JPH05137332A - スイツチング電源の制御方法 - Google Patents

スイツチング電源の制御方法

Info

Publication number
JPH05137332A
JPH05137332A JP3297371A JP29737191A JPH05137332A JP H05137332 A JPH05137332 A JP H05137332A JP 3297371 A JP3297371 A JP 3297371A JP 29737191 A JP29737191 A JP 29737191A JP H05137332 A JPH05137332 A JP H05137332A
Authority
JP
Japan
Prior art keywords
resonance
current
voltage
circuit
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3297371A
Other languages
English (en)
Inventor
Juichi Tanaka
寿一 田中
Itsuo Yuzurihara
逸男 譲原
Takashi Watanabe
渡辺  孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyosan Electric Manufacturing Co Ltd
Original Assignee
Kyosan Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyosan Electric Manufacturing Co Ltd filed Critical Kyosan Electric Manufacturing Co Ltd
Priority to JP3297371A priority Critical patent/JPH05137332A/ja
Priority to US07/969,140 priority patent/US5343377A/en
Priority to EP92119208A priority patent/EP0542197B1/en
Priority to DE69211295T priority patent/DE69211295T2/de
Publication of JPH05137332A publication Critical patent/JPH05137332A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

(57)【要約】 【目的】軽負荷時に余分なエネルギを供給しないよう、
共振電流を低減させ、スイッチング素子のストレスや回
路損失が最小になるように制御を行なうことができるよ
うにする。 【構成】電流共振並列形のスイッチング電源の制御方法
において、出力負荷電流が軽減した際、共振コンデンサ
電圧が上昇し共振電流が増大することにより回路損失が
増大する現象を防止するよう環流回路を設け、共振回路
の両端子を結ぶ閉回路を形成し、充電極性を一旦反転さ
せ、あるいは零電圧にしてから動作を開始するよう制御
することを特徴とするスイッチング電源の制御方法であ
る。 【効果】

