JPH05166722A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05166722A
JPH05166722A JP32936491A JP32936491A JPH05166722A JP H05166722 A JPH05166722 A JP H05166722A JP 32936491 A JP32936491 A JP 32936491A JP 32936491 A JP32936491 A JP 32936491A JP H05166722 A JPH05166722 A JP H05166722A
Authority
JP
Japan
Prior art keywords
insulating film
semiconductor layer
single crystal
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32936491A
Other languages
Japanese (ja)
Inventor
Toru Miyayasu
徹 宮保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP32936491A priority Critical patent/JPH05166722A/en
Publication of JPH05166722A publication Critical patent/JPH05166722A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE:To uniformly control the film thickness of a thin film semiconductor layer formed over an insulating substrate with regard to an SOI substrate. CONSTITUTION:1) When a single crystal semiconductor layer 1A deposited over an insulating substrate by coating a projecting insulating film 2 formed over the substrate is ground to the top face of the projecting insulating film, a groove 5 having an insulating film on the bottom is formed in the single crystal semiconductor layer, and polishing is conducted by using an abrasive which grinds not an insulating film, but a semiconductor layer. 2) Included is the step to form the groove 5 so that its bottom may reach the insulating substrate. 3) Also included is the step to deposit an insulating film 6 on the bottom of the groove 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
係り, 特にSOI(Silicon on Insulator) 基板に形成する
半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device formed on an SOI (Silicon on Insulator) substrate.

【0002】SOI 基板は素子特性や素子間分離の点でバ
ルク基板より優れているが,その中でも特にバルクの結
晶性が良好なことを活かせる貼り合わせ技術によるSOI
基板が注目されている。
The SOI substrate is superior to the bulk substrate in terms of device characteristics and isolation between devices. Among them, the SOI by the bonding technique that can make good use of the good bulk crystallinity
Substrates are receiving attention.

【0003】この貼り合わせ技術は, 表面に熱酸化膜を
形成した単結晶シリコン(Si)ウエハと, 支持基板を貼り
合わせた後に単結晶Siウエハを薄膜化し,Si活性層を得
るものである。近年, 半導体装置の微細化に伴いこのSi
活性層の厚さが 0.2μm以下の超薄膜SOI 素子が求めら
れ,この超薄膜Si活性層の厚さを均一にする新しい技術
が要求されている。
This bonding technique is to obtain a Si active layer by bonding a single crystal silicon (Si) wafer having a thermal oxide film formed on its surface to a supporting substrate and then thinning the single crystal Si wafer. In recent years, with the miniaturization of semiconductor devices, this Si
Ultra-thin film SOI devices with an active layer thickness of 0.2 μm or less are required, and new technology for making the thickness of this ultra-thin Si active layer uniform is required.

【0004】[0004]

【従来の技術】図3(A) 〜(E) は従来例によるSOI 基板
の製造方法を説明する断面図である。図3(A) におい
て,単結晶半導体基板1の表面に,選択酸化(LOCOS) 法
を用いて素子分離絶縁膜として二酸化シリコン(SiO2)膜
2を形成する。
2. Description of the Related Art FIGS. 3A to 3E are sectional views for explaining a conventional method for manufacturing an SOI substrate. In FIG. 3A, a silicon dioxide (SiO 2 ) film 2 is formed as an element isolation insulating film on the surface of the single crystal semiconductor substrate 1 by using the selective oxidation (LOCOS) method.

【0005】図3(B) において,素子分離絶縁膜2を覆
って基板上に平坦化膜として気相成長(CVD) によるSiO2
膜3を成長し,その表面を研磨して平坦化する。図3
(C) において,単結晶半導体基板1の平坦化膜3の表面
を支持基板4に貼り合わせる。
In FIG. 3B, SiO 2 formed by vapor phase epitaxy (CVD) as a flattening film covering the element isolation insulating film 2 on the substrate.
The film 3 is grown and the surface thereof is polished to be flattened. Figure 3
In (C), the surface of the flattening film 3 of the single crystal semiconductor substrate 1 is attached to the supporting substrate 4.

