JPH0497998A - 窒化アルミニウムウィスカーの製造方法 - Google Patents

窒化アルミニウムウィスカーの製造方法

Info

Publication number
JPH0497998A
JPH0497998A JP21346890A JP21346890A JPH0497998A JP H0497998 A JPH0497998 A JP H0497998A JP 21346890 A JP21346890 A JP 21346890A JP 21346890 A JP21346890 A JP 21346890A JP H0497998 A JPH0497998 A JP H0497998A
Authority
JP
Japan
Prior art keywords
gas
whiskers
aωn
reaction
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21346890A
Other languages
English (en)
Inventor
Koichiro Fukui
福井 紘一郎
Noriyasu Hotta
堀田 憲康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP21346890A priority Critical patent/JPH0497998A/ja
Publication of JPH0497998A publication Critical patent/JPH0497998A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、金属溶融器や真空蒸着用るつぼの如き耐火
器用強化材、金属複合材用強化剤、電子基板素材等に使
用される繊維状の窒化アルミニウム(AI2N)、つま
りAΩNウィスカーの製造方法に関する。
従来の技術 AΩNは、耐熱性に優れ、熔融金属に対する高温耐食性
が高い上、アルミナ(AQ203)に比較して熱伝導性
が格段に大きいという特徴を有することから、真空蒸着
やイオンブレーティングの如き真空薄膜形成法における
蒸発源用るつぼ、金属溶融に使用する容器、放熱性を必
要とする電子基板等の素材あるいは配合材を始めとする
広範な用途が期待されている。
従来、このような、I’lNの製造法としては、流動層
反応等によってAΩ粉末と窒素ガスとを加熱下で直接に
接触反応させる直接窒化法が一般的である。しかるに、
このような方法で得られるAΩNは原料のAI2粉末が
はマそのま\AρNに転化した粒状粉末であり、高温条
件下での耐水性に難があると共に、他のセラミック材料
や金属材料に配合する強化材等としては繊維状のものつ
まりウィスカーに比べて適性に劣っている。
そこで、この発明者らは、先に特願昭6281769号
(特開昭64−65100号)として、AΩNウィスカ
ーの製造方法を提案している。すなわち、この方法は、
AΩ粉末をN2ガス中で加熱蒸発させてN2ガスと気相
反応させることにより、AΩNを反応器壁に繊維状に析
出させるものであり、この析出物を反応器の冷却後に採
集するか、−時的なガス圧上昇で吹き飛ばして補集器に
集めることにより、AΩNウィスカーが得られる。そし
て得られたウィスカーは、粒状粉末に比べ、化学的安定
性に優れて高温条件下での耐水性が著しく良好であり、
耐熱性にも勝ることが判明している。
発明が解決しようとする課題 しかしながら、上記提案法では、Al2Nウィスカーと
共に通常の微細なAΩN粒状粉末ならびに中空球状のA
ΩN粉末が高率で副生じ、ウィスカーとしての収率が悪
いという問題があった。そしてまたウィスカーを単独で
取8す場合に副生物との分離装置および分離操作を要す
るという難点もあった。
この発明は、上述の事情に鑑み、簡易な手段により、A
QNウィスカーのみを選択的に生成させることができる
上、その収率をコントロールすることが可能な製造方法
を提供することを目的としている。
課題を解決するための手段 この発明では、前記提案法と同様にアルミニウムを加熱
蒸発させて気相反応でAΩNを生成させるが、この気相
反応時にNH3ガスの介在によってウィスカーの選択的
析8を促すものである。
すなわち、この発明の第1は、アルミニウムをN2ガス
中で加熱蒸発させて気相反応によってAΩNを析出させ
るにあたり、該反応領域中にNH3含有ガスを供給する
ことを特徴とする窒化アルミニウムウィスカーの製造方
法を要旨とする。
また、この発明の第2は、上記第1.の製造方法におい
て、NH3含有ガスを、反応領域に導入されたガス供給
管の周面に穿設した小孔より放出するようにしたもので
ある。
発明の細部構成と作用 NH3含有ガスを気相反応領域中に供給することによっ
てAΩNウィスカーか選択的に析出する理由は明らかで
