JPH0549838A - Method for conversion of carbon dioxide - Google Patents

Method for conversion of carbon dioxide

Info

Publication number
JPH0549838A
JPH0549838A JP3235640A JP23564091A JPH0549838A JP H0549838 A JPH0549838 A JP H0549838A JP 3235640 A JP3235640 A JP 3235640A JP 23564091 A JP23564091 A JP 23564091A JP H0549838 A JPH0549838 A JP H0549838A
Authority
JP
Japan
Prior art keywords
carbon dioxide
carbon
conversion
tower
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3235640A
Other languages
Japanese (ja)
Other versions
JP3111530B2 (en
Inventor
Kenji Sakamoto
健二 坂本
Atsushi Harada
敦 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP03235640A priority Critical patent/JP3111530B2/en
Publication of JPH0549838A publication Critical patent/JPH0549838A/en
Application granted granted Critical
Publication of JP3111530B2 publication Critical patent/JP3111530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

PURPOSE:To efficiently convert carbon dioxide in exhaust gas for effective use by refining carbon dioxide from carbon dioxide contg. gas by pressure varying adsorption method and converting the obtd. carbon dioxide into carbon by using an oxygen-lacking magnetite and/or strontium ferrite. CONSTITUTION:A carbon dioxide-contg. gas is pressurized over the adsorption pressure by a compressor 1 and introduced to a refining tower 2 for carbon dioxide filled with an adsorbent for carbon dioxide. The residual gas from which carbon dioxide is separated by adsorption is discharged to outside of the system through a tube 7, while a valve 10 is closed and a valve 3 is opened to desorb the adsorbed carbon dioxide and to release the carbon dioxide to a carbon dioxide storage tank 4. Then, the carbon dioxide is introduced to a carbon dioxide conversion tower 6 by opening a valve 5. In this tank, carbon dioxide is brought into contact with a catalyst to decompose into carbon and oxygen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】近年、地球環境保護の観点から、
二酸化炭素の除去・変換技術の重要性が高まり、さまざ
まな観点から研究が実施されている。二酸化炭素自体に
は、大きな毒性はないが、地球温暖化ガスとして排出規
制が必要といわれている。二酸化炭素は、石炭、石油な
どの化石燃料を燃焼した場合に生成し、発電などの基本
的工業プロセスにより生成するが、現在二酸化炭素排出
量を低下させる試みが種々行われている。二酸化炭素の
排出規制を実施するためには、省エネを促進し生成絶対
量を抑制することでも可能であるが、この場合経済成長
に悪影響を及ぼす懸念があり、また完全に抑止すること
は不可能である。一方、生成した二酸化炭素を固化しま
たは液化した後、海中へ保存する方法も研究されてい
る。しかしながら、この方法では、二酸化炭素の海洋生
体系への影響が明らかではなく、さらに、保存した二酸
化炭素の再利用は困難であり、最適な方法とは言い難
い。
[Industrial application] In recent years, from the viewpoint of global environmental protection,
The importance of carbon dioxide removal and conversion technology is increasing, and research is being conducted from various perspectives. Carbon dioxide itself is not very toxic, but it is said that emission control is required as a greenhouse gas. Carbon dioxide is generated when fossil fuels such as coal and oil are burned, and is generated by a basic industrial process such as power generation. At present, various attempts have been made to reduce carbon dioxide emissions. In order to implement carbon dioxide emission restrictions, it is possible to promote energy conservation and suppress the absolute amount of carbon dioxide produced, but in this case there is concern that it may adversely affect economic growth, and it is impossible to prevent it completely. Is. On the other hand, a method of storing generated carbon dioxide in the sea after solidifying or liquefying it is also being studied. However, with this method, the effect of carbon dioxide on the marine biological system is not clear, and further, the reuse of the preserved carbon dioxide is difficult, and it cannot be said to be the optimum method.

