JPH049722B2 - - Google Patents

Info

Publication number
JPH049722B2
JPH049722B2 JP59016646A JP1664684A JPH049722B2 JP H049722 B2 JPH049722 B2 JP H049722B2 JP 59016646 A JP59016646 A JP 59016646A JP 1664684 A JP1664684 A JP 1664684A JP H049722 B2 JPH049722 B2 JP H049722B2
Authority
JP
Japan
Prior art keywords
hydrogen
container
stage
hydrogen gas
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59016646A
Other languages
Japanese (ja)
Other versions
JPS60161304A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59016646A priority Critical patent/JPS60161304A/en
Publication of JPS60161304A publication Critical patent/JPS60161304A/en
Publication of JPH049722B2 publication Critical patent/JPH049722B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Gas Separation By Absorption (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は水素ガス精製方法に関し、詳しくは、
金属水素化物を利用した水素ガス精製方法に関す
る。
[Detailed Description of the Invention] (Technical Field) The present invention relates to a hydrogen gas purification method, and in detail,
This invention relates to a hydrogen gas purification method using metal hydrides.

一般に水素ガスは炭化水素やアンモニアの分
解、或いは水の電気分解等によつて工業的に製造
されているが、かかる水素ガスはヘリウム、アル
ゴン等の不活性ガスのほか、酸素、水、窒素、一
酸化炭素、二酸化炭素等、種々の不純物ガスを含
有しているため、例えば、半導体工業、金属処理
工業或いは機器分析等の分野においては、上記の
粗製水素ガスを精製した後に使用している。
Generally, hydrogen gas is industrially produced by decomposition of hydrocarbons and ammonia, or electrolysis of water, etc., but such hydrogen gas can be made of inert gases such as helium, argon, etc., as well as oxygen, water, nitrogen, Since it contains various impurity gases such as carbon monoxide and carbon dioxide, the above-mentioned crude hydrogen gas is used after being purified, for example, in the fields of semiconductor industry, metal processing industry, and instrumental analysis.

(従来技術) 水素ガスを精製するための方法は既に従来より
種々知られているが、近年、ある種の金属又は合
金が水素ガスを選択的に吸蔵して金属水素化物を
形成し、また、この金属水素化物がこの水素を可
逆的に放出する特性を利用した水素ガス精製が提
案されている。この方法は、原理的には金属水素
化物を充填した容器内に粗製水素ガスを所定の加
圧下に充填し、金属水素化物に水素ガスを選択的
に吸蔵させた後、容器内に金属水素化物に吸蔵さ
れないで残存する不純物ガスを容器から水素ガス
と共にパージさせることにより除去し、この後に
金属水素化物の有する水素平衡分解圧で水素を放
出させて、精製水素ガスを得るものである。
(Prior Art) Various methods for purifying hydrogen gas have already been known, but in recent years, certain metals or alloys selectively absorb hydrogen gas to form metal hydrides, and Hydrogen gas purification has been proposed that utilizes the property of metal hydrides to reversibly release hydrogen. In principle, this method involves filling a container filled with metal hydride with crude hydrogen gas under a predetermined pressure, allowing the metal hydride to selectively absorb hydrogen gas, and then filling the container with metal hydride. Remaining impurity gases that are not occluded are removed by purging the container together with hydrogen gas, and then hydrogen is released at the hydrogen equilibrium decomposition pressure of the metal hydride to obtain purified hydrogen gas.

例えば、特開昭55−149104号公報には所定の温
度範囲において、容器内の金属水素化物の水素平
衡分解圧が順次に高くなるように、複数の容器を
直列に多段に接続し、先ず、所定の低温で不純物
ガスを含有する水素を第1段の容器内に供給し
て、水素平衡分解圧の最も低い第1の金属水素化
物に吸蔵させた後、金属水素化物に吸蔵されない
不純物ガスを減圧して排除し、次に、この第1の
金属水素化物を所定の高温まで昇温させて、第1
の金属水素化物から水素を放出させ、このように
して精製された水素を第2段の容器内の所定の低
温に冷却した第2の金属水素化物に吸蔵させた
後、再び減圧して金属水素化物に吸蔵されない不
純物ガスを排除し、次いで、この金属水素化物を
昇温させて精製水素を放出させ、このような操作
を繰り返して、水素平衡分解圧の最も高い最終段
の金属水素化物から精製水素を得る方法が開示さ
れている。
For example, in Japanese Patent Application Laid-Open No. 55-149104, a plurality of containers are connected in series in multiple stages so that the hydrogen equilibrium decomposition pressure of the metal hydride in the container increases sequentially within a predetermined temperature range. Hydrogen containing impurity gas is supplied into the first stage container at a predetermined low temperature, and is occluded by the first metal hydride with the lowest equilibrium decomposition pressure of hydrogen, and then the impurity gas that is not occluded by the metal hydride is removed. The first metal hydride is then heated to a predetermined high temperature to form the first metal hydride.
Hydrogen is released from the metal hydride, and the hydrogen purified in this way is stored in the second metal hydride cooled to a predetermined low temperature in the second stage container, and then the pressure is reduced again and the metal hydrogen is released. Impurity gases that are not occluded by the compound are removed, and then this metal hydride is heated to release purified hydrogen. This operation is repeated, starting from the final stage metal hydride with the highest hydrogen equilibrium decomposition pressure. A method for obtaining hydrogen is disclosed.

