JPH05161849A - 高表面積金属担持触媒の製造方法 - Google Patents

高表面積金属担持触媒の製造方法

Info

Publication number
JPH05161849A
JPH05161849A JP3351355A JP35135591A JPH05161849A JP H05161849 A JPH05161849 A JP H05161849A JP 3351355 A JP3351355 A JP 3351355A JP 35135591 A JP35135591 A JP 35135591A JP H05161849 A JPH05161849 A JP H05161849A
Authority
JP
Japan
Prior art keywords
metal
surface area
platinum
catalyst
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3351355A
Other languages
English (en)
Inventor
Paul Stonehart
ポール・ストンハルト
Kazunori Tsurumi
和則 鶴見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Stonehart Associates Inc
Original Assignee
Tanaka Kikinzoku Kogyo KK
Stonehart Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Stonehart Associates Inc filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP3351355A priority Critical patent/JPH05161849A/ja
Priority to US07/989,151 priority patent/US5374598A/en
Priority to EP92830670A priority patent/EP0548033A1/en
Publication of JPH05161849A publication Critical patent/JPH05161849A/ja
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】 【目的】 触媒金属を担体上に担持させる際に、還元剤
としての還元力が弱くかつ硫黄原子を含有する還元剤を
使用することにより、前記担体上に触媒金属が高分散度
で均一粒径に還元されかつ焼結に対する耐性の高い金属
単体を析出させることができる高表面積貴金属の担持触
媒の製造方法を提供する。 【構成】 金属含有イオンの溶液中の該金属含有イオン
をチオ尿素及びチオアセトアミドから選択される1種以
上の還元剤を使用して還元し担体上に高表面積金属を担
持して高表面積金属担持触媒を製造する。前記イオウ含
有還元剤の還元力は比較的弱く粒径を均一にすることを
可能とする。更に還元工程中で遊離する硫黄原子が核と
なって金属粒子が成長するため、この傾向が一層顕著に
なる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、担体上に各種触媒金属
を担持させて金属担持触媒を製造ための方法、特に前記
金属を含有するイオンを還元するための方法に関する。
【0002】
【従来技術とその問題点】従来から各種化学反応用触媒
や燃料電池の電極触媒として、シリカやアルミナ等の無
機酸化物担体上に、白金、金、パラジウムの貴金属単独
又は2種以上を組み合わせて担持した触媒、あるいはカ
ーボン担体上に同様の触媒貴金属を担持させた触媒等が
使用されている。これらの触媒の触媒性能は、これらの
金属の分散度に依存し、触媒担持量が同一であればその
表面積の増加に従ってその触媒性能(比活性)も向上す
る。前記触媒の製造に際しては、担持させる触媒金属を
含有するイオンを還元剤で還元して該金属単体を無機質
担体上に析出させるようにしている。しかしながら一般
に使用されている還元剤、例えば水素化リチウムアルミ
ニウムや水素化硼素ナトリウムは還元力が強過ぎるた
め、還元により形成される金属粒子の径が大きくなり、
又粒子の粒径分布が広くなる。
【0003】つまり粒子数が少なくなり、同一金属量当
たりの表面積が小さくなり、従ってその触媒の比活性も