【0002】最近では、二酸化炭素を種々の化合物へ変
換する試みがなされている。しかしながら、二酸化炭素
は炭素化合物中もっとも安定な化合物であるため、他の
炭素化合物に変換するためにはエネルギーが必要である
ことは言うまでもない。例えば、電気化学的に二酸化炭
素を還元する方法が知られている。電極触媒としては、
ニッケル、鉄、コバルト等の金属触媒のほか、コバルト
テトラポルフィリン、サイクラム−Ni等の錯体、イソ
クエン酸脱水素酵素、リンゴ酸酵素等の触媒を担持した
電極触媒を用いる検討が種々なされている。しかしなが
ら、これらの方法では、二酸化炭素還元の過電圧が高
く、電流効率、反応選択性の点で問題が多い。そのた
め、還元に必要な電気エネルギーが比較的多量に必要と
され、電気エネルギー源を何に求めるかの問題が存在
し、環境問題の観点からはいまだ好ましい方法とは言え
ない。また、光電気化学的に二酸化炭素を還元する方法
が知られている。これは、p型アモルファス炭化けい
素、p型酸化銅等の光電極触媒を用いて二酸化炭素をア
ルコールなどへ変換する方法である。
Recently, attempts have been made to convert carbon dioxide into various compounds. However, it is needless to say that carbon dioxide is the most stable compound among carbon compounds, and thus energy is required to convert it into another carbon compound. For example, a method of electrochemically reducing carbon dioxide is known. As an electrode catalyst,
In addition to metal catalysts such as nickel, iron and cobalt, various studies have been conducted using an electrode catalyst carrying a catalyst such as cobalt tetraporphyrin, cyclam-Ni complex, isocitrate dehydrogenase, malate enzyme and the like. However, in these methods, the overvoltage of carbon dioxide reduction is high, and there are many problems in terms of current efficiency and reaction selectivity. Therefore, a relatively large amount of electric energy required for reduction is required, and there is a problem of what to seek for an electric energy source, which is still not a preferable method from the viewpoint of environmental problems. Also, a method of photoelectrochemically reducing carbon dioxide is known. This is a method of converting carbon dioxide into alcohol using a photoelectrode catalyst such as p-type amorphous silicon carbide or p-type copper oxide.

【0003】しかしながら、この方法では、照射する光
は紫外光であり、この光を得るために多量のエネルギー
を必要とする。さらに、上記の反応はいずれも電解液中
における反応であり、二酸化炭素濃度、電極面積に制限
があるため、反応速度に大きな制約を受ける。
However, in this method, the light to be irradiated is ultraviolet light and a large amount of energy is required to obtain this light. Further, all of the above reactions are reactions in the electrolytic solution, and the carbon dioxide concentration and the electrode area are limited, so that the reaction rate is greatly restricted.

【0004】一方、東京工業大学の玉浦らは、酸素欠損
マグネタイトが二酸化炭素を炭素に還元することを見い
だし、また、岡山大学の伊永らは、ストロンチウムフェ
ライトが同様に二酸化炭素を選択的に炭素に還元するこ
とを見いだした。これらの反応は、250〜350℃と
いう比較的低温で生じ、反応生成物はすべて固体炭素と
いう特徴を持つ。比較的低温で反応が進むため、火力発
電所などの排熱が利用可能であり、二酸化炭素変換に余
分なエネルギーを必要としないことから、地球環境問題
の解決に好適な触媒と期待される。さらに、その反応速
度も高く、かつ、反応選択性はほぼ100%である。
On the other hand, Tamaura et al. Of Tokyo Institute of Technology found that oxygen-deficient magnetite reduces carbon dioxide to carbon, and Inaga et al. Of Okayama University strontium ferrite selectively selects carbon dioxide. I found that it was reduced to carbon. These reactions occur at relatively low temperatures of 250-350 ° C. and all reaction products are characterized by solid carbon. Since the reaction proceeds at a relatively low temperature, exhaust heat from a thermal power plant or the like can be used, and no extra energy is required for carbon dioxide conversion, so it is expected to be a catalyst suitable for solving global environmental problems. Furthermore, the reaction rate is high and the reaction selectivity is almost 100%.

【0005】[0005]

【発明が解決しようとする課題】しかしながらこれらの
触媒を実際の排ガス中の二酸化炭素の変換反応に適用す
るためには、排ガスからの二酸化炭素の精製技術が必要
である。これは、上記触媒のもつ強い還元性を二酸化炭
素の還元に利用するものであるが、反応ガス中に酸素な
どの酸化性ガスが存在すれば、選択的に反応し二酸化炭
素の反応効率は格段に低下する。二酸化炭素の精製分離
方法は、二酸化炭素選択透過膜を用いて行う方法、圧力
変化により、二酸化炭素を吸着剤に吸・脱着して精製す
る圧力変動吸着方式などが知られている。しかしなが
ら、これらの精製方法を二酸化炭素の変換方法と組み合
わせ、排ガス中の二酸化炭素の変換に適用する試みは未
だなされていない。
However, in order to apply these catalysts to the actual conversion reaction of carbon dioxide in the exhaust gas, a technology for purifying carbon dioxide from the exhaust gas is necessary. This utilizes the strong reducing property of the above catalyst for the reduction of carbon dioxide, but if an oxidizing gas such as oxygen is present in the reaction gas, it selectively reacts and the reaction efficiency of carbon dioxide is remarkably high. Fall to. Known methods for purifying and separating carbon dioxide include a method using a carbon dioxide selective permeable membrane, and a pressure fluctuation adsorption method in which carbon dioxide is adsorbed on and desorbed from an adsorbent by a pressure change for purification. However, no attempt has yet been made to combine these purification methods with a carbon dioxide conversion method and apply it to the conversion of carbon dioxide in exhaust gas.

