JPH05108194A - Low power consumption type semiconductor integrated circuit - Google Patents

Low power consumption type semiconductor integrated circuit

Info

Publication number
JPH05108194A
JPH05108194A JP3269248A JP26924891A JPH05108194A JP H05108194 A JPH05108194 A JP H05108194A JP 3269248 A JP3269248 A JP 3269248A JP 26924891 A JP26924891 A JP 26924891A JP H05108194 A JPH05108194 A JP H05108194A
Authority
JP
Japan
Prior art keywords
circuit
mos
threshold
clock
substrate bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3269248A
Other languages
Japanese (ja)
Other versions
JP3184265B2 (en
Inventor
Masabumi Miyamoto
正文 宮本
Motonobu Tonomura
元伸 外村
Makoto Hanawa
誠 花輪
Koichi Seki
浩一 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26924891A priority Critical patent/JP3184265B2/en
Publication of JPH05108194A publication Critical patent/JPH05108194A/en
Application granted granted Critical
Publication of JP3184265B2 publication Critical patent/JP3184265B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Logic Circuits (AREA)
  • Dram (AREA)
  • Power Sources (AREA)
  • Microcomputers (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable high speed operation with low power supply voltage under a operation mode and to reduce voltage consumption under a waiting mode by setting the threshold of a MOS transistor to a low value and increasing the threshold at the time of the waiting mode by applying a circuit board bias. CONSTITUTION:The threshold of the MOB transistor (MN,MP) is set to a low value and under the waiting mode, a clock CKm to be supplied to an MPU (microprocessor unit) 1 is stopped by a clock control circuit 3, circuit board bias circuits 2-1, 2-2 are actuated with an operation mode switching signal A and a negative circuit board bias VBN is applied to an NMOS transistor (MN) and a positive circuit board bias VBP than the power supply is applied to a PMOS transistor (MP). At this time, the threshold of the MOS transistor increases and leak current decreases by means of exponential function by the amount of the increase of the threshold. That is, by applying the circuit board bias, subthreshold characteristics can be improved and the leak current can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は低消費電力型半導体集積
回路に関し、特に電池で動作するとともにMOSトラン
ジスタを用いたマイクロプロセッサなどの情報処理装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low power consumption type semiconductor integrated circuit, and more particularly to an information processing device such as a microprocessor which operates on a battery and uses a MOS transistor.

【0002】[0002]

【従来の技術】従来より、基板バイアスを印加した半導
体回路の例としては、昭和62年2月10日培風館より
発行の「超高速MOSデバイス」第259頁乃至第26
1頁(菅野卓雄監修)に述べられているものがある。
2. Description of the Related Art Conventionally, as an example of a semiconductor circuit to which a substrate bias is applied, "Ultra High Speed MOS Device", pp. 259 to 26, published by Baifukan on February 10, 1987.
Some are mentioned on page 1 (supervised by Takuo Sugano).

【0003】従来の一般的な基板バイアスの印加は、こ
の従来例のように、pn接合容量を低減することにより
高速化することを目的としている。一方、基板バイアス
の印加時にはnチャネルMOSFETのしきい値が上昇
して0.6〜1.0V程度の実用的な値になるように設計
されている。この例によれば基板バイアスの値が高いほ
どドレインの空乏層が広がり、pn接合の容量が減少し
て高速化をすることができる。
The conventional application of a general substrate bias is aimed at speeding up by reducing the pn junction capacitance as in this conventional example. On the other hand, when a substrate bias is applied, the threshold value of the n-channel MOSFET rises and is designed to be a practical value of about 0.6 to 1.0V. According to this example, the higher the value of the substrate bias, the wider the depletion layer of the drain and the smaller the capacitance of the pn junction, so that the speed can be increased.

【0004】一方、CMOS型回路を用いたプロセッサ
の低消費電力化について対策した例として、特開昭56−
42827 号公報に述べられているように、プログラム命令
によりCPU部分および動作しない回路へのクロック供
給を停止して待機モードに入り、消費電力を抑えようと
するものがある。CMOS型回路ではクロックを停止し
て全てのスイッチングを停止すれば、消費電力はMOS
トランジスタのサブスレッショルド電流によるリーク電
流のみとなるので、待機モード時の消費電流を動作時よ
りも3桁以上低減させることができる。
On the other hand, as an example of measures for reducing the power consumption of a processor using a CMOS type circuit, Japanese Patent Laid-Open No.
As described in Japanese Laid-Open Patent No. 42827, there is a device which attempts to reduce power consumption by stopping a clock supply to a CPU portion and a circuit which does not operate by a program instruction to enter a standby mode. In a CMOS type circuit, if the clock is stopped and all switching is stopped, the power consumption is MOS
Since only the leak current due to the subthreshold current of the transistor is used, the current consumption in the standby mode can be reduced by three digits or more as compared with the operating time.

【0005】[0005]

【発明が解決しようとする課題】現状のしきい値(0.5
V程度)のMOS型トランジスタを用いたマイクロプロ
セッサでも5Vの電源電圧を用いれば高速で動作させる
ことが可能であり、従来のように基板バイアスの印加に
よるpn接合容量の低減により高速化も可能であった。
しかし、低消費電力の観点からは、消費電力が電源電圧
の2乗に比例するため電源電圧を5V以下に下げる必要
がある。特に電池動作の場合には1V程度の低電圧化が
必要となる。また、MOSトランジスタの微細化が進む
につれて素子耐圧も低下するため、電源電圧を下げる必
要がでてきている。
The present threshold value (0.5
A microprocessor using a MOS transistor of about V) can be operated at a high speed by using a power supply voltage of 5 V, and the speed can be increased by reducing the pn junction capacitance by applying a substrate bias as in the conventional case. there were.
However, from the viewpoint of low power consumption, since the power consumption is proportional to the square of the power supply voltage, it is necessary to reduce the power supply voltage to 5V or less. Particularly in the case of battery operation, it is necessary to reduce the voltage to about 1V. Further, as the miniaturization of the MOS transistor progresses, the withstand voltage of the element also decreases, so that it is necessary to lower the power supply voltage.

【0006】一方、CMOS回路の遅延時間は負荷容量
の電荷をドレイン電流で充放電する時間であり、電源電
圧/(電源電圧−しきい値)2乗に比例する。従って、し
きい値が無視できるような高い電源電圧では遅延時間は
電源電圧に反比例するが、しきい値が無視できなくなる
低電圧では電源電圧の低下に伴って遅延時間が急激に増
加する。このような低電圧の動作時には基板バイアスを
印加するとしきい値が上昇するため、かえって動作速度
が低下してしまう問題がある。従って、低電圧動作時に
は基本的に基板バイアスを印加せず、MOSトランジス
タのしきい値を低く保たなければならない。
On the other hand, the delay time of the CMOS circuit is the time for charging / discharging the charge of the load capacitance with the drain current, and is proportional to the power supply voltage / (power supply voltage-threshold value) squared. Therefore, the delay time is inversely proportional to the power supply voltage at a high power supply voltage where the threshold value can be ignored, but at a low voltage where the threshold value cannot be ignored, the delay time rapidly increases with a decrease in the power supply voltage. When a substrate bias is applied during the operation at such a low voltage, the threshold value rises, so that there is a problem that the operation speed is rather lowered. Therefore, when operating at a low voltage, basically no substrate bias is applied and the threshold value of the MOS transistor must be kept low.

