JPH0513567A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0513567A
JPH0513567A JP18355991A JP18355991A JPH0513567A JP H0513567 A JPH0513567 A JP H0513567A JP 18355991 A JP18355991 A JP 18355991A JP 18355991 A JP18355991 A JP 18355991A JP H0513567 A JPH0513567 A JP H0513567A
Authority
JP
Japan
Prior art keywords
diffusion layer
active region
film
semiconductor device
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18355991A
Other languages
Japanese (ja)
Inventor
Masanori Noda
昌敬 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP18355991A priority Critical patent/JPH0513567A/en
Publication of JPH0513567A publication Critical patent/JPH0513567A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To manufacture a semiconductor device of high integration degree regardless of high threshold voltage of a parasitic MOS transistor and high junction breakdown strength between a diffusion layer for a channel stopper and a diffusion layer in an element active region. CONSTITUTION:After a diffusion layer 15 of low concentration is formed a pattern of an isolation region 16 and an SiO2 film 22 is formed on a surface of the isolation region 16, a diffusion layer 21 of high concentration is formed to have an offset amount (o) from the isolation active region 14. Therefore, side diffusion is not caused in the diffusion layer 21 by heat during heat oxidation for forming the SiO2 film 22 and the formed diffusion layer 15 is not eroded by the diffusion layer 21. Therefore, integration degree can be improved with a little offset amount (o) for preventing disappearance of the diffusion layer 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願の発明は、素子分離用の誘電
体膜下にチャネルストッパ用の拡散層を有する半導体装
置の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having a diffusion layer for a channel stopper under a dielectric film for element isolation.

【0002】[0002]

【従来の技術】モノリシックICにおける素子分離方法
の一つに誘電体分離があるが、素子分離用の誘電体膜下
の半導体基板をチャネルとする寄生MOSトランジスタ
の閾値電圧をICの動作電圧よりも高くしてこの寄生M
OSトランジスタをカットオフし、これによって素子分
離を完全にするために、チャネルストッパと呼ばれる拡
散層を誘電体膜下に形成するのが一般的である。
2. Description of the Related Art There is dielectric isolation as one of element isolation methods in a monolithic IC. However, the threshold voltage of a parasitic MOS transistor whose channel is a semiconductor substrate below a dielectric film for element isolation is higher than the operating voltage of the IC. Raise this parasitic M
In order to cut off the OS transistor and thereby complete the element isolation, it is general to form a diffusion layer called a channel stopper under the dielectric film.

【0003】ところが、高濃度のチャネルストッパと素
子活性領域中の高濃度の拡散層とが素子分離領域と素子
活性領域との境界で直接に接触すると、両者間の接合耐
圧が低下する。一方、チャネルストッパの不純物濃度が
低いと、寄生MOSトランジスタの閾値電圧が十分には
高くならず、素子分離を完全にすることができない。
However, if the high-concentration channel stopper and the high-concentration diffusion layer in the element active region come into direct contact with each other at the boundary between the element isolation region and the element active region, the junction breakdown voltage between them decreases. On the other hand, if the impurity concentration of the channel stopper is low, the threshold voltage of the parasitic MOS transistor will not be sufficiently high and element isolation cannot be completed.

【0004】そこで、従来は、チャネルストッパを有す
る半導体装置を図2に示す方法で形成していた。即ち、
この従来例では、図2(a)に示す様に、Si基板11
の表面にパッド用のSiO2 膜12を形成し、Si3
4 膜13をSiO2 膜12上で素子活性領域14のパタ
ーンに加工した後、このSi3 4 膜13をマスクにし
てSi基板11中に低濃度の拡散層15を形成する。従
って、この拡散層15は、素子分離領域16のパターン
に形成される。
Therefore, conventionally, a semiconductor device having a channel stopper has been formed by the method shown in FIG. That is,
In this conventional example, as shown in FIG.
Forming a SiO 2 film 12 of the pad on the surface of, Si 3 N
After processing the 4 film 13 on the SiO 2 film 12 into the pattern of the element active region 14, a low concentration diffusion layer 15 is formed in the Si substrate 11 using the Si 3 N 4 film 13 as a mask. Therefore, the diffusion layer 15 is formed in the pattern of the element isolation region 16.