【0006】本発明は、上記要請に答えるべく、火力発
電所などから生成する排ガス中の二酸化炭素を効率的に
変換し、有効利用をはかる方法を提案することを目的と
する。
In order to respond to the above-mentioned demand, it is an object of the present invention to propose a method for efficiently converting carbon dioxide in exhaust gas generated from a thermal power plant or the like to effectively utilize it.

【0007】[0007]

【課題を解決するための手段】本発明は、二酸化炭素含
有ガスから圧力変動吸着(以下PSAと略記する)方式
により二酸化炭素を精製し、次いで、該二酸化炭素を触
媒を用いて炭素に変換することによる二酸化炭素変換方
法を要旨とするものである。本発明が提供する二酸化炭
素変換方法を適用することにより、火力発電所などで精
製する排ガス中の二酸化炭素を余分なエネルギーをほと
んど必要とせず、効率的に変換することが可能となる。
According to the present invention, carbon dioxide is purified from a carbon dioxide-containing gas by a pressure fluctuation adsorption (hereinafter abbreviated as PSA) method, and then the carbon dioxide is converted into carbon using a catalyst. The main point is the method of converting carbon dioxide. By applying the carbon dioxide conversion method provided by the present invention, it becomes possible to efficiently convert the carbon dioxide in the exhaust gas to be purified at a thermal power plant or the like with almost no extra energy required.

【0008】以下本発明の二酸化炭素変換方法を図面を
基に説明する。( )内の数字は、図面中の数字に対応
する。
The carbon dioxide conversion method of the present invention will be described below with reference to the drawings. The numbers in parentheses correspond to the numbers in the drawing.

【0009】本発明が適用可能な二酸化炭素含有ガスと
して、例えば火力発電所やセメント製造などで排出され
る二酸化炭素含有排ガスを挙げることができる。このよ
うな排ガスは、前もって水分含有量を0.1mg/リッ
トル以下、とくに0.03mg/リットル以下にまで低
下させておくのが望ましい。再生の際水分が脱着され
ず、吸着・脱着を繰り返すにつれ、吸着剤中の水分量が
増加して二酸化炭素吸着容量が低下するからである。該
二酸化炭素含有ガスは、加圧機(1)によって吸着圧力
以上に加圧して二酸化炭素用吸着剤を有する二酸化炭素
精製塔(2)に導入する。PSAに使用される二酸化炭
素用吸着剤としては、現在、種々のものが知られてお
り、これらのすべてが本発明に適用可能である。例え
ば、PSAに使用される二酸化炭素用吸着剤としては、
シリカゲル、活性炭および合成または天然のゼオライト
が知られている。二酸化炭素の有効吸着量の点からは、
合成ゼオライトが優れていると一般に言われている。合
成ゼオライトは、通常ナトリウムX型ゼオライトが使用
され、これは13Xとして商業的に知られている。
Examples of the carbon dioxide-containing gas to which the present invention is applicable include carbon dioxide-containing exhaust gas discharged from a thermal power plant, cement production, or the like. It is desirable to reduce the water content of such exhaust gas to 0.1 mg / liter or less, particularly 0.03 mg / liter or less in advance. This is because water is not desorbed during regeneration, and the amount of water in the adsorbent increases and the carbon dioxide adsorption capacity decreases as the adsorption / desorption is repeated. The carbon dioxide-containing gas is pressurized to a pressure equal to or higher than the adsorption pressure by a pressurizer (1) and introduced into a carbon dioxide purification tower (2) having an adsorbent for carbon dioxide. Various adsorbents for carbon dioxide used in PSA are currently known, and all of them are applicable to the present invention. For example, as the carbon dioxide adsorbent used for PSA,
Silica gel, activated carbon and synthetic or natural zeolites are known. In terms of the effective adsorption amount of carbon dioxide,
It is generally said that synthetic zeolites are excellent. Synthetic zeolites are usually sodium X-type zeolites, which are commercially known as 13X.