しかし、前記したように、水素ガスは種々の不
純物ガスを含有し、特に一酸化炭素や酸素、水分
等は金属水素化物に対する被毒作用が大きいた
め、金属水素化物は水素の吸蔵放出を繰り返す間
に劣化し、その水素吸蔵能力が低下する。特に、
上記したように金属水素化物を充填した容器を多
段に配列して水素を精製する方法によれば、第1
段の容器内の金属水素化物の劣化が著しく、従つ
て、長期間にわたつて安定して高純度の精製水素
ガスを得ることが困難である。
However, as mentioned above, hydrogen gas contains various impurity gases, especially carbon monoxide, oxygen, water, etc., which have a strong poisoning effect on metal hydrides. and its hydrogen storage capacity decreases. especially,
According to the method of purifying hydrogen by arranging containers filled with metal hydrides in multiple stages as described above, the first
The metal hydride in the container of the stage deteriorates significantly, and therefore it is difficult to stably obtain purified hydrogen gas of high purity over a long period of time.

なかでも、一酸化炭素は粗製水素ガスに多量に
含まれており、しかも、金属水素化物の表面に化
学吸着して、金属水素化物の水素吸蔵を最も強く
阻害する不純物ガスであるが、本発明者らは、こ
の一酸化炭素により被毒された金属水素化物に精
製した高純度水素ガスを印加するとき、一酸化炭
素がメタンに還元されると共に金属水素化物表面
から脱着し、このようにして金属水素化物が再び
水素吸蔵能力を回復する、即ち、再生されること
を見出した。
Among them, carbon monoxide is contained in a large amount in crude hydrogen gas, and moreover, it is an impurity gas that chemically adsorbs onto the surface of metal hydrides and inhibits the hydrogen absorption of metal hydrides most strongly. They found that when purified high-purity hydrogen gas was applied to metal hydrides poisoned by carbon monoxide, carbon monoxide was reduced to methane and desorbed from the metal hydride surface, and in this way. It has been found that metal hydrides regain their hydrogen storage capacity, that is, are regenerated.

第1図は一酸化炭素で完全に失活させた
LaNi4.85Al0.15に純度99.99%の水素ガスを印加し、
吸蔵させた後、放出させるサイクルを繰り返した
ときのサイクル数と水素吸蔵量(金属水素化物1
モル当りの結合水素量H/M)との関係を示す。
即ち、1サイクル目には殆ど水素を吸蔵しない
が、6サイクル後には水素吸蔵量はほぼ当初の値
に回復する。
Figure 1 shows complete inactivation with carbon monoxide.
Applying 99.99% purity hydrogen gas to LaNi 4.85 Al 0.15 ,
The number of cycles and amount of hydrogen storage (metal hydride 1
The relationship with the amount of bound hydrogen per mole (H/M) is shown.
That is, in the first cycle, hardly any hydrogen is stored, but after 6 cycles, the hydrogen storage amount recovers to almost the initial value.

(発明の目的) 本発明はかかる新たな知見に基づいてなされた
ものであつて、金属水素化物を充填した容器を直
列に多段に接続して水素を精製する方法におい
て、第1段の容器の金属水素化物が被毒劣化した
とき、これを後段に移動し、これを前段からの高
純度精製水素ガスを印加することにより、劣化た
金属水素化物を再生しつつ、安定して長期間にわ
たつて精製水素ガスを得ることができることを見
出して、本発明に至つたものである。
(Object of the Invention) The present invention has been made based on such new knowledge, and provides a method for purifying hydrogen by connecting containers filled with metal hydride in multiple stages in series. When a metal hydride deteriorates due to poisoning, it is moved to the latter stage and high-purity purified hydrogen gas from the previous stage is applied to it, regenerating the deteriorated metal hydride and stably maintaining it for a long period of time. The inventors discovered that purified hydrogen gas can be obtained by using this method, leading to the present invention.

従つて、本発明は金属水素化物を利用する水素
ガスの精製における前記した問題を解決するため
になされたものであつて、多段式水素精製方法に
おいて、長期間にわたつて安定して高純度の精製
水素を得ることができる水素精製方法を提供する
ことを目的とする。
Therefore, the present invention has been made in order to solve the above-mentioned problems in hydrogen gas purification using metal hydrides. An object of the present invention is to provide a hydrogen purification method capable of obtaining purified hydrogen.