【0005】その後、素子活性領域14の端縁から素子
分離領域16側へ所定のオフセット量oを有する様にレ
ジスト17をパターニングし、このレジスト17をマス
クにして不純物18をイオン注入することによって、S
i基板11中に高濃度の拡散層21を形成する。そし
て、レジスト17を除去した後、Si34 膜13を耐
酸化マスクとする熱酸化を行って、図2(b)に示す様
に素子分離領域16の表面にSiO2 膜22を形成す
る。
After that, the resist 17 is patterned so as to have a predetermined offset amount o from the edge of the element active region 14 to the element isolation region 16 side, and impurities 18 are ion-implanted using the resist 17 as a mask. S
A high-concentration diffusion layer 21 is formed in the i substrate 11. Then, after removing the resist 17, thermal oxidation is performed using the Si 3 N 4 film 13 as an oxidation resistant mask to form a SiO 2 film 22 on the surface of the element isolation region 16 as shown in FIG. 2B. .

【0006】[0006]

【発明が解決しようとする課題】ところが、SiO2
22を形成するための熱酸化時の熱によって、既に形成
されている拡散層21が側方拡散し、拡散層15が拡散
層21によって侵食される。もし、オフセット量oが十
分でなければ、図2(b)に示す様に拡散層15が完全
に消失し、後に素子活性領域14に形成される高濃度の
拡散層23と拡散層21とが直接に接触する。
However, due to the heat generated during the thermal oxidation for forming the SiO 2 film 22, the already formed diffusion layer 21 is laterally diffused, and the diffusion layer 15 is eroded by the diffusion layer 21. To be done. If the offset amount o is not sufficient, the diffusion layer 15 disappears completely as shown in FIG. 2B, and the high-concentration diffusion layer 23 and the diffusion layer 21 which will be formed in the element active region 14 later are formed. Contact directly.

【0007】この様に拡散層21と拡散層23とが直接
に接触するのを回避して、両者間の接合耐圧が低下する
のを防止するためには、オフセット量oとして少なくと
も0.5μm程度は必要である。一方、レジスト17の
パターニング幅としては、リソグラフィの限界から現在
のところ0.6μm程度が必要である。従って、SiO
2 膜22の幅として1.6μm以上が必要であり、この
幅を更に狭くして集積度を高めることは困難であった。
As described above, in order to prevent the diffusion layer 21 and the diffusion layer 23 from directly contacting each other and preventing the junction breakdown voltage between them from decreasing, the offset amount o is at least about 0.5 μm. Is necessary. On the other hand, the patterning width of the resist 17 is currently required to be about 0.6 μm due to the limit of lithography. Therefore, SiO
The width of the two films 22 needs to be 1.6 μm or more, and it is difficult to further reduce the width and increase the degree of integration.

【0008】[0008]

【課題を解決するための手段】請求項1の半導体装置の
製造方法は、素子分離用の誘電体膜22を形成した後
に、チャネルストッパ用の第1の拡散層21を、前記誘
電体膜22下に素子活性領域14から離間して形成す
る。
According to a first aspect of the present invention, there is provided a method of manufacturing a semiconductor device, wherein after forming a dielectric film 22 for element isolation, a first diffusion layer 21 for a channel stopper is formed on the dielectric film 22. It is formed below and apart from the element active region 14.

【0009】請求項2の半導体装置の製造方法は、不純
物濃度が半導体基板11と前記第1の拡散層21との中
間であるチャネルストッパ用の第2の拡散層15を、前
記誘電体膜22下に自己整合的に形成する。
In the method of manufacturing a semiconductor device according to a second aspect of the present invention, the second diffusion layer 15 for a channel stopper having an impurity concentration intermediate between the semiconductor substrate 11 and the first diffusion layer 21 is formed on the dielectric film 22. Form self-aligned below.

【0010】[0010]

【作用】請求項1の半導体装置の製造方法では、素子分
離用の誘電体膜22を形成した後に第1の拡散層21を
形成しているので、素子分離用の誘電体膜22を形成す
るための熱処理によって第1の拡散層21が側方拡散す
るということがない。従って、第1の拡散層21を素子
活性領域14から離間させるために両者の間に確保すべ
き距離oが短くてよい。
In the method of manufacturing a semiconductor device according to the first aspect, since the first diffusion layer 21 is formed after the dielectric film 22 for element isolation is formed, the dielectric film 22 for element isolation is formed. Therefore, the first diffusion layer 21 does not laterally diffuse due to the heat treatment. Therefore, in order to separate the first diffusion layer 21 from the element active region 14, the distance o that should be secured between them may be short.