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、スイッチング電源の制
御方法に関し、共振方式のスイッチング回路を用いて直
流電圧や電流を得ようとする電源回路全般に適用するも
のである。
【0002】
【従来の技術】他励式のスイッチング電源には、出力電
圧の制御方式としてオン時間が一定で周波数(周期)を
制御するFM制御方式、周波数を一定としてオフ時間を
制御するPWM制御方式、また双方の制御を組み合わせ
た制御方式(FM/PWM混合)等がある。各方式には
それぞれ特徴があり、FM制御方式は周期可変方式のた
め、制御条件により大幅に周波数が変位し、低周波数動
作領域においては可聴周波数帯となり騒音として耳障り
な不快音を感じるという欠点がある。PWM制御方式
は、共振電流が通流中にスイッチ素子をオンオフさせる
ため、電流遮断時のスイッチング損失が増大し変換効率
を低下させるという欠点がある。また、FM/PWM混
合制御方式は、通常運転においてはFM制御方式で動作
し、出力負荷が軽くなるかもしくは出力電圧を低下する
際のみにPWM制御方式で行なう。
【0003】これに対し、共振形スイッチング電源は、
電流もしくは電圧が零値のときにスイッチング動作を行
なうことによりスイッチング損失をなくし変換効率を高
めることができるものである。
【0004】
【発明が解決しようとする課題】しかしながら、共振形
スイッチング電源にあっても、出力負荷が軽くなると、
共振コンデンサに残留電圧が生じる。そして、次のスイ
ッチング動作に移行した場合、共振コンデンサの残留電
圧のため、過大な共振電流が流れ、回路部品やスイッチ
ング素子に過大なストレスが加わり、大きな回路損失と
なる。
【0005】図2に示す共振形スイッチング電源回路は
共振用インダクタLr および共振用コンデンサCr によ
る共振回路を示す。コンデンサの初期電圧をV0 ,初期
電流をI0 とし、初期条件として、V0 ,I0 は零の状
態からスイッチS1 ,S4 がオンになるものとすれば、
図4(2)に示す電圧波形となり、主変圧器T1 を介し
て直流出力部へ電圧が伝達される。
【0006】負荷電流が微小電流であると、直流出力部
の平滑コイルL0の電流が不連続特性(断続電流)を示
し、共振回路の動作は次のようになる。共振用コンデン
サCr には前回動作終了時の極性で初期電圧が充電され
ており、この状態でスイッチS1 ,S4 が同時にオンに
なると、E(+) →S1 →Lr →Cr →S4 →E(-) の回
路が構成され、電流ir が流れ、図5(2)の初期に示
す電圧と電流が得られる。次の動作でスイッチS2 ,S
3 がオンになると、共振用コンデンサCrの初期電圧は
−V0 となる。
【0007】この関係は、直流電源Eの電圧と電圧V0
が加算された状態を示し、図5(2)に示すように回路
電流ir は余剰な過大な共振電流となり、結果として大
きな回路損失が生じることとなる。
【0008】動作が周期的に進み、共振用コンデンサC
r の両端に主変圧器T1 の1次巻線N1 が接続され、2
次巻線N2 ,N3 および、整流ダイオードD5 およびD
6 ,平滑コイルL0 および平滑コンデンサC0 による整
流回路を経て負荷抵抗Rに直流電圧E0 が得られ、回路
損失を無視すれば、直流電圧E0 は共振用コンデンサC
r 端の電圧に比例した電圧が得られることになる。
【0009】平滑コイルL0 に電流が流れている場合に
は、図4(2)に示す出力特性が得られ、常に零電位を
初期値とした共振電圧となる。しかし、平滑コイルL0
および共振用コンデンサCr の電流が微小になると、電
流の不連続特性があらわれ、図5(2)のVC に示すよ
うな出力電圧特性となり、コンデンサ電圧Vcは平滑コ
イルL0 に連続電流が流れているときに比し非常に高い
過大な電圧が発生することになる。
【0010】本発明は、このような従来の技術が有する
問題点に着目してなされたもので、出力軽負荷時、環流
回路を生じるよう制御回路を設け、その効果で共振コン
デンサの充電極性を反転させ、共振電流によって生じる
