C
VD装置が切望されている。
【0008】従って、本発明の目的は、パーティクルを
生じさせず、半導体装置を高い歩留まりで製造すること
ができるプラズマプロセス装置を提供することにある。
【0009】
【課題を解決するための手段】上記の目的を達成するた
めの本発明のプラズマプロセス装置は、プラズマを用い
て半導体ウエハを処理するものであり、成膜チャンバを
備えている。そして、成膜チャンバを加熱可能な加熱装
置を具備して成ることを特徴とする。プラズマを、電子
サイクロトロン共鳴放電(ECR)にて発生させること
が好ましい。
【0010】成膜チャンバは、Ti/TiN層又はTi
/TiON/TiN層を成膜する複数のチャンバから構
成されていることが望ましい。加熱装置は、成膜チャン
バの壁面に埋設されたヒータであることが好ましい。
【0011】
【作用】本発明のプラズマプロセス装置は、成膜チャン
バに加熱装置が具備されているので、ウエハ同様、チャ
ンバ内壁にも、良好なTiN膜が形成される。従って、
パーティクルが生成することがなく、高い歩留まりにて
半導体装置を製造することができる。
【0012】
【実施例】以下、図面を参照して、実施例に基づき本発
明を説明する。
【0013】(実施例1)図1に示す実施例1は、EC
Rプラズマプロセス装置から成る本発明のプラズマプロ
セス装置を、ブランケットタングステンCVD法にて半
導体集積回路装置を製造する場合に、半導体基板との密
着層及びバリア層としてTi層及びTiN層を連続して
形成するのに適用した例である。
【0014】プラズマプロセス装置1は、成膜チャンバ
10、プラズマチャンバ20から成る。成膜チャンバ1
0内にはサセプタ12が配置され、サセプタ12には半
導体ウエハを加熱するためのヒータ14が埋め込まれて
いる。プラズマチャンバ20は成膜チャンバ10の上部
と連通している。プラズマチャンバ20の上部にはマイ
クロ波導入窓22が設けられ、マイクロ波導入窓22の
上部には、2.45MHzのマイクロ波を導入するため
のレクタンギュラーウエイブガイド26が設けられてい
る。プラズマチャンバ20の周囲には磁石コイル24が
配設されている。RFパワーがRF電源28からマイク
ロ波導入窓22に加えられる。プラズマチャンバ20に
は、アルゴンガス導入口30からアルゴンガスが供給さ
れる。アルゴンガスはマイクロ波導入窓22のクリーニ
ングを行うために導入される(この技術については、1
989年春の応用物理学会予稿集721頁の赤堀ら3P
−2F−1参照)。
【0015】成膜チャンバ10には、TiCl4供給部
からマスフローコントローラ及び第1のガス導入部40
を通してTiCl4ガスが供給される。また、N2ガス及
びO2ガスが、同様にマスフローコントローラ及び第2
のガス導入部42を通して成膜チャンバ10に供給され
る。成膜チャンバ10内のガスはガス排気部16から系
外に排気される。
【0016】本発明の特徴である加熱装置50は、成膜
チャンバ10の側壁10Aに埋め込まれたヒータから成
る。この加熱装置50によって成膜チャンバ10を加熱
することができる。加熱装置50は、半導体ウエハを加
熱するためのヒータ14と同じ温度制御手段(図示せ
ず)により所定の温度に制御される。
【0017】尚、図1中、32はプラズマ流である。ま
た、100は、後述する図2の(A)に示す構造を有す
る半導体ウエハである。
【0018】図1に示すプラズマプロセス装置1を使用
して、シリコン基板等の半導体ウエハの表面にTi層及
びTiN層を形成するプロセスを、図2を参照して、以
下説明する。
【0019】予め拡散層102が形成された半導体ウエ
ハ100上には、SiO2等から成る層間絶縁層104
が形成され、この層間絶縁層104にはリソグラフィー
とドライエッチング技術を用いて開口部106が設けら
れている。この工程は、通常の各種の方法を適宜用いる
ことができる。これにより図2の(A)に示す構造を得
る。
【0020】次に図1に示すプラズマプロセス装置1に
て、成膜チャンバ10に、第1のガス導入口40からT
iCl4を供給し、又、第2のガス導入口42からH2
供給して、先ず、厚さ30nmのTi層120を層間絶
縁層104の表面及び開口部106に形成する。成膜の
条件は、 ガス TiCl4/Ar/H2=10/50/5
0sccm 温度 約400°C 圧力 0.13Pa マイクロ波 2.8kW とすることができる。
【0021】続いて、第1のガス導入口40からTiC