【0007】一方、しきい値電圧を低下させることは、
MOSトランジスタのサブスレッショルド電流によるリ
ーク電流の増加につながると言う別の問題を生じる。こ
のリーク電流は、室温においてしきい値を0.1V 低下
させるごとに約47倍と指数関数で増加する。たとえば
0.5Vから0.3Vまでしきい値を低下させるとリーク
電流は約2200倍となる。数十万素子規模のマイクロ
プロセッサの場合、動作時の電流と比較するとこのリー
ク電流は1割以下でありあまり消費電力は増加しない。
しかしながら、従来例のようにクロックのみを停止する
待機モード時の消費電流はまさにこのリーク電流による
ものなので、0.5Vから0.3Vまでしきい値を低下さ
せるとリーク電流は直接2200倍になる。従ってしき
い値電圧を低下した場合は、クロックを止めるだけでは
消費電流の低減は十分でなく、待機モード時の電池バッ
クアップ時間が著しく短縮されると言う問題が生ずる。
On the other hand, lowering the threshold voltage is
Another problem occurs that the leakage current increases due to the subthreshold current of the MOS transistor. This leak current increases exponentially with about 47 times each time the threshold value is lowered by 0.1 V at room temperature. For example, if the threshold value is lowered from 0.5V to 0.3V, the leak current becomes about 2200 times. In the case of a microprocessor having a scale of hundreds of thousands of elements, the leak current is 10% or less as compared with the current during operation, and the power consumption does not increase so much.
However, the current consumption in the standby mode in which only the clock is stopped as in the conventional example is exactly due to this leak current. Therefore, if the threshold value is reduced from 0.5V to 0.3V, the leak current directly increases by 2200 times. .. Therefore, when the threshold voltage is lowered, stopping the clock is not sufficient to reduce the current consumption, and the battery backup time in the standby mode is significantly shortened.

【0008】本発明は上述の如き本発明者等による検討
結果を基礎としてなされたものであり、その目的とする
ところは動作時は低電源電圧でも高速な動作が可能であ
り、かつ待機モード時にはリーク電流による消費電力が
少ない情報処理装置を提供することである。
The present invention was made on the basis of the results of the study by the present inventors as described above. The purpose of the present invention is to enable high-speed operation even at a low power supply voltage during operation, and in the standby mode. An object is to provide an information processing device that consumes less power due to a leak current.

【0009】[0009]

【課題を解決するための手段】前記の問題点は、スイッ
チング動作をしない待機モード時にもMOSトランジス
タのしきい値が低いことが原因である。
The above-mentioned problem is caused by the low threshold value of the MOS transistor even in the standby mode in which the switching operation is not performed.

【0010】従って、動作時にはしきい値を低くして低
電源電圧でも高速動作を可能にし、待機モード時にはし
きい値を高くしてリーク電流を低減できれば、低電源電
圧による動作時の高速動作性と待機モード時の低消費電
力性との両立が可能である。そのため、MOSトランジ
スタそのもののしきい値は低く設定し、待機モード時に
は基板バイアスを印加することによりしきい値を上昇さ
せる。
Therefore, if the threshold value is lowered during operation to enable high-speed operation even at a low power supply voltage, and the threshold value is increased during standby mode to reduce leakage current, high-speed operability during operation at a low power supply voltage is achieved. It is possible to achieve both low power consumption and standby mode. Therefore, the threshold value of the MOS transistor itself is set low, and the threshold value is raised by applying the substrate bias in the standby mode.

【0011】尚、この時の基板バイアスはしきい値の上
昇によるリーク電流の低減量が基板バイアス回路の消費
電流よりも大きくなるように設定する必要があることは
言うまでもない。
Needless to say, the substrate bias at this time needs to be set so that the amount of reduction of the leak current due to the rise of the threshold value is larger than the current consumption of the substrate bias circuit.

【0012】[0012]

【作用】動作時はしきい値が低いので低電圧でも高速動
作が可能になり、一方、待機モード時にはしきい値電圧
が高くなるのでリーク電流を大幅に減少させることがで
きる。
Since the threshold value is low during operation, high-speed operation is possible even at low voltage, while the threshold voltage is high during standby mode, so that leakage current can be greatly reduced.

【0013】[0013]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0014】図1は本発明の代表的な実施例であり、そ
の基本的な概念を説明する。まず、低電源電圧での高速
動作を保つために、MOSトランジスタ(MN,MP)
のしきい値は低く設定されている。一方、キーボード入
力が一定時間以上無い場合や、最低消費電力の状態が一
定時間以上続いた場合を判定して、プログラム命令ある
いは外部の制御信号によって待機モードに入る。
FIG. 1 shows a typical embodiment of the present invention, and the basic concept thereof will be described. First, in order to maintain high-speed operation with a low power supply voltage, MOS transistors (MN, MP)
Threshold is set low. On the other hand, when there is no keyboard input for a certain time or more, or when the state of the minimum power consumption continues for a certain time or more, it is determined that the standby mode is entered by a program command or an external control signal.

【0015】待機モードではクロック制御回路3により
MPU(マイクロプロセッサ・ユニット)1に供給する
クロックCkmを停止し、同時に動作モード切替信号A
により基板バイアス回路2−1,2−2を作動させて、
NMOSトランジスタ(MN)には負の基板バイアス
Bn,PMOSトランジスタ(MP)には電源よりも正
の基板バイアスVBpを印加する。基板バイアスを印加す
ることによりMOSトランジスタのしきい値は上昇し、
リーク電流はしきい値上昇分の指数関数で減少する。す
なわち、基板バイアスを印加すると、サブスレッショル
ド特性が改善されてリーク電流が減少する。素子数の多
いマイクロプロセッサであるほどリーク電流の低減量は
大きく、基板バイアス回路2−1,2−2の消費電流以
上の値となる。以上の作用により、低電圧での高速動作
が可能で待機モード時には低消費電力の少ない情報処理
装置が可能になる。
In the standby mode, the clock control circuit 3 stops the clock Ckm supplied to the MPU (microprocessor unit) 1, and at the same time, the operation mode switching signal A
To activate the substrate bias circuits 2-1 and 2-2,
A negative substrate bias V Bn is applied to the NMOS transistor (MN), and a positive substrate bias V Bp is applied to the PMOS transistor (MP) rather than the power source. By applying the substrate bias, the threshold of the MOS transistor rises,
The leak current decreases with an exponential function of the threshold rise. That is, when the substrate bias is applied, the subthreshold characteristic is improved and the leak current is reduced. The smaller the number of elements of the microprocessor is, the larger the reduction amount of the leak current is, and the value is equal to or more than the current consumption of the substrate bias circuits 2-1 and 2-2. With the above operation, it is possible to realize an information processing device capable of high-speed operation at a low voltage and low power consumption in the standby mode.