低くなってしまい、また粒子の大きさも非常に不均一に
なるという欠点がある。比活性を向上するために従来か
ら担持させる金属の組み合わせを検討して触媒活性の大
きい各種合金触媒が提案されている(例えば特願昭59−
141169号)。しかしこれら合金触媒においても粒子径の
小さい即ち触媒金属の比表面積の大きいことが活性向上
のために要求される。
【0004】しかもこれら合金触媒は貴金属担持触媒に
後から合金成分元素を合金化させる方法が一般的であ
り、この点からも粒度分布の小さい即ち粒径の揃った高
表面積貴金属の担持触媒を製造することが重要である。
粒度を揃えることは、合金組成の揃った粒子を有する合
金触媒を得るためにも重要である。又これらの触媒は高
温に曝されることが多く、焼結反応に対する耐性がない
と、時間の経過とともに失活して触媒の寿命の短縮に繋
がるという欠点を有している。
【0005】
【発明の目的】本発明は、触媒金属を担体上に担体させ
る際に、還元剤としての還元力が弱くかつ硫黄原子を含
有する還元剤を使用することにより、前記担体上に触媒
金属が高分散度で均一粒径に還元されかつ焼結に対する
耐性の高い金属単体を析出させることができるようにし
た方法を提供することを目的とする。
【0006】
【発明の構成】本発明は、金属含有イオンの溶液を又は
金属含有イオンの溶液と担体との混合物を、チオ尿素及
びチオアセトアミドから選択される1種以上の還元剤で
処理し、前記金属含有イオンを金属に還元して担体上に
高表面積金属を担持又は析出し、該担体を前記溶液から
分離することを含んで成る高表面積金属担持触媒の製造
方法である。
【0007】以下本発明を詳細に説明する。本発明は、
白金をはじめとする触媒金属を含有するイオン例えば塩
化白金イオンを還元してカーボン担体又はシリカあるい
はアルミナ等の無機酸化物担体上へ析出させるに当た
り、還元剤としての還元力が比較的弱くかつ硫黄原子を
含有する還元剤を使用することを最大の特徴とする。本
発明における担体としては、カーボンブラック、グラフ
ァイト、活性炭等炭素を主成分とする単体で任意の形態
を有する物質から成るカーボン担体、あるいはシリカ及
びアルミナ等の難燃性の無機酸化物担体等を使用するこ
とができる。
【0008】これらの無機質担体は触媒用担体であるた
め、大きな表面積を有する微細粒子、例えば30〜2000m
2 /g程度の表面積を有し、粒径が100■5000Å程度で
あることが望ましい。カーボン担体としては例えば市販
のアセチレンブラック (商品名、Schawinigan Acetylen
e Black やDenka Acetylene Black)や導電性カーボンブ
ラック(商品名、VulcanXC72R)やグラファイト化し
たカーボンブラック (商品名、DenkaBlack 等) 等を使
用することができる。本発明方法で前記無機質担体上へ
析出させる金属としては、白金、金、パラジウム等の貴
金属が好ましく、これら以外の金属を含有するイオンと
しては、該金属単独のイオンと金属の錯イオン例えば塩
化白金イオン、塩化金イオン、塩化パラジウムイオン等
がある。
【0009】次に該金属含有イオンの還元につき、塩化
白金イオンを例として説明する。該金属含有イオンの還
元による担持方法自体は、前記カーボン担体又は無機酸
化物担体を塩化白金酸水溶液に混ぜ、前記塩化白金イオ
ンを還元して前記担体上に白金金属を析出させることあ
るいは前記担体を混ぜることに先立って前記塩化白金酸
を還元し還元された白金を前記担体上へ析出させること
から成る従来法をそのまま使用することができる。しか
しながら該還元反応において強い還元剤を使用すると、
生成する白金の粒径が大きくなり、単位重量当たりの表
面積がかなり減少してしまう。
【0010】そのため本発明では、弱い還元剤であるチ
オ尿素あるいはチオアセトアミドを利用して白金の表面
積減少を抑制する。該チオ尿素やチオアセトアミドは、
水溶液中の前記白金含有イオンである塩化白金イオンと
反応して微細に分割された高表面積の金属ゾルを生成す
る。反応の進行に従って溶液の色は黄色から橙色に変化
し、更に数時間に亘って金属微結晶が成長するに従って
溶液の色と徐々により濃くなる。
【0011】該溶液を通過する光はチンダル現象を示
し、コロイド粒子が存在していることが判る。このゾル
を前記カーボン担体又は無機酸化物担体上に吸着させ、
乾燥等の適宜の操作を経て白金が担持された担体を得る
ことができる。つまり、前記溶液がほぼ不透明になった