【0011】請求項2の半導体装置の製造方法では、不
純物濃度が半導体基板11と第1の拡散層21との中間
である第2の拡散層15を素子分離用の誘電体膜22下
に自己整合的に形成しているので、この第2の拡散層1
5が第1の拡散層21と素子活性領域14との間に自己
整合的に形成される。
In the method of manufacturing a semiconductor device according to the second aspect, the second diffusion layer 15 having an impurity concentration intermediate between the semiconductor substrate 11 and the first diffusion layer 21 is formed below the dielectric film 22 for element isolation. This second diffusion layer 1 is formed in a consistent manner.
5 is formed in a self-aligned manner between the first diffusion layer 21 and the device active region 14.

【0012】[0012]

【実施例】以下、本願の発明の一実施例を、図1を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0013】本実施例でも、Si3 4 膜13をマスク
にして、不純物濃度が1017cm-3程度以上と低濃度の
拡散層15をSi基板11中に形成するまでは、図2に
示した従来例と実質的に同様の工程を実行する。しか
し、本実施例では、高濃度の拡散層21を形成する前
に、Si3 4 膜13を耐酸化マスクとする熱酸化を行
ってSiO2 膜22を形成する。従って、この時点で、
拡散層15がSiO2 膜22下に自己整合的に形成され
る。
Also in this embodiment, the Si 3 N 4 film 13 is used as a mask until the diffusion layer 15 having a low impurity concentration of about 10 17 cm -3 or more is formed in the Si substrate 11 as shown in FIG. Substantially the same steps as the conventional example shown are performed. However, in this embodiment, before forming the high-concentration diffusion layer 21, thermal oxidation is performed using the Si 3 N 4 film 13 as an oxidation resistant mask to form the SiO 2 film 22. So at this point,
The diffusion layer 15 is formed under the SiO 2 film 22 in a self-aligned manner.

【0014】その後、図1に示す様に、素子活性領域1
4の端縁から素子分離領域16側へ所定のオフセット量
oを有する様にレジスト24をパターニングし、このレ
ジスト24をマスクにしてSiO2 膜22を貫通する様
に不純物18をイオン注入することによって、不純物濃
度が1018cm-3程度以上と高濃度の拡散層21をSi
2 膜22下に形成する。この結果、拡散層15は拡散
層21と素子活性領域14との間に自己整合的に形成さ
れる。
Thereafter, as shown in FIG. 1, the device active region 1
By patterning the resist 24 so as to have a predetermined offset amount o from the edge of No. 4 toward the element isolation region 16 side, and by ion-implanting the impurity 18 so as to penetrate the SiO 2 film 22 using the resist 24 as a mask. , The impurity concentration of about 10 18 cm −3 or more and the high concentration diffusion layer 21
It is formed under the O 2 film 22. As a result, the diffusion layer 15 is formed between the diffusion layer 21 and the device active region 14 in a self-aligned manner.

【0015】不純物18としては、拡散層21を形成す
べき部分がNチャネル部であればB+ 等を用い、Pチャ
ネル部であればPhos+ 等を用いる。イオン注入のエ
ネルギはSiO2 膜22の膜厚に依存するが、B+ は7
0〜220kev程度のエネルギでイオン注入し、Ph
os+ は200〜600kev程度のエネルギでイオン
注入する。
As the impurity 18, B + or the like is used when the portion where the diffusion layer 21 is to be formed is the N channel portion, and Phos + or the like is used when the portion is the P channel portion. The energy of ion implantation depends on the thickness of the SiO 2 film 22, but B + is 7
Ion implantation with an energy of about 0 to 220 kev, Ph
os + is ion-implanted at an energy of about 200 to 600 kev.