スイッチング素子のストレスや回路損失を最小にしたス
イッチング電源の制御方法を提供することを目的として
いる。
【0011】
【課題を解決するための手段】かかる目的を達成するた
めの本発明の要旨とするところは、電流共振並列形のス
イッチング電源の制御方法において、出力負荷電流が軽
減した際、共振コンデンサ電圧が上昇し共振電流が増大
することにより回路損失が増大する現象を防止するよう
環流回路を設け、共振回路の両端子を結ぶ閉回路を形成
し、充電極性を一旦反転させてから動作を開始するよう
制御することを特徴とするスイッチング電源の制御方法
に存する。
【0012】
【作用】従来のスイッチング電源回路は負荷が軽くなっ
た際、スイッチング開始時共振コンデンサの初期電圧の
極性がスイッチングの入力直流電源電圧と等価的に直列
加算されており、スイッチング素子が動作する度に回路
に過大電流が流れ多大なストレスが加わるのに対し、本
発明は、負荷が軽くなって前記のごとき問題が生じるよ
うな場合、共振動作が終了後、定められた回路素子をオ
ンさせて共振コンデンサの両端子を導通させすることに
より、共振コンデンサの充電極性を一旦反転させ、入力
直流電圧と逆向きの極性に再充電を行なうことにより、
スイッチングにおける共振電流および共振電圧のピーク
を抑えて低減させ、回路ストレスおよび回路損失をきわ
めて少なく抑えるものである。
【0013】
【実施例】以下、図面に基づき本発明の一実施例を説明
する。図1は共振形スイッチング電源の回路の一例を示
している。
【0014】直流電源Eがブリッジ状に配置したスイッ
チS1 〜S4 に接続され、各スイッチS1 〜S4 にダイ
オード素子D1 〜D4 が並列に接続されている。スイッ
チS1 ,S2 の接続点とスイッチS3 ,S4 の接続点間
に、共振用インダクタLr および共振用コンデンサCr
が接続され、共振用コンデンサCr は主変圧器T1の1
次巻線N1 に並列に接続されている。変圧器の巻線の巻
き始めは・で示してある。スイッチS1 〜S4 は一般に
トランジスタやMOSFET等の半導体スイッチング素
子が用いられる。
【0015】主変圧器T1 の2次巻線N2 ,N3 は直列
に接続構成され、中性点は平滑コンデンサC0 の−極と
出力端子の−極ならびに負荷抵抗負荷抵抗Rの片端に接
続されている。2次巻線N2 の巻き始めは整流ダイオー
ドD5 整流ダイオードD5 のアノード端に、2次巻線N
3 の巻き終り端は整流ダイオードD6 のアノード端に接
続されている。整流ダイオードD5 ,D6 のカソード端
は共通に接続して平滑コイルL0 の片端に接続されてい
る。平滑コイルL0 の一方の片端は平滑コンデンサC0
の+極と出力端子に接続され、出力端子には負荷抵抗R
が接続されている。
【0016】次に作用を説明する。
【0017】図3(1)はスイッチS1 〜S4 のオンオ
フ動作タイミングを示し、オンはスイッチが閉じている
状態、オフはスイッチが開いている状態を表わしてい
る。通常動作において、平滑コイルL0 に流れている電
流I0 の減衰特性がスイッチング動作周期に比べて十分
大きな定数とすれば、共振回路の動作を行なう期間にお
いては電流変化はきわめて少なく、一定電流とみなすこ
とができる。
【0018】スイッチS1 〜S4 がオフの状態におい
て、2次回路電流はL0 →R→T1 (2次巻線の中点)
→N2 (N3 )→D5 のアノード(D6 のアノード)→
5 ,D6 のカソード→L0 の回路で循環電流が流れて
いる。この状態では、平滑コイルL0 の循環電流は2次
巻線N2 では巻き終り端から2次巻線N3 では巻き始め
端から流れ、2次巻線N2 ,N3 には互いに逆方向の極
性で電流が流れており、主変圧器T1 の磁束は互いに打
消されて巻線には起電圧が発生しない。
【0019】この状態において、図1の回路に示すスイ
ッチS1 とスイッチS4 とが同時にオンになると、1次
回路電流は、E(+) →S1 →Lr →Cr →S4 →E(-)
の閉回路で電流Ir が流れる。初期状態においては、主
変圧器T1 の1次巻線N1 には2次巻線と同様に起電圧