ところで前記カーボン担体等を加え、生成するスラリを
例えば超音波攪拌機を使用して攪拌し前記溶液相を前記
カーボン担体等の細部まで進入させる。この操作により
濃厚なスラリが形成され、これは懸濁のまま維持され沈
澱することは殆どない。
【0012】又上記の手順とは異なり、塩化白金酸の水
溶液に先に担体を加え、生成するスラリを例えば超音波
攪拌機を使って良く攪拌分散させた後、チオ尿素及び/
又はチオアセトアミドの水溶液を初めは少量ゆっくり添
加し、残りの溶液を一度に加えて白金イオンを担体の存
在のもとに還元担持しても良い。これらのようにして得
たスラリを例えば75〜80℃で1〜3日乾燥して水を除去
すると反応副生物の塩を含む乾燥粉末が得られる。この
乾燥した触媒を例えば100 〜200 ミリリットルの蒸留水
で数回抽出して前記副生物を溶解して除くことができ
る。
【0013】グラファイト化したカーボンブラックの場
合には、前記スラリは沈澱し、水相を捨てることにより
触媒を該水相から分離することができ、これを数回繰り
返し、該触媒を約110 ℃で一晩乾燥する。このように製
造された触媒は大きな表面積を有し、かつその粒径は均
一である。上記操作の代わりに、スラリ化−濾過−洗浄
プロセスを利用することもできる。これはアセチレンブ
ラックのような容易には沈澱しない触媒の場合に使用す
ることができる。
【0014】この方法により、例えば白金1g/100 ミ
リリットルの塩化白金酸水溶液を0.4 g/25ミリリット
ル のチオ尿素等の水溶液と反応させると、白金の比表
面積185 m2 /g程度で粒径の均一な白金が担持された
触媒を得ることができる。このプロセスで生成する触媒
粒子は、塩化白金イオンとチオ尿素等の間の反応の熱力
学的ドライビング・フォースが従来技術のものより小さ
く,より欠陥の少ない微結晶粒子が生成するため、白金
の表面積が使用時間に従って減少してしまう粒子成長に
対してより大きな耐性があると考えられる。
【0015】前記チオ尿素等と塩化白金酸の間の反応に
より15Å程度の均一粒径の微細な粒子が得られる。上記
したチオ尿素以外に本発明方法で使用できる比較的弱い
還元剤として、チオアセトアミドがあり、ほぼ同等に金
属含有イオンの還元を行うことができる。カーボン担体
に白金含有溶液を含浸させる前に白金含有イオンを還元
する方法と、これとは逆に含浸させてから前記白金含有
イオンを還元する方法があり、共に良好な触媒粒子の分
散を得ることができる。
【0016】白金や金又はパラジウム等の1種類の金属
のみを担持させるのではなく、2種以上の金属含有イオ
ンを含む溶液を使用してそれらの金属を同時に担持させ
ることも可能である。なお上記方法で1種の金属のみを
担持させ、他の金属と合金化させるようにしてもよい。
又無機質担体としてカーボン担体を使用した場合には、
生成する金属担持カーボン担体の担持金属をカーバイド
化し前記カーボン担体と該担持金属との親和力を高め、
触媒として高温で使用した場合に前記担持金属が移動し
て凝集しその表面積が減少することを抑制するようにす
ることも可能である。
【0017】
【実施例】以下、本発明に係わる白金合金触媒の製造の
実施例を記載するが、該実施例は本発明を限定するもの
ではない。
【実施例1】白金1.157 gを含む塩化白金酸を300 ミリ
リットルの水に溶解し、該溶液に0.5 gのチオ尿素(H2N
CSNH2)を溶解した75ミリリットルの液を加え、更に27℃
で攪拌した。時間の経過に従って該混合溶液の色は黄色
から橙色に変化し、更に濃い橙色となった。
【0018】約3時間経過に室内を暗くして容器に電球
の光を当てたところ、光の散乱が観察された。一方、触
媒担体となるアセチレンブラック約10gを100 ミリリッ
トルの純水に良く懸濁させたスラリを前記混合液中に加
えた。これを超音波攪拌機で2分間攪拌し、前記混合溶
液を前記担体の細部に進入させるようにした。この攪拌
操作では、前記スラリは懸濁したままで沈澱しなかっ
た。
【0019】該スラリを75〜80℃のオーブン中で一晩乾
燥し水を除去した。このようにして得られた乾燥粉末を
約200 ミリリットルの蒸留水で3回洗浄して、副生物を
抽出除去した。このスラリを更に70℃で一晩乾燥して白
金を担持したカーボン担体を得た。このようにして得ら
れた白金カーボン担体触媒の白金の平均粒径は15Åで透
過電子顕微鏡による白金粒子の観察ではほぼ均一による
揃った粒径であり、電気化学的水素吸脱着法による白金