4を、第2のガス導入口42からN2ガス及びH2ガス
を成膜チャンバ10に供給して、厚さ50nmのTiN
層122をTi層120の上に形成する。これによって
密着層及びバリア層が完成する。TiN層122の具体
的な形成条件は以下のとおりである。 温度 約650°C マイクロ波 2.8kW 圧力 0.13Pa RFバイアス 300W ガス TiCl4/N2/H2/Ar=10/3
0/30/50sccm尚、ガス流量比は適宜に設定す
ることができるが、一般的には、TiCl41に対し
て、N2+H2等は1〜2程度が好ましい。この時、RF
バイアスを印加するので、TiN層122のカバレッジ
が向上し、更に緻密な膜となり、バリア性が向上する。
【0022】以上の工程において、ヒータ14を制御す
ることによってサセプタ12の温度を400゜Cに保
ち、同時に加熱装置50を制御することによって成膜チ
ャンバ10の側壁10Aの温度を同じく400゜Cに保
持する。尚、加熱装置50によって、成膜チャンバ10
の側壁10Aの温度を良好なTiN層を形成し得る温
度、例えば400゜C〜700゜Cとする必要がある。
ここで、良好なTiN層とは、TiNが粗な膜あるいは
粉状ではないことを意味する。
【0023】TiN層122は低圧で形成されるため、
TiN層122は開口部106の底部にも厚く形成さ
れ、図2の(B)に示す構造が得られる。また、Clは
揮発性の高い化合物であるHClという形態でガス排出
部16から排気され、成膜されたTi層18及びTiN
層中のCl含有量は少なくなり、膜質が向上する。真空
を破らずにTi層120及びTiN層122を連続して
形成することができるので、各層の品質も安定し、スル
ープットも向上する。
【0024】次にタングステン層110を形成する。形
成条件は、第1ステップとして、 WF6/SiH4=25/10sccm 圧力 1.06×104Pa 温度 475°C とし、第2ステップとして、 WF6/H2 =60/360sccm 圧力 1.06×104Pa 温度 475°C とすることができる。
【0025】これにより、カバレッジの良いタングステ
ン層110が形成され、図2の(C)に示す構造が得ら
れる。この際、Ti/TiN層にはオーバーハングがな
くカバレッジも良いので、開口部106内においてタン
グステンにボイドは発生しない。また、開口部106に
おいて、このTi/TiN層は良好なバリア性を備えた
膜として機能する。
【0026】従来の装置においては、半導体ウエハの処
理枚数が増すに従い、成膜チャンバの内壁に付着したT
iNが剥離してパーティクルとなり、ウエハ上に付着す
る。この結果、半導体装置の製造歩留まりが著しく低減
する。これに対して、本発明の装置では、半導体ウエハ
の処理枚数が300枚までになっても、パーティクルの
発生は認められなかった。
【0027】(実施例2)図3に示す本発明の実施例2
におけるプラズマプロセス装置では、ゲートバルブを介
して2つの成膜チャンバが接続されている。尚、図1及
び図3において、同一参照番号は同一の要素を示す。
【0028】図3に示すECRプラズマプロセス装置か
ら成る本発明のプラズマプロセス装置200は、Ti層
を形成するための第1の成膜チャンバ210、及びTi
系の酸窒化物や窒化物(例えば、TiON層やTiN
層)を成膜するための第2の成膜チャンバ220から成
る。第1の成膜チャンバ210には、TiCl4供給部
からマスフローコントローラ及び第1のガス導入部40
を通してTiCl4ガスが供給される。また、第2の成
膜チャンバ220には、TiCl4供給部からマスフロ
ーコントローラ及び第1のガス導入部40Aを通してT
iCl4ガスが供給され、N2Oガス及びO2ガスが、同
様にマスフローコントローラ及び第2のガス導入部42
を通して供給される。第1の成膜チャンバ210と第2
の成膜チャンバ220とはゲートバルブ230を介して
接続されている。
【0029】本発明の特徴である加熱装置50,50A
は、成膜チャンバ210,220の側壁210A,22
0Aに埋め込まれたヒータから成る。この加熱装置5
0,50Aによって第1及び第2の成膜チャンバ21
0,220を加熱することができる。加熱装置50,5
0Aは、半導体ウエハを加熱するためのサセプタ12,
12Aに埋め込まれたヒータ14,14Aと同じ温度制
御手段(図示せず)により所定の温度に制御される。
【0030】図3に示すプラズマプロセス装置200を