【0010】吸着剤として合成ゼオライトを使用する場
合、吸着時の圧力は1〜50気圧とし、脱着時の圧力は
2〜0.1気圧ただし吸着時の圧力よりは低くする。ま
た、吸・脱着時の圧力差が大きいほど二酸化炭素の有効
吸着量は高くできるため、通常脱着は1気圧以下で実施
される。近年では、精製塔を複塔用い、二酸化炭素の精
製・脱着を連続的に実施するプロセスが種々提案されて
いる。図面には、もっとも基本的なシステムである二酸
化炭素精製塔を1塔のみ用いた方式を記載しているが、
本発明においても、二酸化炭素精製塔を2塔以上用いる
ことにより、二酸化炭素精製を連続的に実施することが
可能である。
When a synthetic zeolite is used as the adsorbent, the pressure during adsorption is 1 to 50 atm, and the pressure during desorption is 2 to 0.1 atm, but lower than the pressure during adsorption. Further, since the effective adsorption amount of carbon dioxide can be increased as the pressure difference at the time of adsorption / desorption increases, desorption is usually performed at 1 atm or less. In recent years, various processes have been proposed for continuously purifying and desorbing carbon dioxide by using a double tower as a refining tower. Although the drawing shows the method that uses only one CO2 purification tower, which is the most basic system,
Also in the present invention, the carbon dioxide purification can be continuously carried out by using two or more carbon dioxide purification towers.

【0011】二酸化炭素が吸着により分離された残ガス
は、導管(7)より系外に放出され、必要に応じて回収
される。二酸化炭素を吸着した後、該精製塔(2)への
排ガスの供給を止め、バルブ(10)を閉じる。以下、
これまでの工程を精製工程と呼ぶ。
The residual gas from which carbon dioxide has been separated by adsorption is discharged to the outside of the system through the conduit (7) and is recovered if necessary. After adsorbing carbon dioxide, the exhaust gas supply to the purification tower (2) is stopped and the valve (10) is closed. Less than,
The steps so far are called purification steps.

【0012】次に、バルブ(3)を開けて吸着した二酸
化炭素を脱着させ、二酸化炭素貯蔵タンク(4)へ放出
し、続いてバルブ(5)を開けることによって、二酸化
炭素を脱着させつつすなわち吸着剤を再生しつつ二酸化
炭素の還元を行なうことができる。このような方式をと
ることにより、PSA方式で通常使用される真空ポンプ
などの減圧機を設ける必要がないこととなる。バルブ
(5)を経て二酸化炭素変換塔(6)に至った二酸化炭
素は、触媒と接触して炭素と酸素とに分解し、その酸素
が触媒に吸蔵されて体積を減じることによって、該触媒
が二酸化炭素変換能力を有するかぎり該変換塔内の圧力
は低い状態が維持され、ひいては二酸化炭素精製塔も脱
着可能な圧力に維持されるからである。すなわち、この
変換工程で必要なエネルギーは、二酸化炭素変換塔
(6)内の反応温度を保持するに必要な熱エネルギーの
みである。この熱エネルギーは、従来使われていなかっ
た排熱を利用することが出来る。しかも、変換塔に供給
される二酸化炭素は十分に精製されているために、触媒
は効率的に二酸化炭素の変換に使われる。
Next, by opening the valve (3), the adsorbed carbon dioxide is desorbed and released into the carbon dioxide storage tank (4), and then by opening the valve (5), the carbon dioxide is desorbed. Carbon dioxide can be reduced while regenerating the adsorbent. By adopting such a system, it is not necessary to provide a decompressor such as a vacuum pump normally used in the PSA system. The carbon dioxide that has reached the carbon dioxide conversion tower (6) through the valve (5) is brought into contact with the catalyst and decomposed into carbon and oxygen, and the oxygen is occluded by the catalyst to reduce its volume. This is because the pressure inside the conversion tower is kept low as long as it has a carbon dioxide conversion capacity, and the carbon dioxide purification tower is also maintained at a desorbable pressure. That is, the energy required in this conversion step is only the thermal energy required to maintain the reaction temperature in the carbon dioxide conversion tower (6). This heat energy can utilize exhaust heat which has not been used conventionally. Moreover, since the carbon dioxide supplied to the conversion tower is sufficiently purified, the catalyst is efficiently used for carbon dioxide conversion.

【0013】二酸化炭素変換塔(6)は、二酸化炭素を
炭素に変換可能な触媒の少なくとも一種を有することが
必須である。二酸化炭素を炭素に変換する触媒として
は、鉄、酸素欠損マグネタイト、ストロンチウムフェラ
イト等が知られている。本発明のシステムには、これら
のいずれもが適応可能である。このうち酸素欠損マグネ
タイト、ストロンチウムフェライト等は、400℃以下
あるいは300℃以下で活性を示すので、排熱を利用す
ることができ好ましい。
It is essential that the carbon dioxide conversion tower (6) has at least one catalyst capable of converting carbon dioxide into carbon. Known catalysts for converting carbon dioxide into carbon include iron, oxygen-deficient magnetite, and strontium ferrite. Any of these can be applied to the system of the present invention. Of these, oxygen-deficient magnetite, strontium ferrite, and the like are preferable since they exhibit activity at 400 ° C. or lower or 300 ° C. or lower, and can utilize exhaust heat.