【0016】次に図1の実施例を図面を参照して詳細に
説明する。図1に示すように、MPU1,基板バイアス回路
2−1,2−2,クロック制御回路3等が1チップ上に
集積化されることにより、マイクロプロセッサが構成さ
れている。MPU1は同業者に周知のように、命令フェ
ッチユニット,命令デコーダ,命令実行部等から構成さ
れている。MPU1はCMOS回路で構成され、NMO
Sトランジスタのしきい値は0.3V,PMOSトラン
ジスタのしきい値は−0.3Vに設定して、電源電圧Vc
cが1Vの低電圧でも高速な動作を可能にしている。
尚、マイクロプロセッサのチップの電源電圧Vccの供給
端子は電池(図示せず)に接続されており、電源電圧V
ccは電池から供給されている。また、基板バイアス印加
のために、MPU1のNMOSとPMOSの各基板(ま
たはウェル領域)には端子が出ている。
Next, the embodiment of FIG. 1 will be described in detail with reference to the drawings. As shown in FIG. 1, the microprocessor is configured by integrating the MPU 1, the substrate bias circuits 2-1, 2-2, the clock control circuit 3 and the like on one chip. As is well known to those skilled in the art, the MPU 1 is composed of an instruction fetch unit, an instruction decoder, an instruction execution unit and the like. MPU1 is composed of CMOS circuit, NMO
The threshold value of the S transistor is set to 0.3V and the threshold value of the PMOS transistor is set to -0.3V.
High speed operation is possible even when c is a low voltage of 1V.
The power supply voltage Vcc supply terminal of the microprocessor chip is connected to a battery (not shown),
cc is supplied from the battery. In addition, a terminal is exposed on each substrate (or well region) of the NMOS and PMOS of the MPU 1 for applying the substrate bias.

【0017】プログラム命令あるいは外部信号に応答し
た動作モード切換信号AがNMOS,PMOS用の基板
バイアス回路2−1,2−2が印加され、基板バイアス
Bp,VBnのレベルを制御する。モードの切替は、キーボ
ードからの入力の有無や、消費電流の大小などの条件で
行うことが出来る。クロック制御回路3を動作モード切
換信号Aと周波数切換信号Bで制御することにより、M
PU1に供給されるクロックのオン・オフおよび周波数
が制御される。
The operation mode switching signal A in response to a program command or an external signal is applied to the substrate bias circuits 2-1 and 2-2 for NMOS and PMOS to control the levels of the substrate biases V Bp and V Bn . The mode can be switched depending on the presence / absence of input from the keyboard and the magnitude of current consumption. By controlling the clock control circuit 3 with the operation mode switching signal A and the frequency switching signal B, M
The on / off and frequency of the clock supplied to PU1 are controlled.

【0018】通常動作モード,低消費電力モード,待機
モードの各動作モードにおけるクロックと基板バイアス
の変化を、図2に示す。
FIG. 2 shows changes in clock and substrate bias in each of the normal operation mode, the low power consumption mode and the standby mode.

【0019】通常動作モードでは16MHzの高速クロ
ックが供給され、基板バイアスは印加されない。従って
N,Pの各チャネルMOSトランジスタのしきい値の絶
対値は0.3V のままであるので、1Vの低電源電圧V
ccでも高速動作が可能である。一方、しきい値が低いの
でサブスレッショルド電流による定常的なリーク電流は
流れているが、10万ゲートのマイクロプロセッサの場
合、定常的なリーク電流による消費電流はスイッチング
動作による消費電流の1/10以下なので動作時の消費
電流はあまり変化しない。
In the normal operation mode, the high-speed clock of 16 MHz is supplied and the substrate bias is not applied. Therefore, the absolute value of the threshold value of each of the N and P channel MOS transistors remains 0.3V, so that the low power supply voltage V of 1V
High-speed operation is possible even with cc. On the other hand, since the threshold value is low, a steady leakage current due to the subthreshold current flows, but in the case of a 100,000-gate microprocessor, the consumption current due to the steady leakage current is 1/10 of the consumption current due to the switching operation. Since it is below, the current consumption during operation does not change much.

【0020】低消費電力モードではスイッチングによる
消費電力を抑えるため、クロック制御回路3は周波数切
換信号Bに応答して、クロック周波数は2分周の8MH
zに低下する。基板バイアス回路2−1,2−2により
−0.5VのNMOS用基板バイアスVBnと+1.5V
のPMOS用基板バイアスVBpを印加してMOSトラン
ジスタのしきい値を絶対値で0.5V 程度まで上昇させ
る。動作速度が遅いのでしきい値を上げても動作上問題
が無い。この低消費電力モードによりスイッチング電流
は1/2、リーク電流は約1/2200に低減すること
ができる。
In the low power consumption mode, in order to suppress the power consumption due to switching, the clock control circuit 3 responds to the frequency switching signal B and the clock frequency is divided by 2 to 8 MHz.
z. The substrate bias circuits 2-1 and 2-2 allow the substrate bias V Bn for NMOS of -0.5 V and +1.5 V.
Is applied to increase the threshold value of the MOS transistor to an absolute value of about 0.5V. Since the operation speed is slow, there is no problem in operation even if the threshold value is raised. With this low power consumption mode, the switching current can be reduced to 1/2 and the leakage current can be reduced to approximately 1/2200.

【0021】待機モードでは動作を行わないため、クロ
ックを停止させる。クロックを停止すれば、スイッチン
グ動作は一切停止する。また、絶対値で上昇されたしき
い値を得るため、同様に基板バイアスVBn, VBpを印加
する。従って、CMOS回路の消費電流は高いしきい値
に対応する極めて微小のサブスレッショルド電流による
リーク電流のみになる。基板バイアス印加によりしきい
値の絶対値が0.5V程度に上昇しているので、リーク
電流は動作時の約1/2200に抑えることができる。
Since no operation is performed in the standby mode, the clock is stopped. If the clock is stopped, all switching operations will stop. Further, in order to obtain the threshold value raised in absolute value, the substrate biases V Bn and V Bp are similarly applied. Therefore, the consumption current of the CMOS circuit is only a leakage current due to an extremely minute subthreshold current corresponding to a high threshold value. Since the absolute value of the threshold value is increased to about 0.5 V by applying the substrate bias, the leak current can be suppressed to about 1/2200 of that at the time of operation.

【0022】次に、基板バイアス回路2−1, 2−2の
実施例を、図3に示す。動作モード切換信号が1になる
と基板バイアス回路にクロック信号が供給され動作が開
始する。チャージポンピング回路を用いて、NMOS用
に負電圧,PMOS用に電源電圧より高い電圧を発生さ
せている。電源電圧Vccが1Vの場合NMOS用に−
0.5V程度,PMOS用に+1.5V程度のバイアス電
圧VBn,VBpが発生できる。このクロック信号は時計,
マイクロプロセッサなどのために常時動作させる基本ク
ロックを用いるので、新たな発振回路は不必要であり、
基板バイアス印加のための消費電流は100μA程度で
ある。本実施例では、単一電源を基本に考え基板バイア
ス回路を設けたが、電池動作の場合には基板バイアス専
用の電池を設けても良い。
Next, an embodiment of the substrate bias circuits 2-1 and 2-2 is shown in FIG. When the operation mode switching signal becomes 1, a clock signal is supplied to the substrate bias circuit and the operation starts. A charge pumping circuit is used to generate a negative voltage for the NMOS and a voltage higher than the power supply voltage for the PMOS. If the power supply voltage Vcc is 1V, for NMOS-
Bias voltages V Bn and V Bp of about 0.5 V and about +1.5 V for PMOS can be generated. This clock signal is a clock,
A new oscillator circuit is unnecessary because it uses a basic clock that always operates for microprocessors, etc.
The current consumption for applying the substrate bias is about 100 μA. In this embodiment, the substrate bias circuit is provided on the basis of a single power source, but in the case of battery operation, a battery dedicated to the substrate bias may be provided.