【0006】図3(D) において,通常の研削により,単
結晶半導体基板1の大部分を除去すし,その後研磨によ
り表面を鏡面に仕上げた単結晶半導体層1Aを得る。図3
(E) において,単結晶半導体層1Aは研磨できるが,素子
分離絶縁膜2は研磨できない研磨方法を用いて研磨する
ことにより,素子分離絶縁膜2の表面が露出するまで単
結晶半導体層1Aを研磨して薄膜単結晶半導体層1Bを得
る。これを素子形成用の活性層とする。
In FIG. 3 (D), most of the single crystal semiconductor substrate 1 is removed by ordinary grinding, and then the single crystal semiconductor layer 1A having a mirror-finished surface is obtained. Figure 3
In (E), the single crystal semiconductor layer 1A can be polished, but the element isolation insulating film 2 cannot be polished. The thin film single crystal semiconductor layer 1B is obtained by polishing. This is used as an active layer for element formation.

【0007】[0007]

【発明が解決しようとする課題】従来の薄膜SOI 作製技
術においては, 単結晶半導体層1Aを研磨していくと, ま
ず, ある部分の素子分離絶縁膜2が露出するが,まだ素
子分離絶縁膜2が露出しない部分では研磨レートが速い
ために,素子分離絶縁膜2が露出した部分の単結晶半導
体層も少しは研磨されることから,基板内全体で薄膜半
導体層1Bの膜厚を均一に制御することはできなかった。
In the conventional thin film SOI fabrication technique, when the single crystal semiconductor layer 1A is polished, first, a part of the element isolation insulating film 2 is exposed, but the element isolation insulating film is still exposed. Since the polishing rate is fast in the portion where 2 is not exposed, the single crystal semiconductor layer in the portion where the element isolation insulating film 2 is exposed is also slightly polished, so that the film thickness of the thin film semiconductor layer 1B is made uniform throughout the substrate. I couldn't control it.

【0008】本発明は絶縁基板上に形成する薄膜半導体
層の膜厚を均一に制御する方法の提供を目的とする。
An object of the present invention is to provide a method for uniformly controlling the film thickness of a thin film semiconductor layer formed on an insulating substrate.

【0009】[0009]

【課題を解決するための手段】上記課題の解決は, 1)絶縁基板上に形成された凸型絶縁膜(2) を覆って該
基板上に被着された単結晶半導体層(1A)を該凸型絶縁膜
の上面まで研磨する際に, 底部に絶縁膜を有する溝(5)
を該単結晶半導体層に形成して, 絶縁膜は研磨されない
で且つ半導体層を研磨する研磨剤を用いて研磨する半導
体装置の製造方法,あるいは 2)前記溝(5) をその底部が前記絶縁基板に届くように
形成する工程を有する前記1)記載の半導体装置の製造
方法,あるいは 3)前記溝(5) の底部に絶縁膜(6) を堆積する工程を有
する前記1)あるいは2)記載の半導体装置の製造方法
により達成される。
Means for Solving the Problems To solve the above problems, 1) a single crystal semiconductor layer (1A) deposited on a substrate is formed by covering a convex insulating film (2) formed on the insulating substrate. When polishing up to the upper surface of the convex insulating film, a groove having an insulating film at the bottom (5)
Is formed in the single crystal semiconductor layer, and the insulating film is not polished, and the semiconductor layer is polished by using a polishing agent, or 2) the groove (5) has the bottom portion of the insulating layer. 1) The method for manufacturing a semiconductor device according to 1), which includes a step of forming so as to reach the substrate, or 3) The above 1) or 2), which includes a step of depositing an insulating film 6 on the bottom of the groove 5. This is achieved by the method for manufacturing a semiconductor device.

【0010】[0010]

【作用】本発明では,単結晶半導体層1Aに,平坦化絶縁
膜2に届く溝を形成している。このようにすることによ
り,単結晶半導体層1Aを研磨していくと溝の底部の絶縁
膜2が近づくと研磨レートが低下するため,素子分離絶
縁膜2が露出した部分の単結晶半導体層の研磨量が少な
くなる。そのため,基板内全体の単結晶半導体層の膜厚
が従来例より格段に向上できる。
In the present invention, the groove reaching the flattening insulating film 2 is formed in the single crystal semiconductor layer 1A. By doing so, as the single crystal semiconductor layer 1A is polished, the polishing rate decreases as the insulating film 2 at the bottom of the groove approaches, so that the element isolation insulating film 2 is exposed in the exposed portion of the single crystal semiconductor layer. The amount of polishing is reduced. Therefore, the film thickness of the single crystal semiconductor layer in the entire substrate can be significantly improved as compared with the conventional example.