の比表面積は185 m2 /g、白金の担持量は10重量%で
あった。
【0020】
【比較例1】実施例1のチオ尿素の代わりにNa2BH4を使
用したこと以外は実施例1と同様に白金の担持を行っ
た。生成した白金担持カーボン担体の白金の平均粒径は
48Åで電子顕微鏡による観察では20■100Åの幅広い粒
度分布を有する白金粒子であり、又白金の比表面積は56
2 /g、白金の担持量は10重量%であった。
【0021】
【比較例2】実施例1のチオ尿素の代わりに3gのチオ
硫酸ナトリウム5水塩を使用したこと以外は実施例1と
同様に白金の担持を行った。生成した白金担持カーボン
担体触媒の白金の平均粒径は18Åで電子顕微鏡による観
察では良く揃っている粒度分布の白金粒子であったが、
白金の比表面積は155 m2 /g、白金の担持量は10重量
%であった。
【0022】
【実施例2】実施例1のチオ尿素の代わりにチオアセト
アミド(CH3CSNH2)を使用したこと以外は実施例1と同様
にして白金のカーボン担体上への担持を行った。このよ
うにして得られた白金カーボン担体触媒の白金の平均粒
径は15Åで電子顕微鏡による観察では均一に揃った粒子
であり、又白金の比表面積は185 m2 /g、白金の担持
量は10重量%であった。
【0023】
【実施例3】実施例1の塩化白金酸の代わりに塩化金酸
を使用したこと以外は実施例1と同様にして金のカーボ
ン担体上への担持を行った。このようにして得られた金
カーボン担体触媒の金の平均粒径は17Åで電子顕微鏡に
よる観察では均一に揃った粒子であり、又金の比表面積
は165 m2 /g、金の担持量は10重量%であった。
【0024】
【実施例4】パラジウム1.157 gを含む塩化パラジウム
を少量の塩酸に溶かし、これを純水で300 ミリリットル
にしたものを実施例1の塩化白金酸の代わりに、又チオ
尿素0.85gを40ミリリットルの溶液にして用いたこと以
外は実施例1と同様にしてカーボン担体上へパラジウム
を担持した。このようにして得られたパラジウムカーボ
ン担体触媒のパラジウムの平均粒径は13Åで電子顕微鏡
によるパラジウム粒子の観察では均一に良く揃った粒径
であり、又一酸化炭素吸着法によるパラジウムの比表面
積は308 m2 /g、パラジウムの担持量は10重量%であ
った。
【0025】
【実施例5】実施例1のアセチレンブラックの代わりに
触媒担体用活性ガンマ−アルミナ粉末を使用し、洗浄後
の乾燥を120 ℃で行ったこと以外は実施例1と同様にし
て白金をアルミナ担体上へ担持した。このようにして得
られた白金アルミナ担体触媒の白金の平均粒径は17Åで
一酸化炭素吸着法による白金の比表面積は165 m2
g、白金の担持量は10重量%であった。
【0026】
【発明の効果】本発明は、カーボン担体又は無機酸化物
担体上に白金をはじめとする1又は2以上の触媒金属を
担持させるに当たり、各触媒金属を含有するイオンを還
元力が弱くかつ硫黄原子を含有するチオ尿素あるいはチ
オアセトアミドで還元するようにしている。これにより
水素化硼素ナトリウムのような強い還元力を有する還元
剤を使用した場合と比較して析出する金属の粒径が減少
し、かつ均一な粒径が得られる。
【0027】更に還元工程中で遊離する硫黄原子が核と
なって金属粒子が成長するため、この傾向が一層顕著に
なる。従って成長する無機質担体上の触媒金属が大きな
表面積で反応物質と接触するため、その触媒比活性が高
くなり前記触媒金属を有効に使用することが可能にな
る。
【0028】更に本発明方法で生成する触媒粒子は、金
属含有イオンと硫黄含有還元剤との間の反応の熱力学的
ドライビングフォースが従来技術のものより小さく、よ
り欠陥の少ない微結晶粒子が生成するため、触媒金属の
表面積が使用時間に従って減少してしまう粒径成長に対
してより大きな耐性があると考えられ、触媒の寿命が大
幅に増加する。又第2及び第3の卑金属を貴金属担持触
媒に更に担持し合金化させる場合、本発明方法で生成す
る貴金属粒子の径が均一に揃っているため、合金化して
生成する粒子の組成がほぼ等しくなり、目的の組成が個
々の粒子に達成し得るものである。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 ポール・ストンハルト アメリカ合衆国 06443 コネチカット州 マジソン コテッジ・ロード 17、 ピ ー・オー・ボックス 1220 (72)発明者 鶴見 和則 神奈川県平塚市新町2−73 田中貴金属工 業技術開発センター内