(発明の構成) 本発明の水素精製方法は、水素を吸蔵、放出し
得る金属水素化物を充填した複数の容器を直列に
多段に接続し、第1段の容器に粗製水素ガスを供
給して、第1の金属水素化物に水素を吸蔵させた
後、一部の水素ガスを放出させてこの容器から不
純物ガスをこの水素ガスと共に排除し、次いで、
この第1の金属水素化物から水素ガスを放出させ
て隣接する第2段の容器に導き、第2の金属水素
化物に水素を吸蔵させた後、同様にこの容器から
不純物ガスを排除し、このようにして最終段の容
器の金属水素化物から放出させた水素ガスを精製
水素ガスとして得る方法において、上記各段の容
器に予備の容器を設けることなく、上記第1段の
容器の金属水素化物に所定回数の水素の吸蔵、放
出を行なわせた後、この第1段の容器をより後段
に移動させると共に、上記第2段の容器に粗製水
素ガスを供給することを特徴とする。
(Structure of the Invention) The hydrogen purification method of the present invention connects a plurality of containers filled with a metal hydride that can absorb and release hydrogen in multiple stages in series, and supplies crude hydrogen gas to the first stage container. , after storing hydrogen in the first metal hydride, part of the hydrogen gas is released to eliminate impurity gas from the container together with the hydrogen gas, and then,
Hydrogen gas is released from this first metal hydride and guided to an adjacent second stage container, and after hydrogen is absorbed into the second metal hydride, impurity gas is similarly removed from this container, and this In this method, the hydrogen gas released from the metal hydride in the final stage container is obtained as purified hydrogen gas, without providing a spare container in each stage of the metal hydride in the first stage container. After storing and desorbing hydrogen a predetermined number of times, the first stage container is moved to a later stage, and crude hydrogen gas is supplied to the second stage container.

第2図は本発明の方法を実施するのに適する装
置構成の一例を示し、装置は3段の容器から構成
されている。
FIG. 2 shows an example of an apparatus configuration suitable for carrying out the method of the present invention, and the apparatus is composed of three stages of containers.

第1段の容器1、第2段の容器2及び第3段の
容器3にはそれぞれ同じ金属水素化物(以下、こ
れらを容器に対応してそれぞれMH1,MH2及
びMH3と称する)が充填されている。これら金
属水素化物の水素放出反応は吸熱反応であるの
で、各段の容器には、金属水素化物を所定温度に
加熱し、その水素平衡分解圧を所定値に保つて水
素を放出せるために、所定温度の熱媒が循環され
る熱交換回路11,21及び31を内蔵すると共
に、接続自在の接続器12,22及び32を有
し、各段の容器はこれら熱媒回路及び接続器と共
にそれぞれ一つのユニツト,及びに構成さ
れている。
The first-stage container 1, the second-stage container 2, and the third-stage container 3 are each filled with the same metal hydride (hereinafter, these are referred to as MH1, MH2, and MH3, respectively, corresponding to the containers). There is. Since the hydrogen release reaction of these metal hydrides is an endothermic reaction, in order to release hydrogen by heating the metal hydride to a predetermined temperature and maintaining its hydrogen equilibrium decomposition pressure at a predetermined value, It has built-in heat exchange circuits 11, 21, and 31 through which a heat medium of a predetermined temperature is circulated, and has connectors 12, 22, and 32 that can be freely connected, and each stage of containers is connected to each other with these heat medium circuits and connectors. It consists of one unit, and

各段の容器は、弁62及び63を有する水素連
通管41によつて相互に接続されており、更に、
第1段の容器1は、粗製水素ガス供給弁61を備
えた粗製水素ガス供給管46に接続され、粗製水
素ガスがこの管46から前記弁13及び接続器1
2を経て第1段の容器に供給される。第3段の容
器3は弁64を有する精製水素導出管43により
精製水素ガスリザーバタンク52に接続され、更
に、弁65を有する精製水素出口管43に接続さ
れている。また、例えば、水素ガス精製を開始す
る前に管系内を清浄化するために、必要に応じ
て、上記精製水素導出管43は弁66を有し、真
空ポンプ53に接続された排気管45に接続され
ている。
The containers in each stage are interconnected by a hydrogen communication pipe 41 having valves 62 and 63, and further,
The first stage container 1 is connected to a crude hydrogen gas supply pipe 46 equipped with a crude hydrogen gas supply valve 61, and crude hydrogen gas is supplied from this pipe 46 to the valve 13 and the connector 1.
2 and then supplied to the first stage container. The third stage container 3 is connected to a purified hydrogen gas reservoir tank 52 by a purified hydrogen outlet pipe 43 having a valve 64 and further connected to a purified hydrogen outlet pipe 43 having a valve 65. Further, for example, in order to clean the inside of the pipe system before starting hydrogen gas purification, the purified hydrogen outlet pipe 43 may include a valve 66, and an exhaust pipe 45 connected to the vacuum pump 53 may be provided as necessary. It is connected to the.