使用して、シリコン基板等の半導体ウエハの表面にTi
層、及びTiON層並びにTiN層を形成するプロセス
を、以下説明する。
【0031】実施例1と同様に、図2の(A)に示す構
造を予め形成する。次に、第1の成膜チャンバ210で
厚さ30nmのTi層を実施例1と同様の条件で形成す
る。即ち、Ti層の成膜条件として、 ガス TiCl4/Ar/H2=10/50/50
sccm 温度 約400°C 圧力 0.13Pa マイクロ波 2.8kW とすることができる。
【0032】Ti層の形成後、ゲートバルブ230を介
して搬送手段(図3には図示せず)によって、半導体ウ
エハ100を第2の成膜チャンバ220に搬入し、Ti
ON層並びにTiN層を形成する。TiON層の具体的
な形成条件は以下のとおりとした。 温度 約650°C マイクロ波 2.8kW 圧力 0.13Pa RFバイアス 300W ガス TiCl4/N2/O2/Ar=10/4
0/20/50sccm また、TiN層の具体的な形成条件は次のようにした。 温度 約650°C マイクロ波 2.8kW 圧力 0.13Pa RFバイアス 300W ガス TiCl4/N2/H2/Ar=10/3
0/30/50sccm
【0033】次にタングステン層をTiN層の上に形成
する。形成条件は、実施例1と同様であり、詳細は省略
する。尚、タングステン層を、以下の条件のみで形成す
ることもできる。 WF6/H2 =60/360sccm 圧力 1.06×104Pa 温度 475°C
【0034】以上、本発明のプラズマプロセス装置を好
ましい実施例に基づき説明したが、本発明の装置はこれ
らの実施例に限定されるものではない。実施例において
説明した各工程における条件は、使用する装置等に依存
する。
【0035】実施例においては、本発明のプラズマプロ
セス装置としてECR−CVD装置を例にとり説明した
が、ECRプラズマエッチング装置に適用することもで
きる。また、本発明の装置は、ブランケットタングステ
ンプラグ形成法にて使用できるほか、高温アルミニウム
スパッタによるAlリフィル法等にも適用できる。ま
た、TiN層、TiON層及びTiN層の形成を例にと
り説明したが、TiB2の形成にも適用できる。
【0036】成膜チャンバを加熱する加熱装置と、サセ
プタに埋め込まれたヒータの温度制御を独立して行うこ
とができる。加熱装置は、成膜チャンバの側壁だけでな
く、成膜チャンバの頂壁あるいは底部に埋め込んでもよ
い。また、加熱装置を成膜チャンバの壁に埋め込むので
はなく、成膜チャンバの外側に配列したランプを使用す
ることもできる。加熱装置として、ヒータ以外にもラン
プや温媒還流を使用することができる。
【0037】
【効果】以上述べたように、本発明のプラズマプロセス
装置によれば、例えばTi層とTiN層を形成する成膜
チャンバをTiNがパーティクルにならない温度に加熱
しているため、半導体ウエハの処理枚数が増えてもパー
ティクルの発生が抑えられる。従って、装置のメンテナ
ンス頻度が少なくて済み、スループットも向上する。更
には、信頼性の高い電子デバイスを高い歩留まりで生産
性良く製造することができる。
【図面の簡単な説明】
【図1】本発明のプラズマプロセス装置の第1の実施例
の構成を示す一部断面図である。
【図2】本発明のプラズマプロセス装置を使用した、ブ
ランケットタングステンCVD法による半導体装置の製
造工程の一部を示す半導体素子の模式的な断面図であ
る。
【図3】本発明のプラズマプロセス装置の第2の実施例
の構成を示す一部断面図である。
【図4】従来のECRプラズマプロセス装置を使用し
た、ブランケットタングステンCVD法による半導体装
置の製造工程における問題点を示す半導体素子の模式的
な断面図である。
【符号の説明】
1,200 プラズマプロセス装置 10,210,220 成膜チャンバ 10A,210A,220A 成膜チャンバの側壁 20 プラズマチャンバ 12 サセプタ 14,14A 半導体ウエハを加熱するためのヒータ 16 ガス排気部 22 マイクロ波導入窓 24 磁石コイル 26 レクタンギュラーウエイブガイド 28 RF電源 30 Arガス導入口 32 プラズマ流 34 RFバイアス印加装置 40,40A,42 ガス導入部 50,50A 加熱装置 230 ゲートバルブ 100 半導体ウエハ 102 拡散層 104 層間絶縁層 106 開口部 108 密着層 110 タングステン層 120 Ti層 122 TiN層