が発生せず、共振電流Ir は2次電流を1次電流に換算
した電流値に至る期間だけ、S1 →Lr →T1 (N1
→S4 の回路を流れる。この期間にも共振用コンデンサ
r には起電圧が発生しない。
【0020】巻線の1次等価電流はI01=N2・I0/N1
の関係にあるので、共振電流IrがI01の値に至ると、
回路電流は、E(+) →S1 →Lr→TN1(Cr )→S4
→E(-) の経路で流れる。そして、このような通常動作
下の条件での共振電流Irおよび共振コンデンサ電圧V
cは通常動作では過大電流や電圧が発生することがな
く、図4(2)に示すように適切に動作する。
【0021】次に本発明の特徴に係る動作である出力負
荷電流が軽減した場合について説明する。
【0022】共振用コンデンサCr には初期電圧として
−V0が図3(2)に示す極性で充電されているものと
し、その状態でスイッチS1 ,S4 がオン状態になる
と、共振電流ir はE(+) →S1 →Lr →Cr →S4
(-) の経路で流れるとともに、共振用コンデンサCr
と並列に接続されている1次巻線N1 に分流され、図3
(2)に示す期間1の電圧が得られる。
【0023】共振動作が終了すると共振用コンデンサC
r の電圧は平滑コイルL0 に連続電流が流れている場合
は主変圧器T1 を介して出力に電流が流れ、時間の経過
とともに放電し電圧は次第に低下する。しかし、負荷が
軽くて出力電流が少ない場合には平滑コイルL0 の電流
が不連続となり、共振用コンデンサCr の電圧は放電す
ることなく図3(2)の期間2に示すように電圧V2
維持し続ける。
【0024】次の動作として図3(1)に示すように、
スイッチS3を一旦オンにすることにより共振用コンデ
ンサCr の電荷はCr →Lr →D1 →S3 →Cr の閉回
路で電流ic が流れ、期間3から期間4に至って電圧は
3 からV4 に電圧の極性が反転する。期間4の経過後
にスイッチS2,S3 が同時にオンになると回路電流ir
は共振用コンデンサCr の初期値電圧V5 に逆らう極
性で閉回路E(+) →S3 →Cr (N1 )→Lr →S3
(-) で電流が流れ、図3(2)に示すように、図5
(2)に示すものに比し電圧値および電流値のピークを
抑えた特性を得ている。
【0025】このように、スイッチS1 ,S4 のオン動
作後、スイッチS2 ,S3 がオン動作する直前にスイッ
チS3 のみを一旦オンにすることにより、共振用コンデ
ンサCr の電圧極性を反転させ、共振電流ir を最小値
にするようにしている。
【0026】
【発明の効果】本発明に係るスイッチング電源の制御方
法によれば、スイッチング開始時、入力直流電圧に対し
て打消すように共振コンデンサの充電電圧を定めること
ができるようにしたから、共振コンデンサ電圧上昇を防
止し、共振電流によって生じるスイッチング素子のスト
レスや回路損失を最小にし、特に負荷電流が極めて小さ
い場合に効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例を適用すべき共振形スイッチ
ング電源の一例を示す回路図である。
【図2】従来技術を説明するための共振形スイッチング
電源の一例を示す回路図である。
【図3】本発明の一実施例の動作をあらわすタイミング
図である。
【図4】通常動作をあらわすタイミング図である。
【図5】従来、負荷が微小で電圧値,電流値のピークが
高くなっている状態をあらわすタイミング図である。
【符号の説明】
1 〜S4 …スイッチ D1 〜D4 …ダイオード素子 Lr …共振用インダクタ Cr …共振用コンデンサ T1 …主変圧器 N1 …1次巻線 N1 ,N2 …1次巻線 D5 ,D6 …整流ダイオード L0 …平滑コイル C0 …平滑コンデンサ R…負荷抵抗
─────────────────────────────────────────────────────
【手続補正書】
【提出日】平成5年2月5日
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】全文