【0023】次に、クロック制御回路3の実施例を図4
に示す。基本クロック信号は動作モード切換信号Aが0
のときにクロック制御回路3を通してクロック出力CK
mとしてMPU1に供給される。待機モード時には動作
モード切替信号が1となり、クロック出力はMPU1に
供給されない。クロック入力の一方はTフリップフロッ
プによる分周回路に入り、他方は素通りしてクロック周
波数切換回路に入る。クロック周波数切換信号Bが1の
ときには高速のクロックがそのままMPU1に供給さ
れ、クロック周波数切換信号Bが0のときには1/2に
分周された低消費電力モード用の低速クロックが供給さ
れる。
Next, an embodiment of the clock control circuit 3 is shown in FIG.
Shown in. As for the basic clock signal, the operation mode switching signal A is 0
Output CK through the clock control circuit 3
m is supplied to MPU1. In the standby mode, the operation mode switching signal becomes 1, and the clock output is not supplied to MPU1. One of the clock inputs enters the frequency dividing circuit by the T flip-flop, and the other passes through the clock frequency switching circuit. When the clock frequency switching signal B is 1, the high-speed clock is supplied to the MPU 1 as it is, and when the clock frequency switching signal B is 0, the low-speed clock for the low power consumption mode divided by 1/2 is supplied.

【0024】CMOSトランジスタに基板バイアスを印
加するための素子構造の実施例を図5に示す。通常のC
MOS構造でも基板を接地せずにバイアスを印加するこ
とは可能であるが、パッケージングが複雑になったり、
ノイズ等を拾いやすい問題がある。P型半導体基板1を
接地した状態でN,P両チャネルMOSトランジスタに
基板バイアスVBn,VBpを加えるために、NチャネルM
OSの基板pウェル3は基板1からPチャネルMOSの
基板nエピタキシャル層2により絶縁されている。pウ
ェル3には基板バイアス端子5−1を通してNMOS基
板バイアスVBnとして負の電圧が、nエピタキシャル層
2には基板バイアス端子5−2を通してPMOS基板バ
イアスVBpとして正の電圧が印加されるが、全てのバイ
アス関係はpn接合の逆バイアスなのでお互いに絶縁さ
れる。
FIG. 5 shows an embodiment of an element structure for applying a substrate bias to a CMOS transistor. Normal C
It is possible to apply a bias without grounding the substrate even in the MOS structure, but the packaging becomes complicated,
There is a problem that it is easy to pick up noise. In order to apply substrate biases V Bn and V Bp to both N and P channel MOS transistors with the P type semiconductor substrate 1 grounded, an N channel M
The substrate p well 3 of the OS is insulated from the substrate 1 by the substrate n epitaxial layer 2 of the P channel MOS. A negative voltage is applied to the p well 3 through the substrate bias terminal 5-1 as the NMOS substrate bias V Bn , and a positive voltage is applied to the n epitaxial layer 2 through the substrate bias terminal 5-2 as the PMOS substrate bias V Bp. , All bias relationships are reverse bias of the pn junction, so they are insulated from each other.

【0025】低電源電圧では発生できる基板バイアス電
圧も低いため、デバイス構造を工夫している。Nチャネ
ルMOSのゲート電極直下のp形高濃度領域7およびP
チャネルMOSのゲート電極直下のn形高濃度領域8は
それぞれチャネル反転層形成時の表面空乏層の厚さより
も深い位置に設けている。従って、基板バイアスが印加
されないときにはしきい値に影響を与えない。基板バイ
アスを印加すると空乏層は高濃度領域7,8に広がり、
実効的な基板濃度が高いためしきい値は基板バイアスに
より大きく変化する。基板バイアスとしきい値の変化量
を図6に示す。p形ウェル3の表面濃度は5×1016
cm3 ,p形高濃度領域7の濃度は3×1017/cm3 にし
てある。p形高濃度領域7が無い場合は基板定数が小さ
いために基板バイアスを印加してもしきい値の変化は少
なく、低電源電圧ではしきい値の制御幅が小さすぎる。
p形高濃度領域7を設けることにより、基板定数が2倍
以上になってしきい値を大きく制御することができる。
基板バイアス0.5V の印加により、しきい値を約0.
2V 上昇させることができる。
Since the substrate bias voltage that can be generated at a low power supply voltage is also low, the device structure is devised. The p-type high-concentration region 7 and P immediately below the gate electrode of the N-channel MOS
The n-type high concentration region 8 just below the gate electrode of the channel MOS is provided at a position deeper than the thickness of the surface depletion layer at the time of forming the channel inversion layer. Therefore, the threshold value is not affected when the substrate bias is not applied. When the substrate bias is applied, the depletion layer spreads to the high concentration regions 7 and 8,
Since the effective substrate concentration is high, the threshold value largely changes due to the substrate bias. The amount of change in the substrate bias and the threshold value is shown in FIG. The surface concentration of the p-type well 3 is 5 × 10 16 /
The concentration of cm 3 and the p-type high concentration region 7 is 3 × 10 17 / cm 3 . When the p-type high-concentration region 7 is not provided, the substrate constant is small, and therefore the threshold value does not change much even when the substrate bias is applied, and the control width of the threshold value is too small at low power supply voltage.
By providing the p-type high concentration region 7, the substrate constant is doubled or more, and the threshold value can be largely controlled.
By applying a substrate bias of 0.5 V, the threshold value is reduced to about 0.5.
Can be increased by 2V.

【0026】次に本発明の他の実施例として、クロック
周波数により自動的に基板バイアスを切り換える基本構
成を図7に示す。クロック信号の周波数の変化を基板バ
イアス制御回路2−0が検出して基板バイアス回路2−
1,2−2から発生される基板バイアスVBn,VBpの値
を切り換える。これによりクロック信号のみで、基板バ
イアスの通常モード,低消費電力モード,待機モードの
切換ができる。
Next, as another embodiment of the present invention, FIG. 7 shows a basic configuration in which the substrate bias is automatically switched according to the clock frequency. The substrate bias control circuit 2-0 detects a change in the frequency of the clock signal, and the substrate bias circuit 2-
The values of the substrate biases V Bn and V Bp generated from 1 and 2-2 are switched. As a result, the substrate bias can be switched between the normal mode, the low power consumption mode, and the standby mode using only the clock signal.