【0011】また,溝底に補助絶縁膜を形成すると,そ
の表面を溝の上端にその厚さの分だけ近づけることにな
り,研磨の終点に近づいたときの研磨レートの低下を促
進することができる。
When the auxiliary insulating film is formed on the bottom of the groove, the surface of the auxiliary insulating film is brought closer to the upper end of the groove by the thickness of the auxiliary insulating film, which promotes a decrease in the polishing rate when the polishing end point is approached. it can.

【0012】[0012]

【実施例】図1(A) 〜(E) は本発明の実施例(1) を説明
する断面図である。図1(A) において,厚さ約 625μm
の単結晶Si基板1の表面に厚さ40 nm の初期酸化膜10を
形成し,次いで, LOCOS 法を用いて素子分離絶縁膜とし
て厚さ240nmのSiO2膜2を形成する。
1 (A) to 1 (E) are sectional views for explaining an embodiment (1) of the present invention. In Figure 1 (A), the thickness is about 625 μm.
An initial oxide film 10 having a thickness of 40 nm is formed on the surface of the single crystal Si substrate 1 and then a SiO 2 film 2 having a thickness of 240 nm is formed as an element isolation insulating film by using the LOCOS method.

【0013】図1(B) において,素子分離絶縁膜2を覆
って基板上に平坦化膜として厚さ約800 nmのCVD SiO2
3を成長し,その表面を約400 nm研磨して平坦化する。
図1(C) において,単結晶Si基板1の平坦化膜3の表面
をSiからなる支持基板4に貼り合わせる。貼り合わせ
は,窒素雰囲気の減圧状態で密着の後に1100℃,30分の
アニールにより行った。
In FIG. 1 (B), a CVD SiO 2 film 3 having a thickness of about 800 nm is grown as a flattening film on the substrate so as to cover the element isolation insulating film 2 and the surface thereof is polished by about 400 nm to flatten it. Turn into.
In FIG. 1 (C), the surface of the flattening film 3 of the single crystal Si substrate 1 is bonded to the supporting substrate 4 made of Si. The bonding was performed by adhesion under a reduced pressure in a nitrogen atmosphere and then annealing at 1100 ° C for 30 minutes.

【0014】図1(D) において,単結晶半導体基板1を
約600 μm研削し,次いで通常の研磨により約20μm研
磨して表面を鏡面に仕上げた単結晶半導体層1Aを得る。
次いで, 通常のリソグラフィ法を用いて, ダイシングラ
インの領域に初期酸化膜10にに届く溝5を単結晶半導体
層1Aに形成する。
In FIG. 1D, the single crystal semiconductor substrate 1 is ground to about 600 μm, and then polished to about 20 μm by ordinary polishing to obtain a single crystal semiconductor layer 1A having a mirror-finished surface.
Then, using a normal lithography method, a groove 5 reaching the initial oxide film 10 is formed in the region of the dicing line in the single crystal semiconductor layer 1A.

【0015】図1(E) において,単結晶半導体層1Aは研
磨できるが,素子分離絶縁膜2は研磨できない研磨方法
として,アミンの水溶液にコロイダルシリカをわずかに
混入した研磨剤を用いて研磨することにより,単結晶半
導体層1Aを素子分離絶縁膜2の上面と一致するまで薄膜
化した。その結果, 膜厚が 100±6 nm と均一な膜厚を
持つ薄膜単結晶半導体層1Bを得ることができた。
In FIG. 1 (E), the single crystal semiconductor layer 1A can be polished, but the element isolation insulating film 2 cannot be polished. As a polishing method, polishing is performed using a polishing agent in which colloidal silica is slightly mixed in an amine aqueous solution. As a result, the single crystal semiconductor layer 1A was thinned until it coincided with the upper surface of the element isolation insulating film 2. As a result, a thin film single crystal semiconductor layer 1B having a uniform film thickness of 100 ± 6 nm could be obtained.