更に、各段の容器はそれぞれパージ弁71,7
2及び73を介してパージ管42に接続されてお
り、このパージ管はバージガスリザーバタンク5
1を経て、弁74をもつパージガス排出管44に
接続されている。
Further, each stage of containers is provided with a purge valve 71, 7, respectively.
2 and 73 to the purge pipe 42, and this purge pipe is connected to the purge gas reservoir tank 5.
1 to a purge gas discharge pipe 44 having a valve 74.

第3図は絶対温度Tの逆数と、金属水素化物の
水素平衡分解圧Pの対数との関係を示し、金属水
素化物はその温度が高いほど、水素平衡分解圧も
高い。従つて、例えば、水素を吸蔵したMH1を
MH2よりも高い温度に加熱することにより、
MH1の水素平衡分解圧がMH2のそれよりも高
く保たれるので、MH1は水素を放出し、この水
素をMH2が吸蔵する。尚、一般に隣接する容器
の金属水素化物間の水素平衡分解圧の差圧は容器
間の圧損を考慮して0.2気圧以上あることが好ま
しい。また、パージ側の圧力も各容器内の金属水
素化物の水素放出圧力よりも0.2気圧以上低いこ
とが好ましい。
FIG. 3 shows the relationship between the reciprocal of the absolute temperature T and the logarithm of the hydrogen equilibrium decomposition pressure P of metal hydrides; the higher the temperature of the metal hydride, the higher the hydrogen equilibrium decomposition pressure. Therefore, for example, if MH1 containing hydrogen is
By heating to a temperature higher than MH2,
Since the hydrogen equilibrium decomposition pressure of MH1 is kept higher than that of MH2, MH1 releases hydrogen, which is occluded by MH2. In general, it is preferable that the difference in hydrogen equilibrium decomposition pressure between metal hydrides in adjacent containers is 0.2 atm or more, taking into account the pressure drop between the containers. Further, the pressure on the purge side is also preferably 0.2 atm or more lower than the hydrogen release pressure of the metal hydride in each container.

上記の装置の作動を説明する。尚、簡単のため
に、水素連通管41、精製水素導出管及び精製水
素出口管上の弁及びパージ弁は、当初、すべて閉
じられているものとする。
The operation of the above device will be explained. For simplicity, it is assumed that the hydrogen communication pipe 41, the purified hydrogen outlet pipe, the valves on the purified hydrogen outlet pipe, and the purge valve are all initially closed.

先ず管系内を減圧して清浄化した後、弁61を
開いて、不純物ガスを含む粗製水素ガスを粗製水
素ガス供給管46から第1の容器1に所定の圧力
で供給すると、MH1は所定の温度と圧力で水素
を吸蔵し、不純物ガスはMH1と吸蔵されないで
容器内に滞留する。そこで、MH1による水素の
吸蔵が完了した後、粗製水素ガス供給弁61を閉
じ、パージ弁71を開いて不純物ガスをこの第1
段の容器1から排出する。この後、パージ弁71
を閉じ、水素連通管上の弁62を開いて、第1段
の容器1と第2段の容器2とを連通させると、先
に説明したように、MH1の水素平衡分解圧が
MH2の水素平衡分解圧よりも高く保たれている
ため、MH1とMH2との間の水素平衡分解圧の
差圧によつて、MH1は水素を放出し、この水素
をMH2が吸蔵する。この際、不純物ガスは前記
と同様にMH2に放出されないで容器内に滞留す
る。そこで、パージ弁72を開いて不純物ガスを
この第2段の容器2から排出する。次いで、同様
にして、MH2から水素を放出させ、この水素を
MH3に吸蔵させた後、不純物ガスを容器からパ
ージする。
First, after depressurizing and cleaning the inside of the pipe system, the valve 61 is opened and crude hydrogen gas containing impurity gas is supplied from the crude hydrogen gas supply pipe 46 to the first container 1 at a predetermined pressure. Hydrogen is stored at a temperature and pressure of 1, and impurity gases remain in the container without being stored with MH1. Therefore, after hydrogen storage by MH1 is completed, the crude hydrogen gas supply valve 61 is closed and the purge valve 71 is opened to remove impurity gas from this first
Discharge from container 1 in the tier. After this, purge valve 71
When the valve 62 on the hydrogen communication pipe is opened to connect the first stage container 1 and the second stage container 2, as explained earlier, the hydrogen equilibrium decomposition pressure of MH1 is
Since it is maintained higher than the hydrogen equilibrium decomposition pressure of MH2, MH1 releases hydrogen due to the difference in hydrogen equilibrium decomposition pressure between MH1 and MH2, and MH2 stores this hydrogen. At this time, the impurity gas is not released into MH2 and remains in the container as described above. Therefore, the purge valve 72 is opened to discharge the impurity gas from the second stage container 2. Next, hydrogen is released from MH2 in the same way, and this hydrogen is
After being absorbed into MH3, the impurity gas is purged from the container.