はないが、NH3含有ガスを例えばN2ガスの導入部等
の低温領域で予め混入させておいても粒状粉末が高率で
副生ずる一方、高温の気相反応領域中で放出させた場合
には放出口近傍にウィスカーがNH3含有ガスの流れ方
向に沿って生長することか確認されている。従って、A
Ω蒸気が発生する領域にNH3ガスが存在すると、この
NH3ガスあるいはその熱分解成分が気相反応に直接関
与もしくは触媒的に作用し、ウィスカーの生長が促進さ
れるものと考えられる。
反応形式としては、るつぼ等に収容したA2をN2ガス
中で加熱蒸発させて気相反応で窒化させる方法でもよい
が、N2ガスをキャリアガスとしてAΩ粉を浮遊させて
反応部に送り込み、該反応部での加熱によって蒸発させ
て気相反応にて窒化する浮遊窒化法が生産性および反応
効率の点から好適である。しかして、析出したAQNウ
ィスカーは、反応器の冷却後に採集してもよいし、−時
的にN2ガス流量を高めて吹き飛ばして補集器に集めて
回収するようにしてもよい。
気相反応の反応温度は、1350〜2000℃程度ミ特
に好ましくは1400〜1600℃の範囲とするのがよ
い。この温度範囲を逸脱すると、AΩNの生成が充分で
なくなる。
NH3含有ガスとしては、NH3ガス100%でもよい
か、純NH3ガスでは高温下で爆発性を有するため、安
全性の点からNH3濃度01〜50容量%程度としたN
H3−N2混合ガスを使用するのがよい。このNH3含
有ガスの供給量を変えることによって、析8するAΩN
のウィスカー生成比率を調整できる。
気相反応領域中へのNH3含有ガスの供給は、周面に小
孔を有するガス供給管を該領域内に導入し、この供給管
を通したNH3含有ガスを上記小孔より放出する手段に
よって行うことが推奨される。すなわち、この手段によ
れば、小孔の縁部にAΩNが析出してガス放出方向に沿
ってひげ状結晶として成長し、ウィスカーとしての生成
効率がよいため、放出管周面を析出ベースとしてAρN
ウィスカーを付着させることができ、反応後に該供給管
を取出して付着したAΩNウィスカーを回収することに
より、ウィスカーのみを選択的に回収することが可能で
あると共に、析出するウィスカーが20μm程度と長く
且つ均一で各種セラミック強化材や電子基板素材等とし
ての適性に優れるという利点がある。
なお、上記ガス供給管としては、小孔の直径は0.2〜
1w11程度である。また小孔は円形に限定されるもの
ではなく0.2〜1!IIM角の方形でも良い。
小孔の面積は、供給ガスの供給量によって変わるが、お
よそ吹き出す速度が102〜105議/秒となる大きさ
にするのが良い。この流速を超えあるいは下回るとウィ
スカーの生長が少なくなる。
また周面の小孔の密度もガスの供給量あるいはガス供給
管の大きさによるが、小孔からのガス吹き出し速度が、
上記の範囲におさまることが前提であり、ガス供給管の
表面積1ciあたり0.1〜10個の小孔を存在させる
のか好適である。
第1図は、この発明方法を適用する浮遊窒化法によるA
ΩNウィスカーの製造装置を示す。
図中、(1)は垂直筒状の反応器、(2)はその周りに
配置されたヒーター (3)は反応器(1)内に上方よ
り導入されて該反応器(1)の軸線上に配置するガス供
給管である。
反応器(1)は耐熱性材料、例えばアルミナ管で構成さ
れ、その入口側の下端には図示しないAΩ粉末容器が接
続される。そして、このAΩ粉末容器にはN2ガス供給
口が開口され、且つ内部に収容Afl粉末を攪拌するア
ジテータ−が装備され、N2ガス流に乗せてAΩ粉末(
4)を反応器(1)内のヒーター(2)に囲まれた加熱
領域へ浮上させるものとなっている。
ヒーター(2)は反応器(1)内か前記の反応温度とな
るように加熱し、浮上してきたAΩ粉末(4)を蒸発さ
せて気相反応による窒化を行わしめるものであり、−船
釣には電気抵抗加熱方式が採用されるが、他の加熱手段
によるものとしてもよい。
ガス供給管(3)は第2図の如く閉塞した下端から所定
長さにわたる周面に小孔(3a)が分散状態に穿設され
ており、これら小孔(3a)を有する部分が反応器(1
)内のヒーター(2)で囲まれた加熱領域つまり反応領
域に位置するように配置している。
上記構成において、反応器(1)内の反応領域をヒータ
ー(2)にて加熱し、該反応器(1)内に下方からAΩ
粉末(4)をN2ガスと共に浮遊状態で導入し、且つガ
ス供給管(3)に導入したNH3含有ガスを小孔(3a
)より所定流量で反応領域に放出することにより、AΩ
粉末(4)が反応領域で加熱蒸発して気相反応で窒化さ
れてAΩNを生成する。しかして、生成するAρNは、
主としてガス供給管(3)の各小孔(3a)の縁部に析
出し、NH3含有ガスの流れ方向つまり放出管の半径方
向に沿って成長し、繊維状のAΩNウィスカー(5)と
なる。
なお、第1図で示すようにAl2Nウィスカー(5)の