【0016】図2(A) 〜(E) は本発明の実施例(2) を説
明する断面図である。図2(A) 〜(C) は図1と同様であ
る。図2(D) において,単結晶半導体基板1を約600 μ
m研削し,次いで通常の研磨により約20μm研磨して表
面を鏡面に仕上げた単結晶半導体層1Aを得る。
2 (A) to 2 (E) are sectional views for explaining an embodiment (2) of the present invention. 2A to 2C are similar to FIG. In FIG. 2 (D), the single crystal semiconductor substrate 1 is about 600 μm.
Then, the single-crystal semiconductor layer 1A having a mirror-finished surface is obtained by polishing the surface of the mirror-finished surface for about 20 μm.

【0017】次いで, 通常のリソグラフィ法を用いて,
ダイシングラインの領域に初期酸化膜10にに届く溝5を
単結晶半導体層1Aに形成する。次いで,基板上に厚さ10
0 nmのCVD SiO2膜を堆積し,パターニングして溝5の底
のみに補助絶縁膜6を形成する。
Then, using the ordinary lithography method,
A groove 5 reaching the initial oxide film 10 is formed in the region of the dicing line in the single crystal semiconductor layer 1A. Then a thickness of 10
A 0 nm CVD SiO 2 film is deposited and patterned to form an auxiliary insulating film 6 only on the bottom of the groove 5.

【0018】図2(E) において,アミンの水溶液にコロ
イダルシリカを混入した研磨剤を用いて研磨することに
より,単結晶半導体層1Aを素子分離絶縁膜2の上面と一
致するまで薄膜化した。その結果, 膜厚が 100±6 nm
と均一な膜厚を持つ薄膜単結晶半導体層1Bを得ることが
できた。
In FIG. 2 (E), the single crystal semiconductor layer 1 A was thinned to match the upper surface of the element isolation insulating film 2 by polishing with a polishing agent in which an aqueous solution of amine was mixed with colloidal silica. As a result, the film thickness is 100 ± 6 nm
Thus, a thin film single crystal semiconductor layer 1B having a uniform film thickness could be obtained.

【0019】実施例(2) の補助絶縁膜6は,前記のよう
にその表面を素子分離絶縁膜の上面と一致させることに
より, 研磨の終点に近づいた部分の研磨レートの低下を
促進するためのものである。
Since the auxiliary insulating film 6 of the embodiment (2) has its surface aligned with the upper surface of the element isolation insulating film as described above, the auxiliary insulating film 6 promotes the reduction of the polishing rate at the portion near the polishing end point. belongs to.

【0020】以上の実施例ではいずれも素子分離絶縁膜
としてLOCOS 法による酸化膜が用いられたが,これの代
わりに, 単結晶半導体層をメサエッチングした後酸化す
ることにより素子分離絶縁膜を形成する場合も本発明は
適用可能であることは勿論である。
In each of the above embodiments, the oxide film formed by the LOCOS method was used as the element isolation insulating film, but instead of this, the element isolation insulating film is formed by mesa-etching the single crystal semiconductor layer and then oxidizing it. Of course, the present invention can be applied to such cases.

【0021】[0021]

【発明の効果】本発明によれぱ, 絶縁基板上に形成する
薄膜半導体層の膜厚を均一に制御することができた。こ
の結果,SOI 基板を用いたデバイスの微細化とその製造
歩留の向上に寄与することができた。
According to the present invention, the thickness of the thin film semiconductor layer formed on the insulating substrate can be controlled uniformly. As a result, we were able to contribute to the miniaturization of devices using SOI substrates and the improvement of their manufacturing yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例(1) の断面図FIG. 1 is a sectional view of an embodiment (1) of the present invention.

【図2】 本発明の実施例(2) の断面図FIG. 2 is a sectional view of an embodiment (2) of the present invention.