【0027】基板バイアス制御回路2−0の実施例を図
8に示す。クロック信号からチャージポンプ回路により
電圧Vc を発生させる。Vc の値はクロックの周波数に
比例し、結合容量Ccおよび負荷抵抗Rbによって調整す
ることができる。クロック周波数が高周波の時にはVc
の値が高くMOSトランジスタMN1が同通してa点の
信号はローレベルとなるため、リングオシレータは発振
せず基板バイアスVBn,VBpは印加されない。次にクロ
ック周波数が低周波の時には、Vc 値が低くMN1が同
通しないため、a点はハイレベルになり、リングオシレ
ータが発振して基板バイアスVBn,VBpが印加される。
もちろんクロック信号が停止したときにはa点がハイに
なり、基板バイアスVBn,VBpが印加される。本実施例
では基板バイアス発生用にリングオシレータを発振させ
るため、待機モード時の消費電力が300μA程度と大
きくなるが、リーク電流の低減量の方が大きいので効果
はある。また、クロック周波数により自動的に基板バイ
アスVBn,VBpが変化するので、特定の命令や制御信号
を設ける必要が無い。
An embodiment of the substrate bias control circuit 2-0 is shown in FIG. A charge pump circuit generates a voltage Vc from a clock signal. The value of Vc is proportional to the frequency of the clock and can be adjusted by the coupling capacitance Cc and the load resistance Rb . Vc when the clock frequency is high
Is high and the signal at the point a is low level because the MOS transistor MN1 is in the same state, the ring oscillator does not oscillate and the substrate biases V Bn and V Bp are not applied. Next, when the clock frequency is low, since the Vc value is low and MN1 does not pass through the same, point a becomes a high level and the ring oscillator oscillates to apply the substrate biases V Bn and V Bp .
Of course, when the clock signal is stopped, the point a becomes high, and the substrate biases V Bn and V Bp are applied. In this embodiment, since the ring oscillator is oscillated to generate the substrate bias, the power consumption in the standby mode is as large as about 300 μA, but it is effective because the reduction amount of the leak current is larger. Further, since the substrate biases V Bn and V Bp automatically change according to the clock frequency, it is not necessary to provide a specific command or control signal.

【0028】図9は、MOSトランジスタのドレイン電
流特性のしきい値による変化を示す。リーク電流とはゲ
ート電圧が0Vの時のドレイン電流である。しきい値を
0.3Vから0.5V に上昇させると、リーク電流は44
nAから約2200分の1に低下する。しきい値電圧が
0.3V でリーク電流が44nAのMOSトランジスタ
でマイクロプロセッサを構成することを考えると、マイ
クロプロセッサのゲート数が約10万ゲートの場合、そ
のリーク電流はマイクロプロセッサ全体では4.4mA
に達する。基板バイアスを0.5V印加すると、しきい
値は0.5V まで上昇し、リーク電流はもともとのしき
い値が0.5V のトランジスタとほぼ同じ20pA程度
まで減少する。一方、基板バイアス回路の消費電流が1
00μA程度あるので、総合で102μAの消費電流と
なる。図10は、マイクロプロセッサの最大動作周波数
と消費電流に関して、しきい値0.5Vおよび0.3Vの
従来例と本実施例の比較をまとめて示したものである。
FIG. 9 shows a change in drain current characteristic of a MOS transistor according to a threshold value. The leak current is a drain current when the gate voltage is 0V. Threshold
Leak current is 44 when increasing from 0.3V to 0.5V.
It decreases from nA to about 1/200. Considering that a microprocessor is composed of MOS transistors having a threshold voltage of 0.3 V and a leak current of 44 nA, when the number of gates of the microprocessor is about 100,000, the leak current is 4. 4 mA
Reach When a substrate bias of 0.5 V is applied, the threshold value rises to 0.5 V, and the leak current decreases to about 20 pA, which is almost the same as the original transistor having a threshold value of 0.5 V. On the other hand, the current consumption of the substrate bias circuit is 1
Since it is about 00 μA, the total current consumption is 102 μA. FIG. 10 shows a summary of comparison between the conventional example and the present example having threshold values of 0.5 V and 0.3 V with respect to the maximum operating frequency and current consumption of the microprocessor.

【0029】[0029]

【発明の効果】本発明によれば、しきい値電圧を低く設
定できるので低電源電圧でも高速動作が可能であり、低
速動作時や待機モード時には基板バイアスを印加してし
きい値電圧を上昇させるので消費電力を小さく抑えるこ
とができる。
According to the present invention, since the threshold voltage can be set low, high-speed operation is possible even with a low power supply voltage, and a substrate bias is applied to increase the threshold voltage during low-speed operation or standby mode. Therefore, the power consumption can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による半導体集積回路のブロ
ック図を示す。
FIG. 1 is a block diagram of a semiconductor integrated circuit according to an embodiment of the present invention.

【図2】図1の半導体集積回路の各モードにおける各部
の波形変化を示す。
FIG. 2 shows a waveform change of each part in each mode of the semiconductor integrated circuit of FIG.

【図3】図1の半導体集積回路の基板バイアス回路の実
施例を示す。
FIG. 3 shows an embodiment of a substrate bias circuit of the semiconductor integrated circuit of FIG.

【図4】図1の半導体集積回路のクロック制御回路の実
施例を示す。
FIG. 4 shows an embodiment of a clock control circuit of the semiconductor integrated circuit of FIG.

【図5】図1の半導体集積回路のCMOS構造の断面図
を示す。
5 shows a cross-sectional view of the CMOS structure of the semiconductor integrated circuit of FIG.

【図6】MOSトランジスタの基板バイアスとしきい値
電圧の関係を示す。
FIG. 6 shows the relationship between the substrate bias and the threshold voltage of a MOS transistor.

【図7】本発明の他の実施例による半導体集積回路のブ
ロック図を示す。
FIG. 7 is a block diagram of a semiconductor integrated circuit according to another embodiment of the present invention.

【図8】図7の基板バイアス制御回路と基板バイアス回
路の実施例を示す。
8 shows an embodiment of the substrate bias control circuit and the substrate bias circuit of FIG.

【図9】NチャネルMOSトランジスタとしきい値電圧
とリーク電流の関係を示す。
FIG. 9 shows a relationship between an N-channel MOS transistor, a threshold voltage and a leak current.

【図10】マイクロプロセッサの最大動作周波数と消費
電流に関して、従来と本発明とを比較し、まとめて示し
たものである。
FIG. 10 is a table showing a comparison between the conventional art and the present invention regarding the maximum operating frequency and the current consumption of the microprocessor.

【符号の説明】[Explanation of symbols]

Bn…NチャネルMOS用基板バイアス、VBp…Pチャ
ネルMOS用基板バイアス、CKm…マイクロプロセッ
サ用クロック信号、CKb…基板バイアス発生用クロッ
ク信号。
V Bn ... N-channel MOS substrate bias, V Bp ... P-channel MOS substrate bias, CKm ... Microprocessor clock signal, CKb ... Substrate bias generation clock signal.

