JPH02309653A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPH02309653A
JPH02309653A JP13088289A JP13088289A JPH02309653A JP H02309653 A JPH02309653 A JP H02309653A JP 13088289 A JP13088289 A JP 13088289A JP 13088289 A JP13088289 A JP 13088289A JP H02309653 A JPH02309653 A JP H02309653A
Authority
JP
Japan
Prior art keywords
region
insulating film
field insulating
active region
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13088289A
Other languages
Japanese (ja)
Inventor
Ichiro Matsuo
一郎 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP13088289A priority Critical patent/JPH02309653A/en
Publication of JPH02309653A publication Critical patent/JPH02309653A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To miniaturize both an active region and a separation region and enhance integration by performing etching so that the concentration of impurities near the bottom of a field insulating film reaches the maximum and by setting thickness within a specific range. CONSTITUTION:Boron ions are implanted at an acceleration voltage so that the distribution of impurities near the bottom part of a field insulating film 2 reaches the maximum, namely at an acceleration voltage where the projection tracing may nearly agree with the film thickness of the field insulating film 2. Then, heat treatment for activating the implanted boron ions is performed, thus forming a channel stopper region 4 below the field insulating film 2 and an inverse slant well region 5 below an active region 3. Then the field insulting film 2 is selectively etched to have a thickness of 100-400nm. This makes it possible to narrow the width of active region since the horizontal diffusion at the channel stopper region 4 below the element isolation region can be restricted, thus obtaining a highly integrated semiconductor integrated circuit.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高集積化に適した半導体集積回路の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a semiconductor integrated circuit suitable for high integration.

従来の技術 MIS型集型口積回路子を形成するいわゆる活性領域と
、隣接の活性領域間を電器的に分離するいわゆる分離領
域とからなっている。集積回路の高集積化にともない、
分離領域の幅は微細化される傾向にあり、分離領域への
空乏層のひろがりを抑制するために分離領域の不純物濃
度を高くする必要がある。
2. Description of the Related Art A MIS type integrated integrated circuit device is composed of a so-called active region forming an integrated circuit device and a so-called isolation region electrically separating adjacent active regions. As integrated circuits become more highly integrated,
The width of the isolation region tends to be miniaturized, and it is necessary to increase the impurity concentration of the isolation region in order to suppress the spread of the depletion layer into the isolation region.

従来、分離領域の不純物濃度を高(するための半導体集
積回路の製造方法は以下に述べるようなものであった。
Conventionally, the method of manufacturing a semiconductor integrated circuit for increasing the impurity concentration in the isolation region has been as described below.

第3図<a>〜(C)は従来例の半導体集積回路の製造
方法の工程順断面図を表しており、この図面を参照して
説明する。
FIGS. 3A to 3C show step-by-step cross-sectional views of a conventional method for manufacturing a semiconductor integrated circuit, and will be described with reference to these drawings.

まず、第3図(a)に示すように、P型半導体基板11
上にシリコン酸化膜12、シリコン窒化膜13を順次積
層して形成する。
First, as shown in FIG. 3(a), a P-type semiconductor substrate 11
A silicon oxide film 12 and a silicon nitride film 13 are sequentially laminated thereon.

次に、第3図(b)に示すように、活性領域となる部分
のみをフォトレジスト@14で覆い、シリコン窒化膜1
3を選択的にエツチング除去し、さらにフォトレジスト
膜14をマスクとしてホウ素イオンを注入する。
Next, as shown in FIG. 3(b), only the portion that will become the active region is covered with photoresist@14, and the silicon nitride film 1
3 is selectively etched away, and boron ions are implanted using the photoresist film 14 as a mask.

ついで、第3図(C)に示すように、フォトレジスト膜
14を除去した後、基板全体を酸化雰囲気中で熱処理し
てフィールド酸化膜15を形成する。
Next, as shown in FIG. 3C, after removing the photoresist film 14, the entire substrate is heat-treated in an oxidizing atmosphere to form a field oxide film 15.

この熱処理の過程で、注入されたホウ素イオンは不純物
として活性化され、また、基板11中に拡散して、フィ
ールド酸化膜の直下には基板11よりも高濃度のチャネ
ルストッパ領域16が形成される。シリコン窒化膜13
に覆われた領域が活性領域17となる。
During this heat treatment process, the implanted boron ions are activated as impurities and diffused into the substrate 11, forming a channel stopper region 16 with a higher concentration than the substrate 11 directly under the field oxide film. . Silicon nitride film 13
The area covered by becomes the active region 17.

この後、通常の半導体集積回路の製造方法に従ってトラ
ンジスタ等の素子が形成される。
Thereafter, elements such as transistors are formed according to a normal semiconductor integrated circuit manufacturing method.