【0014】図面では該二酸化炭素変換塔(6)は、1
塔のみ記載しているが、複塔で構成することが可能であ
り、複塔で構成した場合、より効率的に二酸化炭素の変
換が実施可能である。二酸化炭素は、二酸化炭素変換塔
(6)内部の触媒と接触して炭素に変換する。変換に際
しては、反応に必要な温度まで塔内部を加熱する。例え
ば、酸素欠損マグネタイトを触媒に用いた場合には、2
50℃〜400℃好ましくは300℃〜350℃にする
ことにより反応が進む。
In the drawing, the carbon dioxide conversion tower (6) is
Although only the tower is described, it can be composed of a double tower, and in the case of a double tower, the conversion of carbon dioxide can be carried out more efficiently. Carbon dioxide contacts the catalyst inside the carbon dioxide conversion tower (6) and converts it into carbon. During the conversion, the inside of the tower is heated to the temperature required for the reaction. For example, when oxygen-deficient magnetite is used as a catalyst,
The reaction proceeds at 50 ° C to 400 ° C, preferably 300 ° C to 350 ° C.

【0015】反応の進行にともない、二酸化炭素中の炭
素原子は、触媒表面または内部に炭素として析出し、酸
素原子は酸素欠損マグネタイト等の結晶構造内部に取り
込まれる。このようにして系内の圧力は低下する。本シ
ステムで適用する触媒は、二酸化炭素の変換量が限られ
ている。そのため、ある量の二酸化炭素を変換した時点
で反応が止まる。例えば、酸素欠損マグネタイトでは、
酸素欠損がなくなり、マグネタイトになった時点で反応
が止まると考えられている。この反応終了点は、系内部
の圧力低下の停止により判断が可能である。この二酸化
炭素を触媒により変換する工程を、以下、二酸化炭素変
換工程という。
As the reaction progresses, carbon atoms in carbon dioxide are deposited as carbon on the surface of or inside the catalyst, and oxygen atoms are incorporated inside the crystal structure of oxygen-deficient magnetite or the like. In this way, the pressure in the system drops. The catalyst applied in this system has a limited conversion of carbon dioxide. Therefore, the reaction stops when a certain amount of carbon dioxide is converted. For example, in oxygen-deficient magnetite,
It is believed that the reaction stops when the oxygen deficiency disappears and it becomes magnetite. The end point of this reaction can be judged by stopping the pressure drop inside the system. The step of converting this carbon dioxide with a catalyst is hereinafter referred to as a carbon dioxide conversion step.

【0016】反応が終了した触媒は、以下の操作により
に炭素を二酸化炭素以外の炭素化合物に合成し、かつ、
触媒能の再生化が可能である。すなわち、たとえば、反
応が終了した二酸化炭素変換塔のバルブ(5)を閉鎖
し、該塔内に酸素を含有するガスを導入する。この時、
二酸化炭素変換工程と同じ温度に系内を保持しておけ
ば、生成した炭素は、酸素により一酸化炭素に変換され
る。一酸化炭素を用いた有機化合物の合成は種々の方法
が提案されており、有効に再利用することが可能であ
る。炭素を除去した後、二酸化炭素変換塔(6)に水素
を供給し、塔内部の温度を300〜500℃にすること
により、触媒能の再生が可能である。これは、この工程
により触媒中に酸素欠損が再生されるためであると考え
られている。再生された触媒は、前記の二酸化炭素変換
工程に再使用可能である。また、酸素の代わりに水素を
塔内に供給し、塔内部の温度を500〜700℃にすれ
ば、炭素がメタンに変換すると同時に触媒が再生され
る。メタンの有効利用も種々の方法がある。以上の二酸
化炭素精製工程と二酸化炭素変換工程とを交互にまたは
並行してくり返し行なえば、二酸化炭素を連続的に処理
することができる。
The catalyst which has completed the reaction synthesizes carbon into a carbon compound other than carbon dioxide by the following operation, and
Regeneration of catalytic ability is possible. That is, for example, the valve (5) of the carbon dioxide conversion tower after the reaction is closed and the gas containing oxygen is introduced into the tower. At this time,
If the system is kept at the same temperature as in the carbon dioxide conversion step, the generated carbon is converted to carbon monoxide by oxygen. Various methods have been proposed for the synthesis of organic compounds using carbon monoxide, and they can be effectively reused. After removing the carbon, hydrogen is supplied to the carbon dioxide conversion tower (6) to bring the temperature inside the tower to 300 to 500 ° C., whereby the catalytic ability can be regenerated. It is believed that this is because oxygen vacancies are regenerated in the catalyst by this step. The regenerated catalyst can be reused in the above carbon dioxide conversion step. Further, if hydrogen is supplied into the column instead of oxygen and the temperature inside the column is set to 500 to 700 ° C., carbon is converted into methane and the catalyst is regenerated. There are various methods for effective use of methane. By repeating the above carbon dioxide refining step and carbon dioxide converting step alternately or in parallel, carbon dioxide can be continuously treated.