【補正方法】変更
【補正内容】
【書類名】明細書
【発明の名称】スイッチング電源の制御方法
【特許請求の範囲】
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、スイッチング電源の制
御方法に関し、共振方式のスイッチング回路を用いて直
流電圧や電流を得ようとする電源回路全般に適用するも
のである。
【0002】
【従来の技術】他励式のスイッチング電源には、出力電
圧の制御方式としてオン時間が一定で周波数(周期)を
制御するFM制御方式、周波数を一定としてオフ時間を
制御するPWM制御方式、また双方の制御を組み合わせ
た制御方式(FM/PWM混合)等がある。各方式には
それぞれ特徴があり、FM制御方式は周期可変方式のた
め、制御条件により大幅に周波数が変位し、低周波数動
作領域においては可聴周波数帯となり騒音として耳障り
な不快音を感じるという欠点がある。PWM制御方式
は、共振電流が通流中にスイッチ素子をオンオフさせる
ため、電流遮断時のスイッチング損失が増大し変換効率
を低下させるという欠点がある。また、FM/PWM混
合制御方式は、通常運転においてはFM制御方式で動作
し、出力負荷が軽くなるかもしくは出力電圧を低下する
際のみにPWM制御方式で行なう。
【0003】これに対し、共振形スイッチング電源は、
電流もしくは電圧が零値のときにスイッチング動作を行
なうことによりスイッチング損失をなくし変換効率を高
めることができるものである。
【0004】
【発明が解決しようとする課題】しかしながら、共振形
スイッチング電源にあっても、出力負荷が軽くなると、
共振コンデンサに残留電圧が生じる。そして、次のスイ
ッチング動作に移行した場合、共振コンデンサの残留電
圧のため、過大な共振電流が流れ、回路部品やスイッチ
ング素子に過大なストレスが加わり、大きな回路損失と
なる。
【0005】図2に示す共振形スイッチング電源回路は
共振用インダクタLr および共振用コンデンサCr によ
る共振回路を示す。コンデンサ電圧VC の初期電圧をV
0 ,共振電流Ir の初期電流をI0 とし、初期条件とし
て、V0 ,I0 は零の状態からスイッチS1 ,S4 がオ
ンになるものとすれば、図4(2)に示す電圧波形とな
り、主変圧器T1 を介して直流出力部へコンデンサ電圧
c が伝達される。
【0006】負荷電流が微小電流であると、直流出力部
の平滑コイルL0の電流が不連続特性(断続電流)を示
し、共振回路の動作は次のようになる。共振用コンデン
サCr には前回動作終了時の極性で初期電圧が充電され
ており、この状態でスイッチS1 ,S4 が同時にオンに
なると、E(+) →S1 →Lr →Cr →S4 →E(-) の回
路が構成され、電流Ir が流れ、図5(2)の初期に示
す電圧と電流が得られる。次の動作でスイッチS2 ,S
3 がオンになると、共振用コンデンサCrの初期電圧は
0 となる。
【0007】この関係は、直流電源Eの電圧と電圧V0
が加算された状態を示し、図5(2)に示すように回路
電流Ir は余剰な過大な共振電流となり、結果として大
きな回路損失が生じることとなる。
【0008】動作が周期的に進み、共振用コンデンサC
r の両端に主変圧器T1 の1次巻線N1 が接続され、2
次巻線N2 ,N3 および、整流ダイオードD5 およびD
6 ,平滑コイルL0 および平滑コンデンサC0 による整
流回路を経て負荷抵抗Rに直流電圧E0 が得られ、回路
損失を無視すれば、直流電圧E0 は共振用コンデンサC
r 端の平均電圧に比例した電圧が得られることになる。
【0009】平滑コイルL0 に電流が流れている場合に
は、図4(2)に示す出力特性が得られ、常に零電位を
初期値(V0 =0)とした共振電圧となる。しかし、平
滑コイルL0 の電流が微小になると、電流の不連続特性
があらわれ、図5(2)のVC に示すような出力電圧特
性となり、コンデンサ電圧Vcは平滑コイルL0 に連続
電流が流れているときに比し非常に高い過大な電圧が発
生することになる。
【0010】本発明は、このような従来の技術が有する