発明が解決しようとする課題 上記のような従来例の半導体集積回路の製造方法におい
て高集積化のために分離領域、すなわち、フィールド酸
化膜15の幅を小さくしようとすれば、チャネルストッ
パ領域16の不純物濃度を高(する必要があるが、そう
するとフィールド酸化膜15の形成時にチャネルストッ
パ領域16が熱拡散により横方向にも拡散し、活性領域
17にも入り込んで、結果として活性領域17の実効的
な幅が狭くなり、素子の特性が変化するため、結局活性
領域17の幅があまり小さくできず、高集積化が困難で
あるという課題がある。
Problems to be Solved by the Invention In the conventional semiconductor integrated circuit manufacturing method as described above, if the width of the isolation region, that is, the field oxide film 15 is to be reduced in order to achieve high integration, the width of the channel stopper region 16 is reduced. It is necessary to increase the impurity concentration, but in this case, when the field oxide film 15 is formed, the channel stopper region 16 will be diffused laterally by thermal diffusion and will also enter the active region 17, resulting in the effective reduction of the active region 17. Since the width of the active region 17 becomes narrower and the characteristics of the device change, the width of the active region 17 cannot be made very small, making it difficult to achieve high integration.

チャネルストッパ領域16の横方向拡散を抑制するため
に酸化温度を低くすると、シリコン酸化膜の粘性が低下
するため、フィールド酸化膜15の端部において機械的
応力が発生し、基板11中に結晶欠陥が生じて漏れ電流
等の原因となる。
When the oxidation temperature is lowered to suppress the lateral diffusion of the channel stopper region 16, the viscosity of the silicon oxide film decreases, which causes mechanical stress at the edge of the field oxide film 15, causing crystal defects in the substrate 11. occurs, causing leakage current, etc.

課題を解決するための手段 上記のような課題を解決するための本発明の半導体集積
回路の製造方法は、半導体基板の表面を活性領域と分離
領域とに画定して、この分離領域に厚さ500nm以上
のフィールド絶縁膜を形成する工程と、前記フィールド
絶縁膜の底部付近において不純物の濃度が最大となるよ
うな加速電圧で前記活性領域および分離領域に不純物イ
オンを注入した後前記フィールド絶縁膜をエツチングし
てその厚さを1100nm〜400nmの範囲にする工
程とからなるものである。
Means for Solving the Problems A method for manufacturing a semiconductor integrated circuit according to the present invention for solving the above-mentioned problems includes defining the surface of a semiconductor substrate into an active region and an isolation region, and forming a thickness in the isolation region. forming a field insulating film with a thickness of 500 nm or more, and implanting impurity ions into the active region and isolation region at an acceleration voltage such that the impurity concentration is maximum near the bottom of the field insulating film; This process consists of etching the film to a thickness in the range of 1100 nm to 400 nm.

作用 本発明の半導体集積回路の製造方法によれば、活性領域
および分離領域を両者とも微細化することができ、集積
度の高い半導体集積回路が製造できる。
Effect: According to the method of manufacturing a semiconductor integrated circuit of the present invention, both the active region and the isolation region can be miniaturized, and a semiconductor integrated circuit with a high degree of integration can be manufactured.

実施例 本発明の実施例を第1図(a)〜(b)の各断面図で工
程順に示し、これを参照して説明する。
Embodiment An embodiment of the present invention will be explained with reference to the sectional views shown in FIGS.

まず、第1図(a)に示すように、P型半導体基板1の
表面上の一部に厚さ600〜800nmのフィールド絶
縁膜2を周知のフォトエツチング法により形成し、同時
に活性領域3を画定する・フィールド絶縁膜2の厚さは
、後に行なうイオン注入において活性領域下の不純物分
布が表面に大きく影響することを避けるため、500n
m以上が必要である。
First, as shown in FIG. 1(a), a field insulating film 2 with a thickness of 600 to 800 nm is formed on a part of the surface of a P-type semiconductor substrate 1 by a well-known photoetching method, and at the same time an active region 3 is formed. - The thickness of the field insulating film 2 is set to 500 nm in order to prevent the impurity distribution under the active region from greatly affecting the surface in the later ion implantation.
m or more is required.

次に、第1図(b)に示すように、フィールド絶縁膜2
の底部付近で不純物分布が最大となるような、すなわち
、いわゆる投影飛程がフィールド絶縁膜2の膜厚とほぼ
一致するような加速電圧でホウ素イオンを注入する。B
+イオンの場合、加速電圧220keVおよび310k
eVi?2酸化シリコン中の投影飛程としてそれぞれ約
600nmおよび約800nmが得られる。
Next, as shown in FIG. 1(b), the field insulating film 2
Boron ions are implanted at an accelerating voltage such that the impurity distribution is maximum near the bottom of the field insulating film 2, that is, the so-called projected range approximately matches the thickness of the field insulating film 2. B
For + ions, acceleration voltage 220keV and 310k
eVi? Projected ranges in silicon dioxide of approximately 600 nm and approximately 800 nm are obtained, respectively.