【0017】[0017]

【発明の効果】本発明を適用することにより、排ガス中
の二酸化炭素を効率的に変換させ、有効に利用すること
ができる。本発明による二酸化炭素変換システム及び変
換方法は、以下の点で従来の方法に比べ優れている。ま
ず第一に、従来のPSAによる二酸化炭素の精製・分離
には、脱着時に真空ポンプなどの減圧機が使用された。
しかし、本発明によれば、二酸化炭素を変換させる反応
器内部が変換反応により減圧され、それによって該反応
器に接続されている吸着装置内も減圧されるので、減圧
機を必要としない。しかも、反応にともない通常の真空
ポンプによるよりも圧力が低くなるので、吸着剤の有効
吸着量をきわめて高くすることができる。
EFFECTS OF THE INVENTION By applying the present invention, carbon dioxide in exhaust gas can be efficiently converted and used effectively. The carbon dioxide conversion system and conversion method according to the present invention are superior to the conventional methods in the following points. First of all, a decompressor such as a vacuum pump was used during desorption for purification and separation of carbon dioxide by conventional PSA.
However, according to the present invention, the inside of the reactor for converting carbon dioxide is decompressed by the conversion reaction, and thereby the inside of the adsorption device connected to the reactor is also decompressed, so that the decompressor is not required. Moreover, since the pressure becomes lower as compared with a normal vacuum pump due to the reaction, the effective adsorption amount of the adsorbent can be made extremely high.

【0018】第二に、本発明で用いる触媒は、これまで
純粋な二酸化炭素の変換のみに使用されていたが、本発
明のシステムでは、排ガス中の二酸化炭素の変換が可能
となる。これは、前段階に吸着剤による二酸化炭素の生
成を実施するためである。しかも、該触媒は比較的低温
で作動するために、従来捨てられていた排ガスを熱源と
してこの二酸化炭素の変換に利用することができる。
Secondly, the catalyst used in the present invention has been used so far only for conversion of pure carbon dioxide, but the system of the present invention enables conversion of carbon dioxide in exhaust gas. This is because carbon dioxide is generated by the adsorbent in the previous step. Moreover, since the catalyst operates at a relatively low temperature, it is possible to utilize exhaust gas, which has been conventionally discarded, as a heat source for the conversion of carbon dioxide.

【0019】[0019]

【実施例】図面を基にして実施例を説明する。機器およ
び原材料の仕様は、下記のとおりであった。
Embodiments will be described with reference to the drawings. The specifications of the equipment and raw materials were as follows.

【0020】 直径 高さ 容積 備考 cm cm リットル 二酸化炭素精製塔 18 65 16.5 加温用ジャケト付 二酸化炭素貯蔵タンク 14 65 10.0 二酸化炭素変換塔 30 30 21.2 ヒーター付 原料ガス:ボイラーの排ガスから水分を0.03mg/
リットルまで除いたもの その組成(vol%):二酸化炭素 窒素 酸素 25 70 5 吸着剤:合成ゼオライト成形体(13X) 10kg 触媒 :酸素欠損マグネタイト 20kg 原料ガスを圧縮機(1)で約4気圧に圧縮し、二酸化炭
素精製塔(2)に供給した。この吸着操作も次の脱着操
作も25℃で行なわせた。原料ガスの供給量が標準状態
換算2000リットルとなった時点で原料ガスの供給を
止め、バルブ(7)を閉じ、バルブ(3)を開いて二酸
化炭素を二酸化炭素貯蔵タンク(4)に導入した。二酸
化炭素精製塔内の圧力は、4気圧から3.7気圧に低下
した。次いで、バルブ(5)を開き、上記タンクの二酸
化炭素を二酸化炭素変換塔(6)に導入し、内部の空気
をバルブ(9)から排出し、酸素濃度が1vol%以下
となるまで置換し、バルブ(9)を閉じた。二酸化炭素
精製塔内の圧力は、3.1気圧に低下した。次に、変換
塔を350℃に加熱しその温度に保持したところ、二酸
化炭素精製塔内の圧力は徐々に低下し始めた。0.1気
圧に至って、圧力が低下しなくなり、反応が停止したと
認められたので、バルブ(3)及び(5)を閉鎖した。
[0020]diameter height volume Remark  cm cm liter carbon dioxide purification tower 18 65 16.5 with heating jacket carbon dioxide storage tank 14 65 10.0 carbon dioxide conversion tower 30 30 21.2 with heater Raw material gas: 0.03 mg of water from boiler exhaust gas /
Excluding up to 1 liter Composition (vol%): Carbon dioxide Nitrogen Oxygen 25 70 5 Adsorbent: Synthetic zeolite compact (13X) 10 kg Catalyst: Oxygen-deficient magnetite 20 kg Compress the raw material gas to about 4 atm with a compressor (1) And carbon dioxide
It was supplied to the elementary purification column (2). This adsorption operation is also the next desorption operation
The work was also performed at 25 ° C. Standard amount of raw material gas supply
Supply of raw material gas at the time of conversion of 2000 liters
Stop, close valve (7) and open valve (3) to remove diacid
Carbon dioxide was introduced into the carbon dioxide storage tank (4). Diacid
The pressure in the carbon dioxide purification tower dropped from 4 atm to 3.7 atm
did. Then, the valve (5) is opened and the diacid in the tank is
Introducing carbon dioxide into the carbon dioxide conversion tower (6)
Is discharged from the valve (9), and the oxygen concentration is 1 vol% or less.
And the valve (9) was closed. carbon dioxide
The pressure in the purification column dropped to 3.1 atm. Then convert
The column was heated to 350 ° C and held at that temperature,
The pressure in the carbon dioxide purification tower began to gradually decrease. 0.1 qi
When the pressure was reached, the pressure did not drop and the reaction stopped
Since found, valves (3) and (5) were closed.