フロントページの続き (72)発明者 関 浩一 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Front page continuation (72) Inventor Koichi Seki 1-280, Higashi Koigokubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】MOSトランジスタ回路と、該MOSトラ
ンジスタ回路のMOSトランジスタのしきい値電圧を制
御する制御回路とを有し、第1動作モードでは上記制御
回路は上記MOSトランジスタ回路のMOSトランジス
タのしきい値電圧を低く設定することにより上記MOS
トランジスタ回路が高速動作を実行し、第2動作モード
では上記制御回路は上記MOSトランジスタ回路のMO
Sトランジスタのしきい値電圧を高く設定することによ
り上記MOSトランジスタ回路が低消費電力化されるこ
とを特徴とする半導体集積回路。
1. A MOS transistor circuit and a control circuit for controlling a threshold voltage of a MOS transistor of the MOS transistor circuit. In the first operation mode, the control circuit is a MOS transistor circuit of the MOS transistor circuit. By setting the threshold voltage low, the above-mentioned MOS
The transistor circuit executes a high speed operation, and in the second operation mode, the control circuit controls the MO transistor of the MOS transistor circuit.
A semiconductor integrated circuit characterized by reducing the power consumption of the MOS transistor circuit by setting a high threshold voltage of the S transistor.
【請求項2】上記第1動作モードと上記第2動作モード
とでは上記制御回路から上記MOSトランジスタへ供給
される基板バイアスが異なることによってしきい値電圧
が設定されることを特徴とする請求項1記載の半導体集
積回路。
2. The threshold voltage is set by the difference in the substrate bias supplied from the control circuit to the MOS transistor between the first operation mode and the second operation mode. 1. The semiconductor integrated circuit according to 1.
【請求項3】上記第1動作モードでは所定の周波数のク
ロックを上記MOS回路に供給し、上記第2動作モード
では上記所定の周波数より低い周波数を上記MOS回路
に供給することを特徴とする請求項2記載の半導体集積
回路。
3. A clock having a predetermined frequency is supplied to the MOS circuit in the first operation mode, and a frequency lower than the predetermined frequency is supplied to the MOS circuit in the second operation mode. Item 2. The semiconductor integrated circuit according to item 2.
【請求項4】上記第1動作モードでは所定の周波数のク
ロックを上記MOS回路に供給し、上記第2動作モード
では上記MOS回路へのクロックの供給を停止すること
を特徴とする請求項2記載の半導体集積回路。
4. The clock of a predetermined frequency is supplied to the MOS circuit in the first operation mode, and the supply of the clock to the MOS circuit is stopped in the second operation mode. Semiconductor integrated circuit.
【請求項5】上記MOS回路はマイクロプロセッサ・ユ
ニットであることを特徴とする請求項1から請求項4ま
でのいずれかに記載の半導体集積回路。
5. The semiconductor integrated circuit according to any one of claims 1 to 4, wherein the MOS circuit is a microprocessor unit.
【請求項6】上記半導体集積回路の電源電圧供給端子は
電池に接続されてなり、上記MOS回路の電源電圧は上
記電池から供給されてなることを特徴とする請求項1か
ら請求項5までのいずれかに記載の半導体集積回路。
6. The power supply voltage supply terminal of the semiconductor integrated circuit is connected to a battery, and the power supply voltage of the MOS circuit is supplied from the battery. The semiconductor integrated circuit according to any one of claims.
JP26924891A 1991-10-17 1991-10-17 Semiconductor integrated circuit device and control method therefor Expired - Lifetime JP3184265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26924891A JP3184265B2 (en) 1991-10-17 1991-10-17 Semiconductor integrated circuit device and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26924891A JP3184265B2 (en) 1991-10-17 1991-10-17 Semiconductor integrated circuit device and control method therefor

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP10005375A Division JPH10187270A (en) 1998-01-14 1998-01-14 Semiconductor integrated circuit device
JP00537498A Division JP3144370B2 (en) 1998-01-14 1998-01-14 Semiconductor device
JP10005376A Division JPH10189884A (en) 1998-01-14 1998-01-14 Low power-consumption type semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH05108194A true JPH05108194A (en) 1993-04-30
JP3184265B2 JP3184265B2 (en) 2001-07-09

Family

ID=17469712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26924891A Expired - Lifetime JP3184265B2 (en) 1991-10-17 1991-10-17 Semiconductor integrated circuit device and control method therefor

Country Status (1)

Country Link
JP (1) JP3184265B2 (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610533A (en) * 1993-11-29 1997-03-11 Mitsubishi Denki Kabushiki Kaisha Switched substrate bias for logic circuits
EP0809362A2 (en) * 1996-05-22 1997-11-26 Nippon Telegraph And Telephone Corporation Logic circuit and its fabrication method
US5838047A (en) * 1995-06-16 1998-11-17 Mitsubishi Denki Kabushiki Kaisha CMOS substrate biasing for threshold voltage control
WO1999010796A1 (en) * 1997-08-27 1999-03-04 Hitachi, Ltd. Semiconductor integrated circuit and data processing system
US5914515A (en) * 1994-07-08 1999-06-22 Nippondenso Co., Ltd Semiconductor device
US5990521A (en) * 1995-08-16 1999-11-23 Nec Corporation Semiconductor device and method of producing the same
WO1999066640A1 (en) * 1998-06-18 1999-12-23 Hitachi, Ltd. Semiconductor integrated circuit
US6031778A (en) * 1997-03-19 2000-02-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit
US6124752A (en) * 1996-04-02 2000-09-26 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device controlling the threshold value thereof for power reduction at standby mode
JP2001274265A (en) * 2000-03-28 2001-10-05 Mitsubishi Electric Corp Semiconductor device
JP2002064150A (en) * 2000-06-05 2002-02-28 Mitsubishi Electric Corp Semiconductor device
US6469568B2 (en) 1999-12-24 2002-10-22 Sharp Kabushiki Kaisha Metal oxide semiconductor transistor circuit and semiconductor integrated circuit using the same
JP2002312058A (en) * 2001-04-11 2002-10-25 Mitsubishi Electric Corp Semiconductor integrated circuit
US6501300B2 (en) 2000-11-21 2002-12-31 Hitachi, Ltd. Semiconductor integrated circuit
US6605963B2 (en) 1998-11-20 2003-08-12 Fujitsu Limited Semiconductor integrated circuit and method of switching source potential of transistor in semiconductor integrated circuit
DE19900859B4 (en) * 1998-01-13 2004-01-22 LG Semicon Co., Ltd., Cheongju Low power CMOS circuit
JP2004503948A (en) * 2000-06-12 2004-02-05 インテル・コーポレーション Apparatus and circuit for reducing leakage current and method thereof
JP2004319999A (en) * 2003-04-04 2004-11-11 Semiconductor Energy Lab Co Ltd Semiconductor device, cpu, image processing circuit and electronic apparatus, and driving method of semiconductor device
US6819158B2 (en) 1995-03-29 2004-11-16 Renesas Technology Corp. Semiconductor integrated circuit device and microcomputer
US6831483B2 (en) 2000-05-19 2004-12-14 Renesas Technology Corp. Semiconductor integrated circuit having high-speed and low-power logic gates with common transistor substrate potentials, and design data recording medium therefor
US6831484B2 (en) 1999-12-28 2004-12-14 Nec Electronics Corporation Semiconductor integrated circuit having logic circuit comprising transistors with lower threshold voltage values and improved pattern layout
KR100480326B1 (en) * 1995-03-29 2005-04-06 가부시끼가이샤 히다치 세이사꾸쇼 Semiconductor integrated circuit device and microcomputer
US6906551B2 (en) 1996-11-26 2005-06-14 Renesas Technology Corp. Semiconductor integrated circuit device
JP2005321938A (en) * 2004-05-07 2005-11-17 Nec Electronics Corp Semiconductor device and control method thereof
US7002397B2 (en) 1999-01-26 2006-02-21 Renesas Technology Corp. Method of setting back bias of MOS circuit, and MOS integrated circuit
JP2006512685A (en) * 2002-12-31 2006-04-13 トランスメタ コーポレイション Circuit management method
WO2006073176A1 (en) * 2005-01-06 2006-07-13 Nec Corporation Semiconductor integrated circuit device
KR100667956B1 (en) * 2005-07-25 2007-01-16 한국과학기술원 Low power high speed semiconductor device
US7167991B2 (en) 2000-12-26 2007-01-23 Renesas Technology Corp. Method for reducing leakage current of LSI
KR100679548B1 (en) * 1998-09-09 2007-02-07 가부시키가이샤 히타치세이사쿠쇼 Test method for semiconductor integrated circuit device
JP2007538474A (en) * 2004-05-19 2007-12-27 アルテラ コーポレイション Apparatus and method for tuning integrated circuit performance
WO2008012899A1 (en) * 2006-07-27 2008-01-31 Fujitsu Limited Semiconductor circuit device, semiconductor circuit device system, and manufacturing method for the semiconductor circuit device
JP2008160152A (en) * 2008-02-18 2008-07-10 Renesas Technology Corp Semiconductor integrated circuit device
JP2008199673A (en) * 2008-05-07 2008-08-28 Renesas Technology Corp Semiconductor integrated circuit device
US7475261B2 (en) 1996-11-21 2009-01-06 Renesas Technology Corp. Substrate bias switching unit for a low power processor
US7541647B2 (en) 1997-08-21 2009-06-02 Renesas Technology Corp. Method of designing semiconductor integrated circuit device and semiconductor integrated circuit device
JP2009146243A (en) * 2007-12-17 2009-07-02 Hitachi Ltd Power performance optimization compiler using substrate bias control and processor system
JP2011003265A (en) * 2010-08-12 2011-01-06 Spansion Llc Circuit and method for controlling voltage
JP2012065070A (en) * 2010-09-15 2012-03-29 Fujitsu Ltd Semiconductor integrated circuit
JP2012090002A (en) * 2010-10-18 2012-05-10 Olympus Corp Semiconductor device and sample-hold circuit
WO2013018217A1 (en) * 2011-08-03 2013-02-07 富士通株式会社 Semiconductor integrated circuit and method for driving latch circuit
JP2013528300A (en) * 2010-05-25 2013-07-08 フリースケール セミコンダクター インコーポレイテッド Data processor having multiple low power modes
JP2014222437A (en) * 2013-05-14 2014-11-27 株式会社リコー Simd type processor
JP2015513256A (en) * 2012-02-22 2015-04-30 ノルディック セミコンダクタ アーエスアーNordic Semiconductor ASA Waveform generation
JP2015195403A (en) * 2009-11-17 2015-11-05 スボルタ,インコーポレーテッド Field effect transistor (fet) and method for fabricating the same
JP2018137429A (en) * 2016-12-27 2018-08-30 ジーエヌ ヒアリング エー/エスGN Hearing A/S Integrated circuit comprising adjustable back biasing of one or more logic circuit regions
CN109309494A (en) * 2017-07-26 2019-02-05 上海复旦微电子集团股份有限公司 Reconfigurable interconnection point

