JPH05129288A - 窒化シリコン膜 - Google Patents

窒化シリコン膜

Info

Publication number
JPH05129288A
JPH05129288A JP31868891A JP31868891A JPH05129288A JP H05129288 A JPH05129288 A JP H05129288A JP 31868891 A JP31868891 A JP 31868891A JP 31868891 A JP31868891 A JP 31868891A JP H05129288 A JPH05129288 A JP H05129288A
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride film
film
threshold voltage
shift amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31868891A
Other languages
English (en)
Inventor
Toshiaki Azuma
俊明 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP31868891A priority Critical patent/JPH05129288A/ja
Publication of JPH05129288A publication Critical patent/JPH05129288A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

(57)【要約】 【目的】比較的高い温度でも薄膜素子のしきい値電圧の
シフト量を小さくして、その信頼性を向上させることが
できる、窒化シリコン膜を提供する。 【構成】窒化シリコン膜の酸素含有量を2.5〜4.0
%の範囲にした。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、プラズマCVD法によ
り成膜される窒化シリコン膜に関するものである。
【0002】
【従来の技術】窒化シリコン(Si N)膜は、薄膜トラ
ンジスタや薄膜ダイオード等の薄膜素子の絶縁膜に用い
られており、この窒化シリコン膜は、一般に、プラズマ
CVD法によって成膜されている。
【0003】この窒化シリコン膜のプラズマCVD法に
よる成膜は、従来、プロセスガスであるSi H4 ,NH
3 ,N2 の流量比を、Si H4 /NH3 /N2 =約30
/60/390(CCM) に制御して行なわれており、この
ガス流量比で成膜された窒化シリコン膜の酸素含有量は
約0.02%である。
【0004】
【発明が解決しようとする課題】しかし、上記従来の窒
化シリコン膜は、温度が50℃程度以上になると、薄膜
素子のしきい値電圧を大きくシフトさせてしまうという
問題をもっており、そのため、従来の窒化シリコン膜を
絶縁膜とする薄膜素子は、この薄膜素子を使用する電子
機器(例えば薄膜素子を能動素子とするアクティブマト
リックス液晶表示装置等)の製造工程における熱処理時
や、前記電子機器の使用中の温度変化によって、動作特
性が大きく変化してしまうという問題をもっていた。
【0005】本発明の目的は、比較的高い温度でも薄膜
素子のしきい値電圧のシフト量を小さくして、その信頼
性を向上させることができる、窒化シリコン膜を提供す
ることにある。
【0006】
【課題を解決するための手段】本発明の窒化シリコン膜
は、その酸素含有量を2.5〜4.0%としたものであ
る。
【0007】
【作用】このような酸素含有量の窒化シリコン膜を絶縁
膜とする薄膜素子は、比較的高い温度でも、そのしきい
値電圧のシフト量は小さい。
【0008】
【実施例】以下、本発明の実施例を説明する。
【0009】この実施例の窒化シリコン膜は、例えばa
−Si :H(水素化アモルファスシリコン)半導体を用
いた薄膜トランジスタのゲート絶縁膜に用いられるもの
であり、その酸素含有量は、2.5〜4.0%の範囲で
ある。
【0010】この窒化シリコン膜は、プラズマCVD法
により、従来の窒化シリコン膜の成膜に用いられている
プロセスガス(Si H4 ,NH3 ,N2 )にN2 Oを加
えたガスをプロセスガスとして成膜されるもので、その
酸素含有量は、上記プロセスガスのN2 Oの流量を制御
することによって任意に選択することができる。
【0011】上記窒化シリコン膜は、例えば次の成膜条
件で成膜する。
【0012】 成膜温度(窒化シリコン膜を成膜する基板の温度);2
50℃ プロセスガス;Si H4 /NH3 /N2 O/N2 =30/180/5/270(CCM) 圧力;0.5Torr RF周波数;13.56MHz RFパワー密度;84mW/cm2 成膜膜厚;400nm 上記成膜条件は、従来の窒化シリコン膜の成膜条件に対
して、プロセスガスのうちのNH3 の流量を180ccm
(従来は約60CCM )と多くするとともに、N2 の流量
を270ccm (従来は約390CCM )と少なくし、さら
に従来は使用されていないN2 Oを若干量(5CCM )加
えたもので、この成膜条件で成膜した窒化シリコン膜の
酸素含有量は3.4%である。
【0013】上記成膜条件で成膜した窒化シリコン膜を
ゲート絶縁膜とする薄膜トランジスタは、従来の窒化シ
リコン膜を用いた薄膜トランジスタに比べて温度に対す
るしきい値電圧のシフト量が小さい。
【0014】これは、上記成膜条件で成膜した窒化シリ
コン膜を用いた被検体と、従来の窒化シリコン膜を用い
た被検体とを製作し、これら被検体をBT処理(Bias
Temperature treatment)してBT処理温度に対する容
量−電圧特性のしきい値電圧Vthのシフト量ΔVthを調
べた結果からも確認された。