【0021】次いで、変換塔の温度を350℃に保ち、
変換塔(6)内部に酸素を導入したところ、導管(9)
より標準状態換算380リットルの一酸化炭素がえられ
た。
Then, the temperature of the conversion tower is kept at 350 ° C.,
When oxygen was introduced into the conversion tower (6), the conduit (9)
As a result, 380 liters of carbon monoxide equivalent to the standard state were obtained.

【0022】次いで、酸素の供給を停止し、水素ガスを
供給したところ、導管(9)より、水蒸気が検出され
た。さらに、水素の供給を止め、変換塔を外気より遮断
した。
Next, when the supply of oxygen was stopped and hydrogen gas was supplied, water vapor was detected through the conduit (9). Further, the supply of hydrogen was stopped and the conversion tower was shut off from the outside air.

【0023】以上の操作をくり返したところ、ほぼ同様
の結果がえられた。
When the above operation was repeated, almost the same result was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一例のフローを示す図である。FIG. 1 is a diagram showing a flow of an example of the present invention.

【符号の説明】[Explanation of symbols]

1:圧縮機 2:二酸化炭素精製塔 3、5、7、8、9:バルブ 4:二酸化炭素貯蔵タンク 6:二酸化炭素変換塔 1: Compressor 2: Carbon dioxide purification tower 3, 5, 7, 8, 9: Valve 4: Carbon dioxide storage tank 6: Carbon dioxide conversion tower

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C01B 31/02 101 Z 7003−4G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C01B 31/02 101 Z 7003-4G

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】二酸化炭素含有ガスから圧力変動吸着方式
により二酸化炭素を精製し、次いで、該二酸化炭素を触
媒を用いて炭素に変換させることを特徴とする二酸化炭
素変換方法。
1. A method for converting carbon dioxide comprising purifying carbon dioxide from a carbon dioxide-containing gas by a pressure fluctuation adsorption method and then converting the carbon dioxide into carbon using a catalyst.
【請求項2】触媒として、酸素欠損マグネタイト及び/
またはストロンチウムフェライトを用いる、請求項1記
載の二酸化炭素変換方法。
2. An oxygen-deficient magnetite and / or a catalyst.
Alternatively, the carbon dioxide conversion method according to claim 1, wherein strontium ferrite is used.
【請求項3】請求項1または請求項2記載の方法におい
て、圧力変動吸着方式における脱着の際、吸着設備と二
酸化炭素を変換させる設備とを減圧機を介することなく
連通させる、二酸化炭素変換方法。
3. The carbon dioxide conversion method according to claim 1 or 2, wherein during desorption in the pressure fluctuation adsorption system, the adsorption equipment and the equipment for converting carbon dioxide are communicated with each other without a pressure reducer. ..
JP03235640A 1991-08-23 1991-08-23 Carbon dioxide conversion method Expired - Fee Related JP3111530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03235640A JP3111530B2 (en) 1991-08-23 1991-08-23 Carbon dioxide conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03235640A JP3111530B2 (en) 1991-08-23 1991-08-23 Carbon dioxide conversion method