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 金属含有イオンの溶液中の該金属含有イ
    オンをチオ尿素及びチオアセトアミドから選択される1
    種以上の還元剤を使用して還元し担体上に高表面積金属
    を担持する高表面積金属担持触媒の製造方法。
  2. 【請求項2】 担体がカーボン担体である請求項1に記
    載の方法。
  3. 【請求項3】 担体が無機酸化物である請求項1に記載
    の方法。
  4. 【請求項4】 金属含有イオン中の金属が、白金、金及
    びパラジウムから選択される1種以上である請求項1か
    ら3までのいずれかに記載の方法。
JP3351355A 1991-12-13 1991-12-13 高表面積金属担持触媒の製造方法 Pending JPH05161849A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3351355A JPH05161849A (ja) 1991-12-13 1991-12-13 高表面積金属担持触媒の製造方法
US07/989,151 US5374598A (en) 1991-12-13 1992-12-11 Process of preparing metal supported catalyst having high surface area
EP92830670A EP0548033A1 (en) 1991-12-13 1992-12-14 Process of preparing metal supported catalyst having high surface area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3351355A JPH05161849A (ja) 1991-12-13 1991-12-13 高表面積金属担持触媒の製造方法

Publications (1)

Publication Number Publication Date
JPH05161849A true JPH05161849A (ja) 1993-06-29

Family

ID=18416743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3351355A Pending JPH05161849A (ja) 1991-12-13 1991-12-13 高表面積金属担持触媒の製造方法

Country Status (3)

Country Link
US (1) US5374598A (ja)
EP (1) EP0548033A1 (ja)
JP (1) JPH05161849A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133413A (ja) * 1997-07-18 1999-02-09 Mitsubishi Materials Corp 大気浄化用構造物の製造方法
US7510592B2 (en) 2003-12-26 2009-03-31 Sumitomo Electric Industries, Ltd. Method of producing metal powder