ついで、第1図(C)に示すように、注入されたホウ素
イオンを活性化するための熱処理を行ない、フィ−ルド
酸化膜2の下にはチャネルストッパ領域4を、また活性
領域3の下には逆傾斜ウェル領域5を同時に形成する。
Next, as shown in FIG. 1(C), a heat treatment is performed to activate the implanted boron ions, and a channel stopper region 4 is formed under the field oxide film 2, and a channel stopper region 4 is formed under the active region 3. At the same time, a reversely inclined well region 5 is formed.

次に、第1図(b)に示すように、フィールド絶縁膜2
を選択的にエツチングして100〜400nmの厚さに
する。この時点でのフィールド絶縁膜2の膜厚が110
0nより小さい場合にはフィールド絶縁膜2をゲート酸
化膜とする寄生Mis)ランジスタのしきい値電圧が十
分確保できない。また膜厚が400nmより大きい場合
には表面での段差が太き(なり配線の断線等の問題が生
じる。
Next, as shown in FIG. 1(b), the field insulating film 2
is selectively etched to a thickness of 100 to 400 nm. The film thickness of the field insulating film 2 at this point is 110
If it is smaller than 0n, a sufficient threshold voltage of the parasitic Mis) transistor using the field insulating film 2 as the gate oxide film cannot be secured. Furthermore, if the film thickness is greater than 400 nm, the steps on the surface will become thicker, causing problems such as disconnection of wiring.

この時点での不純物の深さ方向分布を第2図に示す。図
中に示すように、活性領域3の不純物分布は深い所で最
大となっており、表面では十分低いので後の工程におい
て調整することが容易である。
The depth distribution of impurities at this point is shown in FIG. As shown in the figure, the impurity distribution in the active region 3 is maximum at a deep portion, and is sufficiently low at the surface, so that it is easy to adjust in a later step.

この後、通常の半導体集1回路の製造方法にしたがって
トランジスタ等の素子を形成すればよい。
Thereafter, elements such as transistors may be formed according to a normal semiconductor integrated circuit manufacturing method.

この半導体集積回路の製造方法によれば、チャネルスト
ッパ領域4は高温長時間の熱処理を受けないため横方向
拡散が抑制できる。また活性領域3においてはイオンが
十分深く注入されるため、表面近傍の不純物濃度に与え
る影響は小さい。さらに逆傾斜ウェル領域5の存在によ
り基板1の抵抗が下がるため相補型MIS集積回路にお
いてはいわゆるラッチアップが抑制される。
According to this method of manufacturing a semiconductor integrated circuit, channel stopper region 4 is not subjected to high-temperature, long-term heat treatment, so that lateral diffusion can be suppressed. Furthermore, since ions are implanted sufficiently deeply in the active region 3, the influence on the impurity concentration near the surface is small. Furthermore, the existence of the reversely inclined well region 5 lowers the resistance of the substrate 1, so that so-called latch-up is suppressed in the complementary MIS integrated circuit.

前述したようにフィールド絶縁膜2の膜厚は最終的には
当初形成した膜厚よりも薄(なっているため、基板1の
表面の段差は十分緩和でき、配線の断線等の問題は生じ
ない。
As mentioned above, the film thickness of the field insulating film 2 is ultimately thinner than the film thickness originally formed, so the level difference on the surface of the substrate 1 can be sufficiently alleviated, and problems such as disconnection of wiring do not occur. .

なお、第1図の実施例では注入されたイオンを活性化さ
せた後、フィールド絶縁膜2をエツチングしているが、
形成順序としてはこの逆でもよく、さらに活性化の熱処
理とトランジスタ等の素子を形成するための熱処理とを
兼ねても良い。
In the embodiment shown in FIG. 1, the field insulating film 2 is etched after activating the implanted ions.
The formation order may be reversed, and the activation heat treatment may also serve as the heat treatment for forming elements such as transistors.

また、実施例においては説明の都合上P型半導体基板を
用いていたが、N型半導体基板についても、イオン種や
注入加速電圧の選択により、同様の方法が適用できる。
Further, although a P-type semiconductor substrate is used in the embodiment for convenience of explanation, the same method can be applied to an N-type semiconductor substrate by selecting the ion species and the implantation acceleration voltage.

膜厚等についても適宜選択設定が可能である。It is also possible to select and set the film thickness etc. as appropriate.

発明の効果 本発明の半導体集積回路の製造方法、によれば、素子分
離領域下のチャネルストッパ領域の横方向拡散が抑制で
きるため、活性領域の幅を狭くすることができる。また
活性領域には逆傾斜ウェルが形成されるため、基板の抵
抗が下がる。さらに基板表面の段差は小さくできる。
Effects of the Invention According to the method of manufacturing a semiconductor integrated circuit of the present invention, lateral diffusion of the channel stopper region under the element isolation region can be suppressed, so that the width of the active region can be narrowed. Furthermore, since a reversely inclined well is formed in the active region, the resistance of the substrate is reduced. Furthermore, the level difference on the substrate surface can be made smaller.