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】プラズマを用いて半導体ウエハを処理す
    る、成膜チャンバを備えたプラズマプロセス装置であっ
    て、成膜チャンバを加熱可能な加熱装置を具備して成る
    ことを特徴とするプラズマプロセス装置
  2. 【請求項2】前記成膜チャンバは、Ti/TiN層又は
    Ti/TiON/TiN層を成膜するチャンバであるこ
    とを特徴とする請求項1に記載のプラズマプロセス装
    置。
JP35399891A 1991-12-19 1991-12-19 プラズマプロセス装置 Expired - Lifetime JP3221025B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP35399891A JP3221025B2 (ja) 1991-12-19 1991-12-19 プラズマプロセス装置
US07/992,978 US5326404A (en) 1991-12-19 1992-12-18 Plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35399891A JP3221025B2 (ja) 1991-12-19 1991-12-19 プラズマプロセス装置

Publications (2)

Publication Number Publication Date
JPH05166731A true JPH05166731A (ja) 1993-07-02
JP3221025B2 JP3221025B2 (ja) 2001-10-22

Family

ID=18434628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35399891A Expired - Lifetime JP3221025B2 (ja) 1991-12-19 1991-12-19 プラズマプロセス装置

Country Status (2)

Country Link
US (1) US5326404A (ja)
JP (1) JP3221025B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000076981A (ko) * 1999-03-29 2000-12-26 가네꼬 히사시 파티클의 발생을 저감할 수 있는 티타늄막의 질화방법 및배선불량이 없는 반도체장치