【図3】 従来例の説明図(3)FIG. 3 is an explanatory diagram of a conventional example (3)

【符号の説明】[Explanation of symbols]

1 半導体基板で単結晶Si基板 10 初期酸化膜で熱酸化SiO2膜 1A 単結晶半導体層 1B 薄膜単結晶半導体層 2 素子分離絶縁膜で熱酸化SiO2膜 3 平坦化絶縁膜でCVD SiO2膜 4 支持基板でSi基板 5 溝 6 補助絶縁膜1 Semiconductor substrate is a single crystal Si substrate 10 Initial oxide film is thermally oxidized SiO 2 film 1A Single crystal semiconductor layer 1B is a thin film single crystal semiconductor layer 2 Element isolation insulating film is thermally oxidized SiO 2 film 3 Flattening insulating film is CVD SiO 2 film 4 Support substrate is Si substrate 5 Groove 6 Auxiliary insulating film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板上に形成された凸型絶縁膜(2)
を覆って該基板上に被着された単結晶半導体層(1A)を該
凸型絶縁膜の上面まで研磨する際に, 底部に絶縁膜を有
する溝(5) を該単結晶半導体層に形成して, 絶縁膜は研
磨されないで且つ半導体層を研磨する研磨剤を用いて研
磨することを特徴とする半導体装置の製造方法。
1. A convex insulating film (2) formed on an insulating substrate
A groove (5) having an insulating film at the bottom is formed in the single crystal semiconductor layer when polishing the single crystal semiconductor layer (1A) deposited on the substrate to cover the upper surface of the convex insulating film. Then, the insulating film is not polished and the semiconductor layer is polished by using a polishing agent for polishing the semiconductor layer.
【請求項2】 前記溝(5) をその底部が前記絶縁基板に
届くように形成する工程を有することを特徴とする請求
項1記載の半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, further comprising the step of forming the groove (5) so that a bottom portion thereof reaches the insulating substrate.
【請求項3】 前記溝(5) の底部に絶縁膜(6) を堆積す
る工程を有することを特徴とする請求項1あるいは2記
載の半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, further comprising the step of depositing an insulating film (6) on the bottom of the groove (5).
JP32936491A 1991-12-13 1991-12-13 Manufacture of semiconductor device Withdrawn JPH05166722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32936491A JPH05166722A (en) 1991-12-13 1991-12-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32936491A JPH05166722A (en) 1991-12-13 1991-12-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05166722A true JPH05166722A (en) 1993-07-02

Family

ID=18220635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32936491A Withdrawn JPH05166722A (en) 1991-12-13 1991-12-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05166722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449638A (en) * 1994-06-06 1995-09-12 United Microelectronics Corporation Process on thickness control for silicon-on-insulator technology

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449638A (en) * 1994-06-06 1995-09-12 United Microelectronics Corporation Process on thickness control for silicon-on-insulator technology

Similar Documents

Publication Publication Date Title
JP2608351B2 (en) Semiconductor member and method of manufacturing semiconductor member
JPH01315159A (en) Dielectric-isolation semiconductor substrate and its manufacture
JP2006148066A (en) Germanium-on-insulator (geoi) type wafer manufacturing method
JPH03280538A (en) Fabrication method for semiconductor device formation substrate
JPH01106466A (en) Manufacture of semiconductor device
CN112379480B (en) Preparation method of waveguide structure composite substrate, composite substrate and photoelectric crystal film
JPH05217824A (en) Semiconductor wafer and its manufacture
JPH04212409A (en) Forming method for semiconductor substrate
US5449638A (en) Process on thickness control for silicon-on-insulator technology
JPH06275525A (en) Soi substrate and manufacture thereof
JPH05166722A (en) Manufacture of semiconductor device
JPH0613593A (en) Semiconductor substrate
JPH02267950A (en) Semiconductor substrate
JP2552936B2 (en) Dielectric isolation substrate and semiconductor integrated circuit device using the same
JPS60149146A (en) Manufacture of semiconductor device
KR20190028532A (en) Method of manufacturing semiconductor structure
JP2002057309A (en) Method of forming soi substrate
JP2000252354A (en) Production of substrate having buried insulation film
JPH04199632A (en) Soi wafer and manufacture thereof
JPH056883A (en) Manufacture of semiconductor substrate
JPH05304062A (en) Bonded wafer and manufacture therefore
JPH02219252A (en) Manufacture of semiconductor device
JPH06342784A (en) Etchant used for etching porous silicon, etching method using it, and manufacture of semiconductor base using it
JPH03136346A (en) Manufacture of soi substrate
JPH06151572A (en) Dielectric-isolation substrate and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311