したがって、本発明により、結果として高集積の半導体
集積回路を製造することができる。
Therefore, according to the present invention, a highly integrated semiconductor integrated circuit can be manufactured as a result.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体集積回路の製造方法の実施例を
示す断面図、第2図は本発明の半導体集積回路の製造方
法の実施例による深さ方向の不純物分布を示す図、第3
図は従来例の半導体fi精回路の製造方法を示す断面図
である。 1・・・・・・P型半導体基板、2・・・・・・フィー
ルド絶縁膜、3・・・・・・活性領域、4・・・・・・
チャネルストッパ領域、5・・・・・・逆傾斜ウェル領
域。 代理人の氏名 弁理士 粟野重孝 ほか1名第2図 基本EA面カリのジ采さ とイ士龜判女2第3図
FIG. 1 is a cross-sectional view showing an embodiment of the method for manufacturing a semiconductor integrated circuit according to the present invention, FIG.
The figure is a cross-sectional view showing a conventional method for manufacturing a semiconductor FI precision circuit. DESCRIPTION OF SYMBOLS 1... P-type semiconductor substrate, 2... Field insulating film, 3... Active region, 4...
Channel stopper region, 5...Reverse inclined well region. Name of agent: Patent attorney Shigetaka Awano and 1 other person Figure 2 Basic EA side Kari's structure Toshiba Hanjo 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の表面を活性領域と分離領域とに画定して、
前記分離領域上に厚さ500nm以上のフィールド絶縁
膜を形成する工程と、前記フィールド絶縁膜の底部付近
において不純物の濃度が最大となるような加速電圧で前
記活性領域および分離領域に不純物イオンを注入した後
、前記フィールド絶縁膜をエッチングしてその厚さを1
00nm〜400nmの範囲にする工程とからなること
を特徴とする半導体集積回路の製造方法。
defining a surface of the semiconductor substrate into an active region and an isolation region;
forming a field insulating film with a thickness of 500 nm or more on the isolation region, and implanting impurity ions into the active region and the isolation region at an accelerating voltage such that the impurity concentration is maximum near the bottom of the field insulating film. After that, the field insulating film is etched to a thickness of 1
1. A method for manufacturing a semiconductor integrated circuit, comprising a step of making the thickness within a range of 00 nm to 400 nm.
JP13088289A 1989-05-24 1989-05-24 Manufacture of semiconductor integrated circuit Pending JPH02309653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13088289A JPH02309653A (en) 1989-05-24 1989-05-24 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13088289A JPH02309653A (en) 1989-05-24 1989-05-24 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH02309653A true JPH02309653A (en) 1990-12-25

Family

ID=15044904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13088289A Pending JPH02309653A (en) 1989-05-24 1989-05-24 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH02309653A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163844A (en) * 1992-11-26 1994-06-10 Mitsubishi Electric Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163844A (en) * 1992-11-26 1994-06-10 Mitsubishi Electric Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JPH04348053A (en) Manufacture of semiconductor device
JP2730535B2 (en) Method for manufacturing semiconductor device
JP2775765B2 (en) Semiconductor device manufacturing method
JP2782781B2 (en) Method for manufacturing semiconductor device
KR930010094B1 (en) Semiconductor device and making method of the same
JPH02309653A (en) Manufacture of semiconductor integrated circuit
JPH036844A (en) Manufacture of semiconductor integrated circuit
JPH06188259A (en) Manufacture of semiconductor device
JP2571449B2 (en) Manufacturing method of bipolar IC
JPH07249636A (en) Semiconductor device and manufacture thereof
JPS6037614B2 (en) Manufacturing method of semiconductor device
JPS6016469A (en) Manufacture of mis semiconductor device
JPH0555204A (en) Manufacture of semiconductor device
JP3297102B2 (en) Method of manufacturing MOSFET
JPH0582784A (en) Manufacture of mis-type semiconductor device
JPH01297837A (en) Manufacture of semiconductor device
JPS61166154A (en) Manufacture of mis type semiconductor device
JPH03153081A (en) Field effect transistor and its manufacture
JPH0563193A (en) Manufacture of semiconductor device
JPH05275529A (en) Method of manufacturing semiconductor integrated circuit
JPH04346263A (en) Manufacture of bi-cmos semiconductor device
JPS6367778A (en) Manufacture of semiconductor device
JPH03101251A (en) Manufacture of semiconductor device
JPH06216239A (en) Manufacture of semiconductor device
JPH05182958A (en) Semiconductor device and method of manufacture that