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6488807B1 (en) 1991-06-27 2002-12-03 Applied Materials, Inc. Magnetic confinement in a plasma reactor having an RF bias electrode
US6238588B1 (en) 1991-06-27 2001-05-29 Applied Materials, Inc. High pressure high non-reactive diluent gas content high plasma ion density plasma oxide etch process
US6077384A (en) * 1994-08-11 2000-06-20 Applied Materials, Inc. Plasma reactor having an inductive antenna coupling power through a parallel plate electrode
US6074512A (en) * 1991-06-27 2000-06-13 Applied Materials, Inc. Inductively coupled RF plasma reactor having an overhead solenoidal antenna and modular confinement magnet liners
US6090303A (en) * 1991-06-27 2000-07-18 Applied Materials, Inc. Process for etching oxides in an electromagnetically coupled planar plasma apparatus
US6514376B1 (en) 1991-06-27 2003-02-04 Applied Materials Inc. Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna
US6165311A (en) * 1991-06-27 2000-12-26 Applied Materials, Inc. Inductively coupled RF plasma reactor having an overhead solenoidal antenna
US6024826A (en) * 1996-05-13 2000-02-15 Applied Materials, Inc. Plasma reactor with heated source of a polymer-hardening precursor material
US6036877A (en) 1991-06-27 2000-03-14 Applied Materials, Inc. Plasma reactor with heated source of a polymer-hardening precursor material
US5477975A (en) * 1993-10-15 1995-12-26 Applied Materials Inc Plasma etch apparatus with heated scavenging surfaces
US6063233A (en) 1991-06-27 2000-05-16 Applied Materials, Inc. Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna
JP3216345B2 (ja) * 1993-04-06 2001-10-09 ソニー株式会社 半導体装置及びその作製方法
US5525159A (en) * 1993-12-17 1996-06-11 Tokyo Electron Limited Plasma process apparatus
JP2809113B2 (ja) * 1994-09-29 1998-10-08 日本電気株式会社 半導体装置の製造方法
EP0784713A4 (en) * 1994-10-11 2000-03-01 Gelest Inc TITANIUM BASED CONFORMING LAYERS AND PREPARATION METHOD
TW279240B (en) 1995-08-30 1996-06-21 Applied Materials Inc Parallel-plate icp source/rf bias electrode head
US6036878A (en) * 1996-02-02 2000-03-14 Applied Materials, Inc. Low density high frequency process for a parallel-plate electrode plasma reactor having an inductive antenna
US6054013A (en) * 1996-02-02 2000-04-25 Applied Materials, Inc. Parallel plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density
WO1997044141A1 (en) * 1996-05-22 1997-11-27 Optical Coating Laboratory, Inc. Method and apparatus for dual-frequency plasma-enhanced cvd
US5789040A (en) * 1997-05-21 1998-08-04 Optical Coating Laboratory, Inc. Methods and apparatus for simultaneous multi-sided coating of optical thin film designs using dual-frequency plasma-enhanced chemical vapor deposition
US6221792B1 (en) * 1997-06-24 2001-04-24 Lam Research Corporation Metal and metal silicide nitridization in a high density, low pressure plasma reactor
US6132551A (en) * 1997-09-20 2000-10-17 Applied Materials, Inc. Inductive RF plasma reactor with overhead coil and conductive laminated RF window beneath the overhead coil
US6294466B1 (en) * 1998-05-01 2001-09-25 Applied Materials, Inc. HDP-CVD apparatus and process for depositing titanium films for semiconductor devices
US6100185A (en) * 1998-08-14 2000-08-08 Micron Technology, Inc. Semiconductor processing method of forming a high purity <200> grain orientation tin layer and semiconductor processing method of forming a conductive interconnect line
US6221758B1 (en) * 1999-01-04 2001-04-24 Taiwan Semiconductor Manufacturing Company Effective diffusion barrier process and device manufactured thereby
KR20010042649A (ko) 1999-02-12 2001-05-25 베리 아이클스 텅스텐 질화물의 화학기상증착
US6365507B1 (en) 1999-03-01 2002-04-02 Micron Technology, Inc. Method of forming integrated circuitry
US6524951B2 (en) * 1999-03-01 2003-02-25 Micron Technology, Inc. Method of forming a silicide interconnect over a silicon comprising substrate and method of forming a stack of refractory metal nitride over refractory metal silicide over silicon
US6245674B1 (en) 1999-03-01 2001-06-12 Micron Technology, Inc. Method of forming a metal silicide comprising contact over a substrate
US6589437B1 (en) 1999-03-05 2003-07-08 Applied Materials, Inc. Active species control with time-modulated plasma
US6410432B1 (en) 1999-04-27 2002-06-25 Tokyo Electron Limited CVD of integrated Ta and TaNx films from tantalum halide precursors
US6265311B1 (en) 1999-04-27 2001-07-24 Tokyo Electron Limited PECVD of TaN films from tantalum halide precursors
US6410433B1 (en) 1999-04-27 2002-06-25 Tokyo Electron Limited Thermal CVD of TaN films from tantalum halide precursors
US6413860B1 (en) 1999-04-27 2002-07-02 Tokyo Electron Limited PECVD of Ta films from tanatalum halide precursors
US6268288B1 (en) 1999-04-27 2001-07-31 Tokyo Electron Limited Plasma treated thermal CVD of TaN films from tantalum halide precursors
US6564810B1 (en) * 2000-03-28 2003-05-20 Asm America Cleaning of semiconductor processing chambers
US20010051215A1 (en) * 2000-04-13 2001-12-13 Gelest, Inc. Methods for chemical vapor deposition of titanium-silicon-nitrogen films
US6401652B1 (en) 2000-05-04 2002-06-11 Applied Materials, Inc. Plasma reactor inductive coil antenna with flat surface facing the plasma
US6414648B1 (en) 2000-07-06 2002-07-02 Applied Materials, Inc. Plasma reactor having a symmetric parallel conductor coil antenna
US6409933B1 (en) 2000-07-06 2002-06-25 Applied Materials, Inc. Plasma reactor having a symmetric parallel conductor coil antenna
US6462481B1 (en) 2000-07-06 2002-10-08 Applied Materials Inc. Plasma reactor having a symmetric parallel conductor coil antenna
US6685798B1 (en) 2000-07-06 2004-02-03 Applied Materials, Inc Plasma reactor having a symmetrical parallel conductor coil antenna
US6694915B1 (en) 2000-07-06 2004-02-24 Applied Materials, Inc Plasma reactor having a symmetrical parallel conductor coil antenna
US6791692B2 (en) * 2000-11-29 2004-09-14 Lightwind Corporation Method and device utilizing plasma source for real-time gas sampling
US20060144520A1 (en) * 2002-09-19 2006-07-06 Tokyo Electron Limited Viewing window cleaning apparatus
US8058585B2 (en) * 2006-03-13 2011-11-15 Tokyo Electron Limited Plasma processing method, plasma processing apparatus and storage medium