【0016】この様にしてSiO2 膜22下の中央部に
高濃度の拡散層21が形成された結果、SiO2 膜22
下のSi基板11をチャネルとする寄生MOSトランジ
スタの閾値電圧が高い。また、後に素子活性領域14に
形成される高濃度の拡散層23と直接に接触するのが低
濃度の拡散層15であるので、これらの拡散層15、2
3同士の間の接合耐圧も高い。
[0016] As a result of the high concentration diffusion layer 21 is formed in a center portion of the lower SiO 2 film 22 in this manner, the SiO 2 film 22
The threshold voltage of the parasitic MOS transistor whose channel is the lower Si substrate 11 is high. Further, since the low-concentration diffusion layer 15 is in direct contact with the high-concentration diffusion layer 23 formed in the element active region 14 later, these diffusion layers 15 and 2 are formed.
The junction breakdown voltage between the three is also high.

【0017】以上の様な本実施例では、SiO2 膜22
を形成した後に高濃度の拡散層21を形成しているの
で、SiO2 膜22を形成するための熱酸化時の熱によ
っては拡散層21が側方拡散せず、既に形成されている
拡散層15が拡散層21によって侵食されることがな
い。このため、後に素子活性領域14に形成される高濃
度の拡散層23と拡散層21とが直接に接触するのを回
避するためには、0.2μm程度のオフセット量oが確
保されていればよい。
In this embodiment as described above, the SiO 2 film 22 is used.
Since the high-concentration diffusion layer 21 is formed after forming, the diffusion layer 21 does not laterally diffuse due to the heat at the time of thermal oxidation for forming the SiO 2 film 22, and the diffusion layer already formed. 15 is not eroded by the diffusion layer 21. Therefore, in order to avoid direct contact between the high-concentration diffusion layer 23 and the diffusion layer 21 formed in the element active region 14 later, if an offset amount o of about 0.2 μm is secured. Good.

【0018】従って、0.5μm程度のオフセット量o
が必要であった既述の従来例に比べて、本実施例では集
積度が大幅に高い半導体装置を製造することができる。
また、上述の説明からも明らかな様に拡散層15は拡散
層21と素子活性領域14との間に自己整合的に形成さ
れるので、この拡散層15の形成が容易である。
Therefore, an offset amount o of about 0.5 μm
In this embodiment, a semiconductor device having a much higher degree of integration can be manufactured, as compared with the above-described conventional example which required the above.
Further, as is apparent from the above description, the diffusion layer 15 is formed between the diffusion layer 21 and the element active region 14 in a self-aligned manner, so that the diffusion layer 15 can be easily formed.

【0019】なお、上述の実施例ではSiO2 膜22の
形成前に拡散層15を形成したが、拡散層21の形成と
同様に、SiO2 膜22の形成後にこのSiO2 膜22
を貫通する様な高エネルギで不純物をイオン注入するこ
とによって拡散層15を形成してもよい。
[0019] Although in the above embodiment to form a diffusion layer 15 before the formation of the SiO 2 film 22, in a manner similar to the formation of the diffusion layer 21, the SiO 2 film after formation of the SiO 2 film 22 22
The diffusion layer 15 may be formed by ion-implanting impurities with a high energy so as to penetrate through.

【0020】本発明は、5V程度という通常のVCC電源
よりも大幅に高い電圧をデータの書込み及び消去のため
に必要とするEPROM及びEEPROMや、入出力端
子がVCC電源よりも高い仕様を有する蛍光表示管駆動端
子付きのMCU等に適用することができる。
The present invention requires an EPROM and an EEPROM that require a voltage of about 5 V, which is significantly higher than that of a normal V CC power supply, for writing and erasing data, and specifications that input / output terminals are higher than the V CC power supply. The present invention can be applied to an MCU having a fluorescent display tube driving terminal and the like.

【0021】[0021]

【発明の効果】請求項1の半導体装置の製造方法では、
チャネルストッパ用の第1の拡散層を素子活性領域から
離間させるために両者の間に確保すべき距離が短くてよ
いので、チャネルストッパ用の拡散層と素子活性領域中
の拡散層との間の接合耐圧が高いにも拘らず集積度も高
い半導体装置を製造することができる。
According to the method of manufacturing a semiconductor device of claim 1,
Since the distance to be secured between the first diffusion layer for the channel stopper and the element active region may be short, the distance between the diffusion layer for the channel stopper and the diffusion layer in the element active region may be small. It is possible to manufacture a semiconductor device having a high degree of integration despite having a high junction breakdown voltage.