問題点に着目してなされたもので、出力軽負荷時、環流
回路を生じるよう制御回路を設け、その効果で共振コン
デンサの充電極性を反転させ、共振電流によって生じる
スイッチング素子のストレスや回路損失を最小にしたス
イッチング電源の制御方法を提供することを目的として
いる。
【0011】
【課題を解決するための手段】かかる目的を達成するた
めの本発明の要旨とするところは、電流共振並列形のス
イッチング電源の制御方法において、出力負荷電流が軽
減した際、共振コンデンサ電圧が上昇し共振電流が増大
することにより回路損失が増大する現象を防止するよう
環流回路を設け、共振回路の両端子を結ぶ閉回路を形成
し、充電極性を一旦反転させてから動作を開始するよう
制御することを特徴とするスイッチング電源の制御方法
に存する。
【0012】
【作用】従来のスイッチング電源回路は負荷が軽くなっ
た際、スイッチング開始時共振コンデンサの初期電圧の
極性がスイッチングの入力直流電源電圧と等価的に直列
加算されており、スイッチング素子が動作する度に回路
に過大電流が流れ多大なストレスが加わるのに対し、本
発明は、負荷が軽くなって前記のごとき問題が生じるよ
うな場合、共振動作が終了後、定められた回路素子をオ
ンさせて共振コンデンサの両端子を導通させることによ
り、共振コンデンサの充電極性を一旦反転させ、入力直
流電圧と逆向きの極性に再充電を行なうことにより、ス
イッチングにおける共振電流および共振電圧のピークを
抑えて低減させ、回路ストレスおよび回路損失をきわめ
て少なく抑えるものである。
【0013】
【実施例】以下、図面に基づき本発明の一実施例を説明
する。図1は共振形スイッチング電源の回路の一例を示
している。
【0014】直流電源Eがブリッジ状に配置したスイッ
チS1 〜S4 に接続され、各スイッチS1 〜S4 にダイ
オード素子D1 〜D4 が並列に接続されている。スイッ
チS1 ,S2 の接続点とスイッチS3 ,S4 の接続点間
に、共振用インダクタLr および共振用コンデンサCr
が接続され、共振用コンデンサCr は主変圧器T1の1
次巻線N1 に並列に接続されている。変圧器の巻線の巻
き始めは・で示してある。スイッチS1 〜S4 は一般に
トランジスタやMOSFET等の半導体スイッチング素
子が用いられる。
【0015】主変圧器T1 の2次巻線N2 ,N3 は直列
に接続構成され、中性点は平滑コンデンサC0 の−極と
出力端子の−極ならびに負荷抵抗負荷抵抗Rの片端に接
続されている。2次巻線N2 の巻き始めは整流ダイオー
ドD5 のアノード端に、2次巻線N3 の巻き終り端は整
流ダイオードD6 のアノード端に接続されている。整流
ダイオードD5 ,D6 のカソード端は共通に接続して平
滑コイルL0 の片端に接続されている。平滑コイルL0
の一方の片端は平滑コンデンサC0 の+極と出力端子に
接続され、出力端子には負荷抵抗Rが接続されている。
【0016】次に作用を説明する。
【0017】図3(1)はスイッチS1 〜S4 のオンオ
フ動作タイミングを示し、オンはスイッチが閉じている
状態、オフはスイッチが開いている状態を表わしてい
る。通常動作において、平滑コイルL0 に流れている電
流I0 の減衰特性がスイッチング動作周期に比べて十分
大きな定数とすれば、共振回路の動作を行なう期間にお
いては電流変化はきわめて少なく、一定電流とみなすこ
とができる。
【0018】スイッチS1 〜S4 がオフの状態におい
て、2次回路電流はL0 →R→T1 (2次巻線の中点)
→N2 (N3 )→D5 のアノード(D6 のアノード)→
5 ,D6 のカソード→L0 の回路で循環電流が流れて
いる。この状態では、平滑コイルL0 の循環電流は2次
巻線N2 では巻き終り端から2次巻線N3 では巻き始め
端から流れ、2次巻線N2 ,N3 には互いに逆方向の極
性で電流が流れており、主変圧器T1 の磁束は互いに打
消されて巻線には起電圧が発生しない。
【0019】この状態において、図1の回路に示すスイ
ッチS1 とスイッチS4 とが同時にオンになると、1次
回路電流は、E(+) →S1 →Lr →Cr →S4 →E(-)