【0015】図1および図2は上記被検体を示してい
る。この被検体は、ガラス基板1の上に、下部電極2
と、窒化シリコン膜3と、a−Si :Hからなるi型半
導体層4およびn型半導体層5と、上部電極6とを積層
したもので、下部電極2上の各積層膜3,4,5,6の
一部には、下部電極2に電圧を印加するための開口7を
設けてある。なお、上記実施例の窒化シリコン膜を用い
た被検体も、従来の窒化シリコン膜を用いた被検体も、
その窒化シリコン膜3は、平行平板型プラズマCVD装
置によって400nmの膜厚に成膜した。
【0016】上記被検体のBT処理温度に対するしきい
値電圧Vthのシフト量ΔVthは、次のようにして求め
た。
【0017】まず、被検体を無バイアス状態で200℃
に約10分間加熱して初期化処理し、この被検体の容量
−電圧特性を測定した。次に、初期化処理した被検体を
25〜80℃の範囲の所定のBT処理温度に加熱して下
部電極2と上部電極6との間にバイアス電圧を約10分
間印加するBT処理を行ない、BT処理後の容量−電圧
特性を測定した。このBT処理は、負のバイアス電圧を
印加する−BT処理と、正のバイアス電圧を印加する+
BT処理との両方の処理を行ない、両方のBT処理後の
容量−電圧特性をそれぞれ測定した。なお、上記−BT
処理は、下部電極2に、上部電極6に対して−0.87
5MV/cmの電界を印加して行ない、+BT処理は、
下部電極2に、上部電極6に対して+0.875MV/
cmの電界を印加して行なった。
【0018】次に、上記被検体の初期化処理後の容量−
電圧特性(以下初期特性という)と、−BT処理後およ
び+BT処理後の容量−電圧特性とから、初期特性に対
する−BT処理後のしきい値電圧のシフト量と、上記初
期特性に対する+BT処理後のしきい値電圧のシフト量
とを求め、これらシフト量から、BT処理温度に対する
しきい値電圧Vthのシフト量ΔVthを算出した。
【0019】なお、上記被検体のBT処理温度に対する
しきい値電圧Vthのシフト量ΔVthは、上記−BT処理
を行なったときのシフト量ΔVth(-) と、+BT処理を
行なったときのシフト量ΔVth(+) との和であり、上記
シフト量ΔVthは、ΔVth=ΔVth(-) +ΔVth(+) と
して求められる。
【0020】図3は、BT処理温度を25℃,50℃,
80℃の3段階に選んで、各BT処理温度に対する被検
体のしきい値電圧Vthのシフト量ΔVthを調べた結果を
示しており、図において実線は上記実施例の窒化シリコ
ン膜(酸素含有量3.4%)を用いた被検体の特性、破
線は従来の窒化シリコン膜(酸素含有量0.02%)を
用いた被検体の特性である。
【0021】この図3のように、上記実施例の窒化シリ
コン膜を用いた被検体は、従来の窒化シリコン膜を用い
た被検体に比べて、BT処理温度に対するしきい値電圧
のシフト量ΔVthが小さく、特に50℃以上(図では8
0℃)の比較的高い温度に対するシフト量ΔVthは、従
来のものに比べてかなり小さい。
【0022】したがって、上記実施例の窒化シリコン膜
を薄膜トランジスタのゲート絶縁膜に用いれば、比較的
高い温度でも薄膜トランジスタのしきい値電圧のシフト
量は小さいから、その信頼性を向上させることができ
る。
【0023】なお、上記窒化シリコン膜は、薄膜トラン
ジスタのゲート絶縁膜に限らず、例えば薄膜ダイオード
等の各種薄膜素子の絶縁膜に広く適用できる。
【0024】また、図3には、酸素含有量が3.4%の
窒化シリコン膜を用いた被検体のBT処理温度に対する
しきい値電圧シフト量ΔVthを示したが、上記酸素含有
量は2.5〜4.0%の範囲であればよく、酸素含有量
がこの範囲であれば、薄膜素子の温度によるしきい値電
圧のシフト量を、従来の窒化シリコン膜を用いる薄膜素
子に比べて十分小さくすることができる。
【0025】すなわち、図4は、図1および図2に示し
た被検体の窒化シリコン膜の酸素含有量を種々の値に選
んで、各被検体を25℃,50℃,80℃の温度でBT
処理したときのBT処理温度に対するしきい値電圧シフ
ト量ΔVthを調べた結果を示している。
【0026】この図4のように、酸素含有量が2.5〜
4.0%の範囲の窒化シリコン膜を用いた被検体は、2
5℃,50℃,80℃のいずれの温度でBT処理したと
きも、しきい値電圧のシフト量ΔVthは小さい。これに
対して、酸素含有量が2.5%より少ない窒化シリコン
膜や、酸素含有量が4.0%より多い窒化シリコン膜を
用いた被検体は、BT処理温度が50℃より低ければ、
しきい値電圧のシフト量ΔVthは比較的小さいが、50
℃以上でBT処理すると、しきい値電圧がかなり大きく
シフトしてしまう。
【0027】なお、上記窒化シリコン膜の酸素含有量
は、上述したように、プロセスガス(Si H4 ,N
3 ,N2 O,N2 )のN2 Oの流量を制御することに
よって任意に選ぶことができる。すなわち、N2 Oの流
量を多くすると、成膜される窒化シリコン膜の酸素含有
量が増加し、N2 Oの流量を少なくすると、成膜される
窒化シリコン膜の酸素含有量が減少する。
【0028】
【発明の効果】本発明の窒化シリコン膜は、その酸素含
有量を2.5〜4.0%としたものであるから、比較的
高い温度にさらされても薄膜素子のしきい値電圧のシフ
ト量を小さくして、その信頼性を向上させることができ
る。
【図面の簡単な説明】
【図1】BT処理温度に対するしきい値電圧Vthのシフ
ト量ΔVthを調べるのに用いた被検体の平面図。
【図2】図1のII−II線に沿う断面図。
【図3】BT処理温度と被検体のしきい値電圧シフト量
ΔVthとの関係を示す図。
【図4】窒化シリコン膜の酸素含有量とBT処理温度に
対する被検体のしきい値電圧シフト量ΔVthとの関係を
示す図。
【符号の説明】
1…ガラス基板、2…下部電極、3…窒化シリコン膜、
4…i型半導体層、5…n型半導体層、6…上部電極、
7…開口。