このようにして、粗製水素ガスに含まれている
不純物ガスは、各段の容器において金属水素化物
に吸蔵されず、パージされる。従つて、最終段の
容器の金属水素化物から放出される水素ガスは高
純度に精製されているので、これを精製水素ガス
出口管43より得ることができる。
In this way, the impurity gas contained in the crude hydrogen gas is not occluded by the metal hydride in the containers at each stage, but is purged. Therefore, the hydrogen gas released from the metal hydride in the final stage container is highly purified and can be obtained from the purified hydrogen gas outlet pipe 43.

上記のような水素ガスの精製方法においては、
前記したように、第1段の容器内のMH1が最も
劣化が速い。従つて、本発明の方法においては、
通常、MH1の水素吸蔵能力が当初の50〜90%、
好ましくは60〜80%程度にまで低下したときに、
第1段の容器をより後段、通常、最終段に移動さ
せると共に、第2段の容器を新たな第1段の容器
として、これに粗製水素ガスを供給し、当初の第
3段の容器を新たな段2段の容器とする。かくし
て、最終段に移動された容器内の劣化した金属水
素化物は、前段の容器の金属水素化物により高純
度に精製された水素ガスが印加されることとな
り、この劣化した金属水素化物は、前記したよう
に、この高純度精製水素ガスによつて再生され、
実質的にその当初の水素吸蔵能力を回復する。し
かし、本来、金属水素化物に吸蔵されていた一酸
化炭素量は微量であるので、この金属水素化物の
再生によつても、最終段の容器から得られる水素
ガスの純度は、第1段の容器の移動前と実質的に
変わらない。
In the above hydrogen gas purification method,
As mentioned above, MH1 in the first stage container deteriorates the fastest. Therefore, in the method of the present invention,
Normally, the hydrogen storage capacity of MH1 is 50 to 90% of its original capacity.
Preferably when it drops to around 60-80%,
The first stage container is moved to a later stage, usually the final stage, and the second stage container is used as a new first stage container and crude hydrogen gas is supplied to it, and the original third stage container is replaced. Create a new two-tiered container. In this way, the degraded metal hydride in the container moved to the final stage is supplied with hydrogen gas purified to a high degree of purity by the metal hydride in the previous stage container, and this degraded metal hydride is As mentioned above, it is regenerated by this highly purified hydrogen gas,
substantially restores its original hydrogen storage capacity. However, since the amount of carbon monoxide originally stored in metal hydrides is very small, even by regenerating this metal hydride, the purity of the hydrogen gas obtained from the final stage container is lower than that of the first stage. Virtually unchanged from before the container was moved.

尚、前記したように、各段の容器を接続器及び
熱媒回路と共にユニツトに構成しておくことによ
り、容器の移動を簡単に行なくことができる。
Incidentally, as described above, by constructing each stage of containers together with the connector and the heat medium circuit into a unit, the containers can be easily moved.

第1段の容器を上記のようにして最終段に移動
させ、次いで、第2段に移動させたときの金属水
素化物の水素吸蔵能力の変化を第4図に示す。即
ち、当初の第1段の容器は第3段に移動されるこ
とにより、容器内の金属水素化物はその水素吸蔵
能力が当初のそれにまで回復され、次いで、第2
段に移動されることによつて、僅かに水素吸蔵能
力が低下する。
FIG. 4 shows the change in the hydrogen storage capacity of the metal hydride when the first stage container is moved to the final stage as described above and then moved to the second stage. That is, by moving the original first stage container to the third stage, the metal hydride in the container is restored to its original hydrogen storage capacity, and then transferred to the second stage.
By being moved to a higher stage, the hydrogen storage capacity slightly decreases.