一部は反応器(1)の内壁面でも析出成長する。
かくしてAfiNウィスカー(5)の析出量が所定量に
達すれば、AI2粉末(4)およびNH3含有ガスを供
給停止し、ヒーター(2)による加熱を止めてガス供給
管(3)を反応器(1)より抜き出し、周面に付着した
AΩNウィスカー(5)を掻き落として回収すればよい
。無論、反応器(1)の内壁に付着したAΩNウィスカ
ーも回収可能である。
なお、AΩNウィスカーと共に微細な粒状のAρN粒子
を多く生成させる場合は、ガス供給管(3)からのNH
3含有ガス供給量を少なくする。これにより一部のAΩ
粉末が直接窒化反応して微細な粒状のAΩN粉末に転化
するが、このAΩN粉末はN2ガスと共に浮遊状態で移
動するため、反応器(1)の上方出口に適当な補集器を
接続しておくことにより、AΩN粉末をウィスカーとは
分離した形で単独に補集できる。
また、図示した製造装置ではNH3含有ガスを供給する
ガス供給管(3)を1本だけ配設しているが、反応器(
1)の径によっては2本以上のガス供給管(3)を用い
てもよい。更にガス供給管(3)は例示した直線状のも
のに限らず、螺旋状その他の種々の形状に設定可能であ
る。
発明の効果 この発明によれば、N2ガス中でアルミニウムを加熱蒸
発させて気相反応によりAΩNを析出させるにあたり、
この反応領域中にNH3含有ガスを供給することから、
上記AJ2Nとして繊維状のウィスカーを選択的に生成
させることができ、上記NH3含有ガスの供給を行わな
い従来の気相反応による窒化手段に比較してAQNウィ
スカーの収率を大幅に高めることが可能であり、またN
H3含有ガスの供給量によって上記収率を任意にコント
ロールできる。しかも、この発明方法では、極めて簡素
な装置構成により金属アルミニウムを原料として直接に
AΩNウィスカーを連続的ないし半連続的に製造するこ
とができ、設備コストが安く付くと共に装置の大型化が
容易であり、上記の高収率の利点と相俟って製造コスト
を著しく低減でき、工業的生産に適する。
また、特にNH3含有ガスを反応領域に導入されたガス
供給管の周面に穿設した小孔より放出する構成を採用す
れば、上記小孔の縁部にAΩNウィスカーが析出してN
H3含有ガスの族8方向に沿って成長することから、こ
の供給管周面をウィスカーの析出ベースとして、反応後
に該放出管を取8して付着したウィスカーを容易に回収
できると共に、繊維長が長く且つ均一な高品質のウィス
カーを生成できるという利点がある。
実施例 実施例 く製造装置〉 第1図で示す各部に次の材料を用いたものとした。
反応器(1)・・・・・・・・・直径505w、肉厚4
履、長さ1000Hのアルミ ナ製パイプ。
ヒーター(2)・・・・・・電気抵抗加熱型で反応器(
1)の軸方向に対応す る長さが300mの筒形 ヒーター ガス供給管(3)・・・外径6履、肉厚1m+のAg3
0s  (SSA−3) 製パイプで、周面に0゜ 4XO,4IMRの角孔(小 孔)を周方向略等間隔に 3個設けたもの。
〈使用原料〉 AΩ粉末(4)・・・・・・純度99.99%、粒径1
〜10μmのN2アト マイズ粉。
N2ガス・・・・・・・・・・・・・・・純度99.9
995%NH3ガス・・・・・・・・・・・・純度99
.9995%上記の製造装置および原料を使用し、ヒー
ター(2)による反応器(1)の反応領域の温度を15
50℃に設定し、反応器(1)の下方より20M1lI
/ s e c速度のN2キャリアガス(20℃)によ
ってAΩ粉末(4)を浮遊状態で1g/hrの割合で導
入すると共に、ガス供給管(3)よりNH3濃度10v
o1%のN2−NH3混合ガスを0.3Q/hrの割合
で反応領域内に供給し、1時間連続的に気相反応させた
ところ、主としてガス供給管(3)の周面にAΩNウィ
スカー(5)がびっしりと付着生成した。この反応後に
付着したガス供給管(3)を反応器(1)より抜き出し
、その周面に付着したAΩNウィスカーと反応器(1)
の内面に一部付着したAΩNウィスカーとを採集した。
得られたAΩNウィスカーは、直径約20μm1長さ約
20am+にはマ揃った寸法を有する無色透明で表面の
滑らかな六角柱状結晶からなり、収量が約1gであった
比較例 N2−NH3混合ガスの供給を行わなかった以外は、上
記実施例と同様にしてAρNウィスカーを製造した。得
られたAΩNウィスカーは、直径約1〜10μmで長さ
が約0.5〜10朧の範囲に分布した無色透明な六角柱
状結晶からなり、収量が約0.2gであった。
【図面の簡単な説明】
第1図はこの発明によるAΩNウィスカーの製造に用い
る装置の一例を示す概略構成図、第2図は同装置のガス
供給管の要部縦断面図である。 粉末、 ・・・AΩNウィスカー 以上 (1)・・・反応器、(2)・・・ヒーター (3)・
・・ガス供給管、(3a)・・・小孔、(4)・・・A
ρス供給管 ;・器 第2