の閉回路で電流Ir が流れる。初期状態においては、主
変圧器T1 の1次巻線N1 には2次巻線と同様に起電圧
が発生せず、共振電流Ir は2次電流を1次電流に換算
した電流値に至る期間だけ、S1 →Lr →T1 (N1
→S4 の回路を流れる。この期間にも共振用コンデンサ
r には起電圧が発生しない。
【0020】巻線の1次等価電流I01はI01=N2・I0
/N1 の関係にあるので、共振電流Ir がI01の値に至
ると、回路電流は、E(+) →S1 →Lr →TN1(Cr
→S4 →E(-) の経路で流れる。そして、このような通
常動作下の条件での共振電流Ir および共振コンデンサ
電圧Vcは通常動作では過大電流や電圧が発生すること
がなく、図4(2)に示すように適切に動作する。
【0021】次に本発明の特徴に係る動作である出力負
荷電流が軽減した場合について説明する。
【0022】共振用コンデンサCr には初期電圧として
−V0が図3(2)に示す極性で充電されているものと
し、その状態でスイッチS1 ,S4 がオン状態になる
と、共振電流Ir はE(+) →S1 →Lr →Cr →S4
(-) の経路で流れるとともに、共振用コンデンサCr
と並列に接続されている1次巻線N1 に分流され、図3
(2)に示す期間1の電圧が得られる。
【0023】共振動作が終了すると共振用コンデンサC
r の電圧は平滑コイルL0 に連続電流が流れている場合
は主変圧器T1 を介して出力に電流が流れ、時間の経過
とともに放電し電圧は次第に低下する。しかし、負荷が
軽くて出力電流が少ない場合には平滑コイルL0 の電流
が不連続となり、共振用コンデンサCr の電圧は放電す
ることなく図3(2)の期間2に示すように電圧V2
維持し続ける。
【0024】次の動作として図3(1)に示すように、
スイッチS3を一旦オンにすることにより共振用コンデ
ンサCr の電荷はCr →Lr →D1 →S3 →Cr の閉回
路で電流Ic が流れ、期間3から期間4に至って電圧は
3 からV4 に電圧の極性が反転する。期間4の経過後
にスイッチS2,S3 が同時にオンになると回路電流Ir
は共振用コンデンサCr の初期値電圧V5 に逆らう極
性で閉回路E(+) →S3 →Cr (N1 )→Lr →S2
(-) で電流が流れ、図3(2)に示すように、図5
(2)に示すものに比し電圧値および電流値のピークを
抑えた特性を得ている。
【0025】このように、スイッチS1 ,S4 のオン動
作後、スイッチS2 ,S3 がオン動作する直前にスイッ
チS3 のみを一旦オンにすることにより、共振用コンデ
ンサCr の電圧極性を反転させ、共振電流Ir を最小値
にするようにしている。
【0026】
【発明の効果】本発明に係るスイッチング電源の制御方
法によれば、スイッチング開始時、入力直流電圧に対し
て打消すように共振コンデンサの充電電圧を定めること
ができるようにしたから、共振コンデンサ電圧上昇を防
止し、共振電流によって生じるスイッチング素子のスト
レスや回路損失を最小にし、特に負荷電流が極めて小さ
い場合に効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例を適用すべき共振形スイッチ
ング電源の一例を示す回路図である。
【図2】従来技術を説明するための共振形スイッチング
電源の一例を示す回路図である。
【図3】本発明の一実施例の動作をあらわすタイミング
図である。
【図4】通常動作をあらわすタイミング図である。
【図5】従来、負荷が微小で電圧値,電流値のピークが
高くなっている状態をあらわすタイミング図である。
【符号の説明】 S1 〜S4 …スイッチ D1 〜D4 …ダイオード素子 Lr …共振用インダクタ Cr …共振用コンデンサ T1 …主変圧器 N1 …1次巻線 N2 ,N3 …1次巻線 D5 ,D6 …整流ダイオード L0 …平滑コイル C0 …平滑コンデンサ R…負荷抵抗
【手続補正2】
【補正対象書類名】図面
【補正対象項目名】全図
【補正方法】変更
【補正内容】
【図1】
【図2】
【図3】
【図4】
【図5】