【0022】請求項2の半導体装置の製造方法では、相
対的に低濃度のチャネルストッパ用の第2の拡散層が相
対的に高濃度のチャネルストッパ用の第1の拡散層と素
子活性領域との間に自己整合的に形成されるので、寄生
MOSトランジスタの閾値電圧が高く且つチャネルスト
ッパ用の拡散層と素子活性領域中の拡散層との接合耐圧
も高い半導体装置を容易に製造することができる。
According to another aspect of the method of manufacturing a semiconductor device of the present invention, the second diffusion layer for a channel stopper having a relatively low concentration includes the first diffusion layer for a channel stopper having a relatively high concentration and the element active region. Since it is formed in a self-aligned manner, the semiconductor device having a high threshold voltage of the parasitic MOS transistor and a high junction breakdown voltage between the diffusion layer for the channel stopper and the diffusion layer in the element active region can be easily manufactured. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願の発明の一実施例を示す側断面図である。FIG. 1 is a side sectional view showing an embodiment of the present invention.

【図2】本願の発明の一従来例を順次に示す側断面図で
ある。
FIG. 2 is a side sectional view sequentially showing a conventional example of the invention of the present application.

【符号の説明】[Explanation of symbols]

11 Si基板 14 素子活性領域 15 拡散層 16 素子分離領域 21 拡散層 22 SiO2 11 Si substrate 14 element active region 15 diffusion layer 16 element isolation region 21 diffusion layer 22 SiO 2 film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】素子分離用の誘電体膜を形成した後に、チ
ャネルストッパ用の第1の拡散層を、前記誘電体膜下に
素子活性領域から離間して形成する半導体装置の製造方
法。
1. A method of manufacturing a semiconductor device, comprising forming a dielectric film for element isolation, and then forming a first diffusion layer for a channel stopper under the dielectric film and away from an element active region.
【請求項2】不純物濃度が半導体基板と前記第1の拡散
層との中間であるチャネルストッパ用の第2の拡散層
を、前記誘電体膜下に自己整合的に形成する請求項1記
載の半導体装置の製造方法。
2. A second diffusion layer for a channel stopper, which has an impurity concentration between the semiconductor substrate and the first diffusion layer, is formed under the dielectric film in a self-aligned manner. Manufacturing method of semiconductor device.
JP18355991A 1991-06-28 1991-06-28 Manufacture of semiconductor device Pending JPH0513567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18355991A JPH0513567A (en) 1991-06-28 1991-06-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18355991A JPH0513567A (en) 1991-06-28 1991-06-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0513567A true JPH0513567A (en) 1993-01-22

Family

ID=16137924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18355991A Pending JPH0513567A (en) 1991-06-28 1991-06-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0513567A (en)

Similar Documents

Publication Publication Date Title
KR930010121B1 (en) Process for forming high and low voltage cmos transistors on a single integrated circuit chip
JPH02159730A (en) Formation of thin film transistor
JPH04348053A (en) Manufacture of semiconductor device
JP3090669B2 (en) Method for manufacturing semiconductor device
JPH0513567A (en) Manufacture of semiconductor device
JPH08181223A (en) Manufacture of semiconductor device
JPH0268930A (en) Manufacture of semiconductor device
JPH07153953A (en) Method for forming gate electrode having polyside structure
JPS6316672A (en) Manufacture of semiconductor element
JPH06151834A (en) Manufacture of semiconductor device
JPH07326753A (en) Manufacture of semiconductor element
JP3061892B2 (en) Method for manufacturing semiconductor device
JPS5866358A (en) Semiconductor device and manufacture thereof
JPH01297837A (en) Manufacture of semiconductor device
JPH01137645A (en) Manufacture of semiconductor device
JP3253992B2 (en) Semiconductor device and manufacturing method thereof
KR100225383B1 (en) Method of manufacturing semiconductor device
JPS61166154A (en) Manufacture of mis type semiconductor device
JPH02309653A (en) Manufacture of semiconductor integrated circuit
JPH06196642A (en) Semiconductor device and manufacture thereof
JPH06188259A (en) Manufacture of semiconductor device
JPH03181136A (en) Manufacture of semiconductor device
JPH10163490A (en) Manufacture of transistor
JPH0794734A (en) Method of manufacturing transistor with high withstanding voltage
JPH0521596A (en) Manufacture of semiconductor device