尚、本発明の方法によれば、隣接する容器間で
水素ガスを移動させるために、異なる水素平衡分
解圧を有する金属水素化物を用いて、所定の作動
温度で粗製水素ガス供給側のMH1が最も高い水
素平衡分解圧を有し、MH2及びMH3がこの順
序でより低い水素平衡分解圧を有するように各金
属水素化物を選択し、かくして、隣接する容器の
金属水素化物の間に水素平衡分解圧に差圧を生ぜ
しめてもよい。また、容器間を接続する水素連通
管に圧縮機を配設し、一方の容器から水素ガスを
吸引し、これを隣接する容器内に加圧供給しても
よい。また、容器数を増せば、得られる水素ガス
の精製度がそれだけ高くなることは明らかであろ
う。
According to the method of the present invention, in order to transfer hydrogen gas between adjacent containers, metal hydrides having different hydrogen equilibrium decomposition pressures are used, and MH1 on the crude hydrogen gas supply side is Each metal hydride is selected such that it has the highest hydrogen equilibrium decomposition pressure, with MH2 and MH3 having lower hydrogen equilibrium decomposition pressures in that order, thus creating hydrogen equilibrium decomposition between metal hydrides in adjacent vessels. A pressure difference may also be created. Alternatively, a compressor may be disposed in a hydrogen communication pipe connecting the containers to suck hydrogen gas from one container and supply it under pressure into an adjacent container. Furthermore, it is obvious that the higher the number of containers, the higher the degree of purification of the obtained hydrogen gas.

(発明の効果) 以上のように、本発明の方法によれば、粗製水
素ガスが直接に供給される第1段の容器の金属水
素化物が劣化したとき、この容器を後段に移動
し、前段の容器の金属水素化物によつて精製され
た高純度水素ガスによつて、上記劣化した金属水
素化物を再生しつつ、水素ガス精製を行なうの
で、装置全体として、長期間にわたつて安定して
水素ガスを精製することができる。
(Effects of the Invention) As described above, according to the method of the present invention, when the metal hydride in the first stage container to which crude hydrogen gas is directly supplied deteriorates, this container is moved to the later stage and Since hydrogen gas is purified while regenerating the deteriorated metal hydride using the high-purity hydrogen gas purified by the metal hydride in the container, the entire device remains stable for a long period of time. Hydrogen gas can be purified.

以下に実施例を挙げて本発明を説明する。 The present invention will be explained below with reference to Examples.

(実施例) 第2図に示した装置において、各段の容器に金
属水素化物としてLaNi5.0を3.5Kgずつ充填すると
共に、第1段、第2段及び第3段の容器をそれぞ
れ熱媒回路によつて60℃、50℃及び38℃に保持し
た。
(Example) In the apparatus shown in Fig. 2, 3.5 kg of LaNi 5.0 as a metal hydride is filled into each stage of the container, and the first, second, and third stage containers are each connected to a heating medium circuit. The temperature was maintained at 60°C, 50°C and 38°C.

第1段の容器に粗製水素ガスを14気圧で充填
し、MH1に水素を選択的に吸蔵させた後、その
5%のガスをパージした。次いで、前記したよう
に、第1段の容器と第2段の容器を連通させ、
MH1に水素を放出させ、この水素をMH2に吸
蔵させた。吸蔵完了後、5%の不純物ガスを容器
からパージした。この後、同様に、第2の容器と
第3の容器とを連通させ、MH2に水素を放出さ
せ、この水素を第3の容器のMH3を吸蔵させ、
その5%をパージさせた。各段における水素の吸
蔵、パージ及び放出に要する時間はほぼ20分であ
つた。
The first stage container was filled with crude hydrogen gas at 14 atm, hydrogen was selectively absorbed into MH1, and then 5% of the gas was purged. Next, as described above, the first stage container and the second stage container are brought into communication,
MH1 was allowed to release hydrogen, and this hydrogen was stored in MH2. After occlusion was completed, 5% impurity gas was purged from the vessel. After that, similarly, the second container and the third container are communicated, hydrogen is released into MH2, and this hydrogen is absorbed into MH3 in the third container,
5% of it was purged. The time required for hydrogen storage, purging, and release in each stage was approximately 20 minutes.

純度99.9%の粗製水素ガス100部を第1の容器
に供給したとき、水素ガスの純度は、第1段の容
器出口で99.99%、第2段の容器出口で99.999%、
第3段の容器出口(精製水素ガス出口)で分析限
界を越える高純度であつて、99.9999%以上の水
素ガス86部を1Ncm3/時の取得速度で得た。
When 100 parts of crude hydrogen gas with a purity of 99.9% is supplied to the first container, the purity of the hydrogen gas is 99.99% at the outlet of the first stage container, 99.999% at the outlet of the second stage container,
At the third stage container outlet (purified hydrogen gas outlet), 86 parts of hydrogen gas with a purity exceeding the analytical limit and having a purity of 99.9999% or more was obtained at an acquisition rate of 1 Ncm 3 /hour.