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660680B1 (en) 1997-02-24 2003-12-09 Superior Micropowders, Llc Electrocatalyst powders, methods for producing powders and devices fabricated from same
US5916702A (en) * 1997-08-15 1999-06-29 Exxon Research And Engineering Co. CO tolerant platinum-zinc fuel cell electrode
US6967183B2 (en) 1998-08-27 2005-11-22 Cabot Corporation Electrocatalyst powders, methods for producing powders and devices fabricated from same
US7066976B2 (en) * 1998-02-24 2006-06-27 Cabot Corporation Method for the production of electrocatalyst powders
US6753108B1 (en) * 1998-02-24 2004-06-22 Superior Micropowders, Llc Energy devices and methods for the fabrication of energy devices
US6686308B2 (en) * 2001-12-03 2004-02-03 3M Innovative Properties Company Supported nanoparticle catalyst
US20050053818A1 (en) * 2002-03-28 2005-03-10 Marc St-Arnaud Ion exchange composite material based on proton conductive functionalized inorganic support compounds in a polymer matrix
US20090215615A1 (en) * 2006-07-11 2009-08-27 3M Innovative Properties Company Method of forming supported nanoparticle catalysts
CO5980161A1 (es) * 2008-09-02 2008-11-28 Univ Nac De Colombia Proceso de preparacion de catalizadores utiles en la licuefaccion directa de carbon y el catalizador asi obtenido

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210036A (ja) * 1988-02-18 1989-08-23 Tanaka Kikinzoku Kogyo Kk 高表面積金属担持触媒の製造方法
DE3809554A1 (de) * 1988-03-22 1989-10-12 Basf Ag Verfahren zur herstellung von hydroxylammoniumsalzen
FR2649907A2 (fr) * 1989-04-19 1991-01-25 Eurecat Europ Retrait Catalys Procede de presulfuration de catalyseur de traitement d'hydrocarbures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133413A (ja) * 1997-07-18 1999-02-09 Mitsubishi Materials Corp 大気浄化用構造物の製造方法
US7510592B2 (en) 2003-12-26 2009-03-31 Sumitomo Electric Industries, Ltd. Method of producing metal powder

Also Published As

Publication number Publication date
EP0548033A1 (en) 1993-06-23
US5374598A (en) 1994-12-20

Similar Documents

Publication Publication Date Title
JP2556874B2 (ja) 担体上における金属の合金化方法
US7659224B2 (en) Catalyst nanoparticle
EP0501930B1 (en) Electrocatalyst for anode
JP4989457B2 (ja) insituで形成された二酸化白金を還元することによって得られる白金触媒
US8541146B2 (en) Photocatalytic methods for preparation of electrocatalyst materials
JPH01210035A (ja) 白金触媒とその製造方法
JPS595012B2 (ja) 燃料電池電極用プラチナ触媒の製造法
JP2000123843A (ja) 白金合金触媒およびその製造方法
JP2005526596A (ja) 水溶性ナノ分散金属酸化物コロイドをそのままで固定する方法
JPH05161849A (ja) 高表面積金属担持触媒の製造方法
JP4715107B2 (ja) 燃料電池用触媒、および白金−イリジウム合金粒子の製造方法
US4956331A (en) Process for producing metal supported catalyst having high surface area
JPH02303541A (ja) 高表面積金属担持触媒の製造方法
JP2007123195A (ja) 触媒の製造方法
JP5569396B2 (ja) 触媒の製造方法
EP0549543B1 (en) Process of preparing catalyst supporting highly dispersed metal particles
JP2005034779A (ja) 電極触媒およびその製造方法
EP0047322B1 (en) Process for preparing catalyst
JPH04135642A (ja) 白金合金触媒とその製造方法
JPH06114274A (ja) 高分散金属微粒子担持触媒の製造方法
JP3839961B2 (ja) 高分子固体電解質型燃料電池用触媒の製造方法
EP0556535A1 (en) Electrocatalyst for anode
JP2019030846A (ja) 合金触媒の製造方法
CN114082435A (zh) 一种单分散金属型催化剂及其通用温和超组装制备方法
CN114497587A (zh) 一种质子交换膜燃料电池中的催化剂及其制备方法