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 プラズマCVD法により成膜される窒化
    シリコン膜において、その酸素含有量を2.5〜4.0
    %としたことを特徴とする窒化シリコン膜。
JP31868891A 1991-11-07 1991-11-07 窒化シリコン膜 Pending JPH05129288A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31868891A JPH05129288A (ja) 1991-11-07 1991-11-07 窒化シリコン膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31868891A JPH05129288A (ja) 1991-11-07 1991-11-07 窒化シリコン膜

Publications (1)

Publication Number Publication Date
JPH05129288A true JPH05129288A (ja) 1993-05-25

Family

ID=18101909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31868891A Pending JPH05129288A (ja) 1991-11-07 1991-11-07 窒化シリコン膜

Country Status (1)

Country Link
JP (1) JPH05129288A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414825B1 (en) * 1998-10-06 2002-07-02 Tdk Corporation Thin film device, thin film magnetic head and magnetoresistive element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414825B1 (en) * 1998-10-06 2002-07-02 Tdk Corporation Thin film device, thin film magnetic head and magnetoresistive element

Similar Documents

Publication Publication Date Title
Kamins et al. Hydrogenation of transistors fabricated in polycrystalline-silicon films
Ma et al. Fixed and trapped charges at oxide–nitride–oxide heterostructure interfaces formed by remote plasma enhanced chemical vapor deposition
US5462898A (en) Methods for passivating silicon devices at low temperature to achieve low interface state density and low recombination velocity while preserving carrier lifetime
US20030155582A1 (en) Gate dielectric structures for integrated circuits and methods for making and using such gate dielectric structures
EP0010910A1 (en) Method for forming an insulating film layer on a semiconductor substrate surface
Hsieh et al. Characteristics of low‐temperature and low‐energy plasma‐enhanced chemical vapor deposited SiO2
Bernstein et al. Hydrogenation of polycrystalline silicon thin film transistors by plasma ion implantation
US3809574A (en) Aluminum oxide films for electronic devices
Noguchi et al. Advanced superthin polysilicon film obtained by Si+ implantation and subsequent annealing
US5144391A (en) Semiconductor device which relieves internal stress and prevents cracking
Duffy et al. Interface Properties of Si‐(SiO2)‐Al2 O 3 Structures
JP3211301B2 (ja) 窒化シリコン膜
US6245606B1 (en) Low temperature method for forming a thin, uniform layer of aluminum oxide
JP3211302B2 (ja) 窒化シリコン膜
JPH05129288A (ja) 窒化シリコン膜
JP3245779B2 (ja) 窒化シリコン膜の成膜方法
JPS5910074B2 (ja) 半導体不揮発性記憶装置
JPS58148458A (ja) 薄膜トランジスタ
JPH09260372A (ja) 半導体装置の絶縁膜の形成方法
Vogel et al. Electrical properties of silicon dioxide films fabricated at 700° C. I: Pyroltsis of tetraethoxysilane
JPH04294532A (ja) タングステンシリサイド膜の形成方法
JPH03263323A (ja) プラズマcvd窒化珪素膜の形成方法
JPH01107547A (ja) 化合物半導体基板
JPH1032334A (ja) ゲート電極及びその形成方法
US20150357474A1 (en) Oxide for semiconductor layer of thin film transistor, thin film transistor, and display device