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4337709B2 (en) 2004-11-01 2009-09-30 日本電気株式会社 Semiconductor integrated circuit device
JP2007103863A (en) 2005-10-07 2007-04-19 Nec Electronics Corp Semiconductor device
EP3812694A4 (en) 2018-06-12 2022-03-09 Mitutoyo Corporation Digital micrometer

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232793B1 (en) 1993-11-29 2001-05-15 Mitsubishi Denki Kabushiki Kaisha Switched backgate bias for FET
US5610533A (en) * 1993-11-29 1997-03-11 Mitsubishi Denki Kabushiki Kaisha Switched substrate bias for logic circuits
US5703522A (en) * 1993-11-29 1997-12-30 Mitsubishi Denki Kabushiki Kaisha Switched substrate bias for MOS-DRAM circuits
US5854561A (en) * 1993-11-29 1998-12-29 Mitsubishi Denki Kabushiki Kaisha Switched substrate bias for MOS DRAM circuits
US5914515A (en) * 1994-07-08 1999-06-22 Nippondenso Co., Ltd Semiconductor device
US7161408B2 (en) 1995-03-29 2007-01-09 Renesas Technology Corp. Semiconductor integrated circuit device and microcomputer
US6819158B2 (en) 1995-03-29 2004-11-16 Renesas Technology Corp. Semiconductor integrated circuit device and microcomputer
KR100480326B1 (en) * 1995-03-29 2005-04-06 가부시끼가이샤 히다치 세이사꾸쇼 Semiconductor integrated circuit device and microcomputer
US5838047A (en) * 1995-06-16 1998-11-17 Mitsubishi Denki Kabushiki Kaisha CMOS substrate biasing for threshold voltage control
US6373321B1 (en) 1995-06-16 2002-04-16 Mitsubishi Denki Kabushiki Kaisha CMOS semiconductor device
US5990521A (en) * 1995-08-16 1999-11-23 Nec Corporation Semiconductor device and method of producing the same
US6147386A (en) * 1995-08-16 2000-11-14 Nec Corporation Semiconductor device and method of producing the same
US6593800B2 (en) 1996-04-02 2003-07-15 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device
US6124752A (en) * 1996-04-02 2000-09-26 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device controlling the threshold value thereof for power reduction at standby mode
US6373323B2 (en) 1996-04-02 2002-04-16 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device with threshold control
US6426261B1 (en) 1996-05-22 2002-07-30 Nippon Telegraph And Telephone Corporation Logic circuit and its fabrication method
EP0809362A3 (en) * 1996-05-22 1999-07-21 Nippon Telegraph And Telephone Corporation Logic circuit and its fabrication method
EP0809362A2 (en) * 1996-05-22 1997-11-26 Nippon Telegraph And Telephone Corporation Logic circuit and its fabrication method
US8364988B2 (en) 1996-11-21 2013-01-29 Renesas Electronics Corporation Substrate bias switching unit for a low power processor
US7958379B2 (en) 1996-11-21 2011-06-07 Renesas Electronics Corporation Substrate bias switching unit for a low power processor
US7475261B2 (en) 1996-11-21 2009-01-06 Renesas Technology Corp. Substrate bias switching unit for a low power processor
US6906551B2 (en) 1996-11-26 2005-06-14 Renesas Technology Corp. Semiconductor integrated circuit device
US7112999B2 (en) 1996-11-26 2006-09-26 Renesas Technology Corporation Semiconductor integrated circuit device
US7518404B2 (en) 1996-11-26 2009-04-14 Renesas Technology Corp. Semiconductor integrated circuit device
US7397282B2 (en) 1996-11-26 2008-07-08 Renesas Technology Corp. Semiconductor integrated circuit device
US6031778A (en) * 1997-03-19 2000-02-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit
US7541647B2 (en) 1997-08-21 2009-06-02 Renesas Technology Corp. Method of designing semiconductor integrated circuit device and semiconductor integrated circuit device
US7642601B2 (en) 1997-08-21 2010-01-05 Renesas Technology Corp. Method of designing semiconductor integrated circuit device and semiconductor integrated circuit device
WO1999010796A1 (en) * 1997-08-27 1999-03-04 Hitachi, Ltd. Semiconductor integrated circuit and data processing system
DE19900859B4 (en) * 1998-01-13 2004-01-22 LG Semicon Co., Ltd., Cheongju Low power CMOS circuit
US6433584B1 (en) 1998-06-18 2002-08-13 Hitachi, Ltd. Semiconductor integrated circuit
WO1999066640A1 (en) * 1998-06-18 1999-12-23 Hitachi, Ltd. Semiconductor integrated circuit
KR100679548B1 (en) * 1998-09-09 2007-02-07 가부시키가이샤 히타치세이사쿠쇼 Test method for semiconductor integrated circuit device
US6605963B2 (en) 1998-11-20 2003-08-12 Fujitsu Limited Semiconductor integrated circuit and method of switching source potential of transistor in semiconductor integrated circuit
US7002397B2 (en) 1999-01-26 2006-02-21 Renesas Technology Corp. Method of setting back bias of MOS circuit, and MOS integrated circuit
US6469568B2 (en) 1999-12-24 2002-10-22 Sharp Kabushiki Kaisha Metal oxide semiconductor transistor circuit and semiconductor integrated circuit using the same
US6834004B2 (en) 1999-12-28 2004-12-21 Nec Electronics Corporation Semiconductor integrated circuit having logic circuit comprising transistors with lower threshold voltage values and improved pattern layout
US6831484B2 (en) 1999-12-28 2004-12-14 Nec Electronics Corporation Semiconductor integrated circuit having logic circuit comprising transistors with lower threshold voltage values and improved pattern layout
JP2001274265A (en) * 2000-03-28 2001-10-05 Mitsubishi Electric Corp Semiconductor device
US6859917B2 (en) 2000-05-19 2005-02-22 Renesas Technology Corp. Semiconductor integrated circuit having high-speed and low-power logic gates with common transistor substrate potentials, design methods thereof, and related program recording medium
US6842045B2 (en) 2000-05-19 2005-01-11 Renesas Technology Corp. Semiconductor integrated circuit having high-speed and low-power logic gates with common transistor substrate potentials, design methods thereof, and related program recording medium