Claims (2)

    【特許請求の範囲】
  1. (1)アルミニウムをN_2ガス中で加熱蒸発させて気
    相反応によってAlNを析出させるにあたり、該反応領
    域中にNH_3含有ガスを供給することを特徴とする窒
    化アルミニウムウィスカーの製造方法。
  2. (2)NH_3含有ガスを、反応領域に導入されたガス
    供給管の周面に穿設した小孔より放出する請求項(1)
    記載の窒化アルミニウムウィスカーの製造方法。
JP21346890A 1990-08-09 1990-08-09 窒化アルミニウムウィスカーの製造方法 Pending JPH0497998A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21346890A JPH0497998A (ja) 1990-08-09 1990-08-09 窒化アルミニウムウィスカーの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21346890A JPH0497998A (ja) 1990-08-09 1990-08-09 窒化アルミニウムウィスカーの製造方法

Publications (1)

Publication Number Publication Date
JPH0497998A true JPH0497998A (ja) 1992-03-30

Family

ID=16639707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21346890A Pending JPH0497998A (ja) 1990-08-09 1990-08-09 窒化アルミニウムウィスカーの製造方法

Country Status (1)

Country Link
JP (1) JPH0497998A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693305A (en) * 1995-10-19 1997-12-02 Advanced Refractory Technologies, Inc. Method for synthesizing aluminum nitride whiskers
WO2009066663A1 (ja) * 2007-11-22 2009-05-28 Meijo University 窒化アルミニウム単結晶多角柱状体及びそれを使用した板状の窒化アルミニウム単結晶の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693305A (en) * 1995-10-19 1997-12-02 Advanced Refractory Technologies, Inc. Method for synthesizing aluminum nitride whiskers
WO2009066663A1 (ja) * 2007-11-22 2009-05-28 Meijo University 窒化アルミニウム単結晶多角柱状体及びそれを使用した板状の窒化アルミニウム単結晶の製造方法

Similar Documents

Publication Publication Date Title
US4484943A (en) Method and apparatus for making a fine powder compound of a metal and another element
JPH0455736B2 (ja)
JPS62242B2 (ja)
AU2010252965B2 (en) Method for producing titanium metal
US4632849A (en) Method for making a fine powder of a metal compound having ceramic coatings thereon
JP5571537B2 (ja) 金属チタン製造装置および金属チタンの製造方法
US9163299B2 (en) Device for producing titanium metal, and method for producing titanium metal
JPH0497998A (ja) 窒化アルミニウムウィスカーの製造方法
US3773899A (en) Manufacture of silicon carbide
KR101525859B1 (ko) 고순도 실리콘 미세분말의 제조 장치
JPH0127773B2 (ja)
JPS5941772B2 (ja) 超微粉合成炉
JPH0557201B2 (ja)
JPS5891018A (ja) 窒化物微粉末の製造方法
JP4392671B2 (ja) シリコン製造装置
JPH03187998A (ja) 窒化アルミニウムウィスカーの製造方法
JPS5855315A (ja) 窒化珪素粉末の製造方法
JPH0226812A (ja) 高純度窒化アルミニウム粉末の製造方法
JP2002234719A (ja) シリコン原料の製造装置および方法
JPS6250466A (ja) 窒化珪素膜を有する物品の製造法
JPS62292607A (ja) Cvd法による微粉末の製造方法およびその装置
JPS6330963B2 (ja)
JPS6152306A (ja) 金属微粉末の製造方法
JPS60251928A (ja) 金属化合物超微粒子の製造方法
JPH01308812A (ja) 窒化アルミニウム粉末の連続的製造方法及び装置