このようにして、第1段の容器が5000回の水素
の吸蔵放出を行なつたとき、所定時間における
MH1の水素吸蔵量が当初の約70%に低下したの
で、これを最終段に移動し、第2段及び第3段を
それぞれ新たな第1段及び第2段に繰り上げて、
粗製水素ガスを新たな第1段の容器に供給し、同
様に水素ガスを精製した。この場合も、精製水素
ガスの純度及び取得速度に変化はなかつた。
In this way, when the first stage container absorbs and releases hydrogen 5000 times, the
Since the hydrogen storage capacity of MH1 had decreased to about 70% of the original level, it was moved to the final stage, and the second and third stages were moved up to the new first and second stages, respectively.
The crude hydrogen gas was supplied to a new first stage vessel, and the hydrogen gas was similarly purified. In this case as well, there was no change in the purity and acquisition rate of purified hydrogen gas.

再び5000回の水素の吸蔵放出後、第1段の容器
を最終段に移動させ、第2段及び第3段の容器を
それぞれ新たな第1段及び第2段に繰り上げて、
同様に水素ガスを精製した。この場合も、得られ
る精製水素ガスの純度及び取得速度に変化はなか
つた。
After absorbing and releasing hydrogen 5000 times again, the first stage container is moved to the final stage, the second stage and third stage containers are moved to the new first stage and second stage, respectively.
Hydrogen gas was similarly purified. In this case as well, there was no change in the purity and acquisition rate of the purified hydrogen gas obtained.

上記の水素ガスの精製において、当初の第1段
の容器内の金属水素化物の水素吸蔵量の変化を第
4図に示す。最初の5000回の水素の吸蔵放出によ
り、金属水素化物の水素吸蔵量は約70%まで低下
するが、最終段に移動されて、前段からの精製水
素ガスを印加されつつ、更に5000回の水素の吸蔵
放出を行なう間に、その水素吸蔵量はほぼ当初の
それに回復する。次いで、第2段に移動され、更
に5000回の水素吸蔵放出を行なつたとき、尚も当
初の水素吸蔵の約95%を保持していた。従つて、
この容器の金属水素化物は再び第1段として使用
して、水素ガスの精製を続けることができた。
FIG. 4 shows the change in the hydrogen storage capacity of the metal hydride in the initial first-stage container in the above hydrogen gas purification. After the first 5,000 hydrogen absorption and desorption cycles, the hydrogen storage capacity of the metal hydride drops to about 70%, but it is moved to the final stage, where purified hydrogen gas from the previous stage is applied, and hydrogen is absorbed an additional 5,000 times. During the storage and desorption of hydrogen, the amount of hydrogen absorbed returns to almost its original value. When it was then moved to the second stage and subjected to 5,000 more hydrogen storage and desorption cycles, it still retained approximately 95% of its original hydrogen storage capacity. Therefore,
The metal hydride in this vessel could again be used as a first stage to continue purifying hydrogen gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一酸化炭素によつて完全に被毒された
金属水素化物に高純度精製水素ガスを印加し、水
素を吸蔵放出させるサイクルを繰り返したときの
その金属水素化物の水素吸蔵量の変化を示すグラ
フであり、括弧内はサイクル数を示す。また、第
2図は本発明の方法を実施するのに好適な装置構
成の例を示し、第3図は絶対温度Tの逆数と金属
水素化物の水素平衡分解圧Pの対数との関係を示
すグラフ、第4図は装置を3段の容器から構成し
た場合において、当初の第1段の容器を第3段、
次いで、第2段に順次移動させたときの金属水素
化物の水素吸蔵量の変化を示すグラフである。 1,2,3…容器、11,21,31…熱媒回
路、12,22,32…接続器、41…水素連通
管、42…パージガス管、43…精製水素ガス出
口管、46…粗製水素ガス供給管、71,72,
73…パージ弁。
Figure 1 shows the change in the amount of hydrogen absorbed by a metal hydride when highly purified hydrogen gas is applied to a metal hydride that has been completely poisoned by carbon monoxide, and the cycle of absorbing and desorbing hydrogen is repeated. This is a graph showing the number of cycles in parentheses. Furthermore, FIG. 2 shows an example of an apparatus configuration suitable for carrying out the method of the present invention, and FIG. 3 shows the relationship between the reciprocal of the absolute temperature T and the logarithm of the hydrogen equilibrium decomposition pressure P of metal hydrides. The graph in Figure 4 shows a case where the device is composed of three stages of containers, and the original first stage container is replaced with the third stage,
It is a graph showing the change in the hydrogen storage amount of the metal hydride when the metal hydride is then sequentially moved to the second stage. 1, 2, 3... Container, 11, 21, 31... Heat medium circuit, 12, 22, 32... Connector, 41... Hydrogen communication pipe, 42... Purge gas pipe, 43... Purified hydrogen gas outlet pipe, 46... Crude hydrogen Gas supply pipe, 71, 72,
73...Purge valve.