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4223048A (en) * 1978-08-07 1980-09-16 Pacific Western Systems Plasma enhanced chemical vapor processing of semiconductive wafers
JPS5916329A (ja) * 1982-07-19 1984-01-27 Semiconductor Energy Lab Co Ltd プラズマ気相反応装置
JPS60101934A (ja) * 1983-11-08 1985-06-06 Nec Corp プラズマcvd装置
GB8332394D0 (en) * 1983-12-05 1984-01-11 Pilkington Brothers Plc Coating apparatus
JPS6063920A (ja) * 1984-07-04 1985-04-12 Hitachi Ltd 気相処理装置
JPS61288077A (ja) * 1985-06-13 1986-12-18 Fujitsu Ltd 薄膜形成装置
JPS6250469A (ja) * 1985-08-30 1987-03-05 Alps Electric Co Ltd プラズマcvd装置
JPS6328871A (ja) * 1986-07-22 1988-02-06 Toshiba Corp プラズマcvd処理装置
JPS63270469A (ja) * 1987-04-27 1988-11-08 Hitachi Electronics Eng Co Ltd Cvd薄膜形成装置およびcvd薄膜形成方法
JPH0239422A (ja) * 1988-07-28 1990-02-08 Toshiba Corp Cvd反応容器における膜脱落防止装置
JPH0426769A (ja) * 1990-05-23 1992-01-29 Toshiba Corp 銅薄膜の形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000076981A (ko) * 1999-03-29 2000-12-26 가네꼬 히사시 파티클의 발생을 저감할 수 있는 티타늄막의 질화방법 및배선불량이 없는 반도체장치

Also Published As

Publication number Publication date
JP3221025B2 (ja) 2001-10-22
US5326404A (en) 1994-07-05

Similar Documents

Publication Publication Date Title
JP3221025B2 (ja) プラズマプロセス装置
US7484513B2 (en) Method of forming titanium film by CVD
US6143128A (en) Apparatus for preparing and metallizing high aspect ratio silicon semiconductor device contacts to reduce the resistivity thereof
KR100462097B1 (ko) 질화티탄막의 형성 방법 및 당해 방법으로 제조된 생성물
US20070000870A1 (en) Plasma processing method
US20010028922A1 (en) High throughput ILD fill process for high aspect ratio gap fill
US6149730A (en) Apparatus for forming films of a semiconductor device, a method of manufacturing a semiconductor device, and a method of forming thin films of a semiconductor
US20090071404A1 (en) Method of forming titanium film by CVD
US7550816B2 (en) Filled trench isolation structure
JPH08264530A (ja) 半導体装置の製造方法及び半導体装置の製造装置
JP3085364B2 (ja) Cvd装置のクリーニング方法
KR100395171B1 (ko) 화학적증착법에의한티타늄막형성방법
JP3208124B2 (ja) 半導体装置、半導体装置の製造方法、および半導体装置の製造装置
JP2001102367A (ja) 遠隔プラズマ源を用いる被膜除去
JP4319269B2 (ja) プラズマcvdによる薄膜形成方法
JP3449736B2 (ja) メタルプラグの形成方法
JPH11330047A (ja) エッチング装置及びエッチング方法
JPH0766143A (ja) 半導体装置におけるバリアメタル層の形成方法
JPH05267220A (ja) 半導体装置の密着層及びメタルプラグ形成方法
JPH05343354A (ja) 半導体装置の密着層及びメタルプラグ形成方法
JP2844693B2 (ja) 高融点金属膜の形成方法
US20240332001A1 (en) Atomic layer deposition of silicon-carbon-and-nitrogen-containing materials
JP3127557B2 (ja) Ecrプラズマ処理方法
JPH05190466A (ja) プラズマプロセス装置
JP4570186B2 (ja) プラズマクリーニング方法

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11