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】電流共振並列形のスイッチング電源の制御
    方法において、出力負荷電流が軽減した際、共振コンデ
    ンサ電圧が上昇し共振電流が増大することにより回路損
    失が増大する現象を防止するよう環流回路を設け、共振
    回路の両端子を結ぶ閉回路を形成し、充電極性を一旦反
    転させてから動作を開始するよう制御することを特徴と
    するスイッチング電源の制御方法。
JP3297371A 1991-11-13 1991-11-13 スイツチング電源の制御方法 Pending JPH05137332A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3297371A JPH05137332A (ja) 1991-11-13 1991-11-13 スイツチング電源の制御方法
US07/969,140 US5343377A (en) 1991-11-13 1992-10-30 Method of controlling switching regulator
EP92119208A EP0542197B1 (en) 1991-11-13 1992-11-10 Method of controlling switching regulator
DE69211295T DE69211295T2 (de) 1991-11-13 1992-11-10 Steuerverfahren für Schaltregler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3297371A JPH05137332A (ja) 1991-11-13 1991-11-13 スイツチング電源の制御方法

Publications (1)

Publication Number Publication Date
JPH05137332A true JPH05137332A (ja) 1993-06-01

Family

ID=17845626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3297371A Pending JPH05137332A (ja) 1991-11-13 1991-11-13 スイツチング電源の制御方法

Country Status (4)

Country Link
US (1) US5343377A (ja)
EP (1) EP0542197B1 (ja)
JP (1) JPH05137332A (ja)
DE (1) DE69211295T2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE492839T1 (de) * 2002-08-19 2011-01-15 Merstech Inc Impulsstromversorgung zur regeneration von magnetischer energie
EP2269293B1 (en) * 2008-02-04 2013-04-10 Nxp B.V. Method of operating a resonant power converter and a controller therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106164A (ja) * 1988-10-14 1990-04-18 Mitsubishi Electric Corp 直列共振型dc−dcコンバータ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4541041A (en) * 1983-08-22 1985-09-10 General Electric Company Full load to no-load control for a voltage fed resonant inverter
US4639849A (en) * 1985-05-08 1987-01-27 International Exide Electronics/Corporation Snubber circuit for H.F. bridge converter
US4862342A (en) * 1987-12-03 1989-08-29 Sundstrand Corp. DC to AC inverter with neutral having a resonant circuit
US4876635A (en) * 1988-12-23 1989-10-24 General Electric Company Series resonant inverter with lossless snubber-resetting components
US4969076A (en) * 1989-08-14 1990-11-06 General Electric Company Load compensating gain control for a series resonant inverter
US5172309A (en) * 1991-08-07 1992-12-15 General Electric Company Auxiliary quasi-resonant dc link converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106164A (ja) * 1988-10-14 1990-04-18 Mitsubishi Electric Corp 直列共振型dc−dcコンバータ

Also Published As

Publication number Publication date
DE69211295D1 (de) 1996-07-11
EP0542197A3 (ja) 1994-01-05
EP0542197A2 (en) 1993-05-19
DE69211295T2 (de) 1996-10-31
EP0542197B1 (en) 1996-06-05
US5343377A (en) 1994-08-30

Similar Documents

Publication Publication Date Title
JP2682202B2 (ja) 電界効果トランジスタを用いた整流回路
US6466461B2 (en) Method and circuit for reducing voltage level variation in a bias voltage in a power converter
JPH06121535A (ja) Ac−dcコンバータ
JPH05130775A (ja) 共振形フオワ−ドコンバータ
JPH05191972A (ja) スイッチング電源装置
US4417153A (en) High frequency switching circuit
JP3402361B2 (ja) スイッチング電源
JPH113789A (ja) 放電灯の点灯回路
EP0964504B1 (en) Switching power source apparatus
JPH05137332A (ja) スイツチング電源の制御方法
JP2000324829A (ja) 共振型コンバータ回路
JP3267730B2 (ja) 自動電圧切換式電源回路
JP4329450B2 (ja) 直流変換装置
JP3400132B2 (ja) スイッチング電源
JP3395859B2 (ja) スイッチング電源装置
JPH09205770A (ja) Dc−dcコンバータ
KR100208805B1 (ko) 포워드컨버터
JP4396108B2 (ja) 力率改善回路
JPS5925580A (ja) スイツチングレギユレ−タ
JP2001298951A (ja) Dc−dcコンバータ
JPH11127577A (ja) Dc/dcコンバータ装置
JP2001086747A (ja) 電源装置
JPH06261543A (ja) Ac/dcコンバータ
JPH0595681A (ja) Ac/dcコンバータ
JPH07143740A (ja) 電源回路