Claims (1)

【特許請求の範囲】 1 水素を吸蔵、放出し得る金属水素化物を充填
した複数の容器を直列に多段に接続し、第1段の
容器に粗製水素ガスを供給して、第1の金属水素
化物に水素を吸蔵させた後、この容器から不純物
ガスを排除し、次いで、この第1の金属水素化物
から水素ガスを放出させて隣接する第2段の容器
に導き、第2の金属水素化物に水素を吸蔵させた
後、この容器から不純物ガスを排除し、このよう
にして最終段の容器の金属水素化物から放出させ
た水素ガスを精製水素ガスとして得る方法におい
て、上記各段の容器に予備の容器を設けることな
く、上記第1段の容器の金属水素化物に所定回数
の水素の吸蔵、放出を行なわせた後、この第1段
の容器をより後段に移動させると共に、上記第2
段の容器に粗製水素ガスを供給することを特徴と
する水素ガス精製方法。 2 第1段の容器をより後段に移動させるに際し
て、最終段に移動させることを特徴とする特許請
求の範囲第1項記載の水素ガス精製方法。
[Scope of Claims] 1 A plurality of containers filled with a metal hydride capable of absorbing and desorbing hydrogen are connected in series in multiple stages, and crude hydrogen gas is supplied to the first stage container to produce the first metal hydrogen gas. After hydrogen is absorbed into the metal hydride, impurity gas is removed from the container, and then hydrogen gas is released from the first metal hydride and guided into the adjacent second stage container, and then the hydrogen gas is removed from the second metal hydride. After storing hydrogen, impurity gas is removed from this container, and the hydrogen gas released from the metal hydride in the final stage container is obtained as purified hydrogen gas. After the metal hydride in the first stage container absorbs and releases hydrogen a predetermined number of times without providing a spare container, the first stage container is moved to a later stage, and the second stage container is moved to a later stage.
A hydrogen gas purification method characterized by supplying crude hydrogen gas to containers in stages. 2. The hydrogen gas purification method according to claim 1, characterized in that when moving the first stage container to a later stage, it is moved to the final stage.
JP59016646A 1984-01-31 1984-01-31 Purification of hydrogen Granted JPS60161304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59016646A JPS60161304A (en) 1984-01-31 1984-01-31 Purification of hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59016646A JPS60161304A (en) 1984-01-31 1984-01-31 Purification of hydrogen

Publications (2)

Publication Number Publication Date
JPS60161304A JPS60161304A (en) 1985-08-23
JPH049722B2 true JPH049722B2 (en) 1992-02-21

Family

ID=11922110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59016646A Granted JPS60161304A (en) 1984-01-31 1984-01-31 Purification of hydrogen

Country Status (1)

Country Link
JP (1) JPS60161304A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0859253B1 (en) * 1996-08-01 2006-09-20 Furukawa Denki Kogyo Kabushiki Kaisha Multicore optical connector and method of producing the connector
JP2002037605A (en) * 2000-05-19 2002-02-06 Mitsubishi Heavy Ind Ltd Device for manufacturing of hydrogen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983907A (en) * 1982-11-02 1984-05-15 Kawasaki Heavy Ind Ltd Method for purifying hydrogen gas using metallic hydride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983907A (en) * 1982-11-02 1984-05-15 Kawasaki Heavy Ind Ltd Method for purifying hydrogen gas using metallic hydride

Also Published As

Publication number Publication date
JPS60161304A (en) 1985-08-23

Similar Documents

Publication Publication Date Title
US8298319B2 (en) Pressure swing adsorption apparatus and method for hydrogen purification using the same
US4704267A (en) Production of hydrogen from ammonia
US4299596A (en) Adsorption process for the separation of gaseous mixtures
JPH04338206A (en) Gas separation
JP2006342014A (en) Method for producing high purity hydrogen
EP0398339B1 (en) Adsorptive process for producing two gas streams from a gas mixture
JP4814024B2 (en) PSA equipment for high-purity hydrogen gas production
JPH0372566B2 (en)
JP4481112B2 (en) Pressure fluctuation adsorption type gas separation method and apparatus
JPH049722B2 (en)
JPH0624962B2 (en) Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace
WO1997031699A1 (en) Specialty gas purification system
JP3292995B2 (en) Gas purification method and apparatus
JP3181686B2 (en) Hydrogen recovery and purification equipment
JPS60264306A (en) Method for purifying hydrogen gas
JP3300896B2 (en) How to remove trace oxygen
JPS6221722B2 (en)
JP2981303B2 (en) Method for separating gaseous impurities from gas mixtures
JPH08337402A (en) Device for removing impurity from gaseous hydrogen and its operating method
JPS60161305A (en) Purification apparatus for gaseous hydrogen
JPS59223203A (en) Method for purifying gaseous argon
JPH0411247B2 (en)
JPH0549838A (en) Method for conversion of carbon dioxide
JPS60264307A (en) Method for purifying hydrogen gas
JPS6086007A (en) Hydrogen gas purification