US6831483B2 (en) 2000-05-19 2004-12-14 Renesas Technology Corp. Semiconductor integrated circuit having high-speed and low-power logic gates with common transistor substrate potentials, and design data recording medium therefor
JP2002064150A (en) * 2000-06-05 2002-02-28 Mitsubishi Electric Corp Semiconductor device
JP2009207178A (en) * 2000-06-12 2009-09-10 Intel Corp Device, circuit and method of reducing leakage current
JP2004503948A (en) * 2000-06-12 2004-02-05 インテル・コーポレーション Apparatus and circuit for reducing leakage current and method thereof
US6501300B2 (en) 2000-11-21 2002-12-31 Hitachi, Ltd. Semiconductor integrated circuit
US7167991B2 (en) 2000-12-26 2007-01-23 Renesas Technology Corp. Method for reducing leakage current of LSI
JP2002312058A (en) * 2001-04-11 2002-10-25 Mitsubishi Electric Corp Semiconductor integrated circuit
JP2006512685A (en) * 2002-12-31 2006-04-13 トランスメタ コーポレイション Circuit management method
JP4689181B2 (en) * 2003-04-04 2011-05-25 株式会社半導体エネルギー研究所 Semiconductor device, CPU, image processing circuit, and electronic apparatus
JP2004319999A (en) * 2003-04-04 2004-11-11 Semiconductor Energy Lab Co Ltd Semiconductor device, cpu, image processing circuit and electronic apparatus, and driving method of semiconductor device
JP2005321938A (en) * 2004-05-07 2005-11-17 Nec Electronics Corp Semiconductor device and control method thereof
JP4684575B2 (en) * 2004-05-07 2011-05-18 ルネサスエレクトロニクス株式会社 Semiconductor device and control method thereof
JP2007538474A (en) * 2004-05-19 2007-12-27 アルテラ コーポレイション Apparatus and method for tuning integrated circuit performance
JP4835856B2 (en) * 2005-01-06 2011-12-14 日本電気株式会社 Semiconductor integrated circuit device
WO2006073176A1 (en) * 2005-01-06 2006-07-13 Nec Corporation Semiconductor integrated circuit device
US7659772B2 (en) 2005-01-06 2010-02-09 Nec Corporation Semiconductor integrated circuit device
KR100667956B1 (en) * 2005-07-25 2007-01-16 한국과학기술원 Low power high speed semiconductor device
WO2008012899A1 (en) * 2006-07-27 2008-01-31 Fujitsu Limited Semiconductor circuit device, semiconductor circuit device system, and manufacturing method for the semiconductor circuit device
JP2009146243A (en) * 2007-12-17 2009-07-02 Hitachi Ltd Power performance optimization compiler using substrate bias control and processor system
JP2008160152A (en) * 2008-02-18 2008-07-10 Renesas Technology Corp Semiconductor integrated circuit device
JP2008199673A (en) * 2008-05-07 2008-08-28 Renesas Technology Corp Semiconductor integrated circuit device
JP2015195403A (en) * 2009-11-17 2015-11-05 スボルタ,インコーポレーテッド Field effect transistor (fet) and method for fabricating the same
JP2013528300A (en) * 2010-05-25 2013-07-08 フリースケール セミコンダクター インコーポレイテッド Data processor having multiple low power modes
JP2011003265A (en) * 2010-08-12 2011-01-06 Spansion Llc Circuit and method for controlling voltage
JP2012065070A (en) * 2010-09-15 2012-03-29 Fujitsu Ltd Semiconductor integrated circuit
JP2012090002A (en) * 2010-10-18 2012-05-10 Olympus Corp Semiconductor device and sample-hold circuit
WO2013018217A1 (en) * 2011-08-03 2013-02-07 富士通株式会社 Semiconductor integrated circuit and method for driving latch circuit
JP2015513256A (en) * 2012-02-22 2015-04-30 ノルディック セミコンダクタ アーエスアーNordic Semiconductor ASA Waveform generation
JP2014222437A (en) * 2013-05-14 2014-11-27 株式会社リコー Simd type processor
JP2018137429A (en) * 2016-12-27 2018-08-30 ジーエヌ ヒアリング エー/エスGN Hearing A/S Integrated circuit comprising adjustable back biasing of one or more logic circuit regions
CN109309494A (en) * 2017-07-26 2019-02-05 上海复旦微电子集团股份有限公司 Reconfigurable interconnection point

Also Published As

Publication number Publication date
JP3184265B2 (en) 2001-07-09

Similar Documents

Publication Publication Date Title
JPH05108194A (en) Low power consumption type semiconductor integrated circuit
US6329874B1 (en) Method and apparatus for reducing standby leakage current using a leakage control transistor that receives boosted gate drive during an active mode
US6097243A (en) Device and method to reduce power consumption in integrated semiconductor devices using a low power groggy mode
JP2001339045A (en) Semiconductor integrated circuit device
JPH09326688A (en) Semiconductor integrated circuit device
US6429689B1 (en) Method and apparatus for controlling both active and standby power in domino circuits
EP3462274B1 (en) Semiconductor devices for sensing voltages
US6166584A (en) Forward biased MOS circuits
JPH10189884A (en) Low power-consumption type semiconductor integrated circuit
JP3686174B2 (en) Semiconductor integrated circuit device
EP2557479A2 (en) Adjustable body bias circuit
US20020047733A1 (en) Transistor circuit
JP3105512B2 (en) MOS type semiconductor integrated circuit
US4267501A (en) NMOS Voltage reference generator
KR100511028B1 (en) Technique for mitigating gate leakage during a sleep state
US7420403B2 (en) Latch circuit and flip-flop
JP3446735B2 (en) Semiconductor integrated circuit and semiconductor device control method
JP3144370B2 (en) Semiconductor device
JPH10187270A (en) Semiconductor integrated circuit device
JPH07131323A (en) Semiconductor integrated circuit with small standby current
KR100253647B1 (en) Power reduction circuit
JPH0720061B2 (en) Semiconductor integrated circuit
US5786686A (en) Low-power consumption type semiconductor device
JP2004289107A (en) Semiconductor integrated circuit device
JP2001228220A (en) Test circuit of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 11