Publications (2)

Publication Number Publication Date
JPH0549838A true JPH0549838A (en) 1993-03-02
JP3111530B2 JP3111530B2 (en) 2000-11-27

Family

ID=16989017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03235640A Expired - Fee Related JP3111530B2 (en) 1991-08-23 1991-08-23 Carbon dioxide conversion method

Country Status (1)

Country Link
JP (1) JP3111530B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100770691B1 (en) * 2006-06-15 2007-10-29 한국에너지기술연구원 Methods of producing barium ferrite in a consecutive way and decomposing carbon dioxide using the barium ferrite
WO2009078175A1 (en) * 2007-12-18 2009-06-25 National Institute Of Advanced Industrial Science And Technology Method for lessening carbon dioxide in gas and apparatus for lessening carbon dioxide
JP2013136012A (en) * 2011-12-28 2013-07-11 Hydro Fuel Development Inc Method and apparatus for separating and recovering co2 from waste gas
CN107117955A (en) * 2017-05-03 2017-09-01 武汉理工大学 A kind of preparation method of high-purity X-type hexagonal strontium cobalt ferrite material
CN112569739A (en) * 2020-12-07 2021-03-30 华东理工大学 System and method for capturing carbon dioxide at high temperature and converting carbon dioxide into synthesis gas in situ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100770691B1 (en) * 2006-06-15 2007-10-29 한국에너지기술연구원 Methods of producing barium ferrite in a consecutive way and decomposing carbon dioxide using the barium ferrite
WO2009078175A1 (en) * 2007-12-18 2009-06-25 National Institute Of Advanced Industrial Science And Technology Method for lessening carbon dioxide in gas and apparatus for lessening carbon dioxide
JP2009149453A (en) * 2007-12-18 2009-07-09 National Institute Of Advanced Industrial & Technology Method for cutting carbon dioxide in gas and carbon dioxide cutting apparatus
JP2013136012A (en) * 2011-12-28 2013-07-11 Hydro Fuel Development Inc Method and apparatus for separating and recovering co2 from waste gas
CN107117955A (en) * 2017-05-03 2017-09-01 武汉理工大学 A kind of preparation method of high-purity X-type hexagonal strontium cobalt ferrite material
CN107117955B (en) * 2017-05-03 2020-08-18 武汉理工大学 Preparation method of high-purity X-type hexagonal strontium cobalt ferrite material
CN112569739A (en) * 2020-12-07 2021-03-30 华东理工大学 System and method for capturing carbon dioxide at high temperature and converting carbon dioxide into synthesis gas in situ

Also Published As

Publication number Publication date
JP3111530B2 (en) 2000-11-27

Similar Documents

Publication Publication Date Title
TWI521056B (en) Methane recovery method and methane recovery unit
JP6651172B2 (en) Hydrogen recovery method from biomass pyrolysis gas
JP5392745B2 (en) Xenon concentration method, xenon concentration device, and air liquefaction separation device
CN110559800A (en) Intermediate-temperature hydrogen storage alloy preparation and pressure swing adsorption purification method
JP6659717B2 (en) Hydrogen recovery method
JP2006342014A (en) Method for producing high purity hydrogen
JP3947752B2 (en) High purity hydrogen production method
JP3985006B2 (en) High purity hydrogen production method
WO2006132040A1 (en) Process for producing high-purity hydrogen
US8128735B1 (en) Process for CO2 capture using zeolites from high pressure and moderate temperature gas streams
JP3111530B2 (en) Carbon dioxide conversion method
JP2004256328A (en) Apparatus and method for refining hydrogen gas
CN103466546A (en) Intermediate temperate pressure swing adsorption method for using bifunctional adsorbent in adsorption enhanced type vapor reforming and water-vapor transformation reactions
JP2005256899A (en) Hydrogen storage and/or derivation device
JP4013007B2 (en) Method and apparatus for producing hydrogen-nitrogen mixed gas
CN115970438A (en) Method and device for producing hydrogen for fuel cell vehicle from ethylbenzene dehydrogenation tail gas
JPH11344200A (en) Reserving method for digestion gas
JPH04206161A (en) Supply method of methanol reformed gas for fuel cell
JPS58190801A (en) Method for recovering high purity hydrogen from coke oven gas
JP7122042B1 (en) Purge method and system
JP2000272905A (en) Removal of organic impurity in methanol degradation gas by closed tsa method
JPH02307506A (en) Purifying method for air
JP2023147421A (en) Manufacturing method of gas composition, manufacturing method of substance derived from at least carbon dioxide, regeneration method of solid adsorbent
CN117228627A (en) System and method for purifying high-purity hydrogen by coupling catalysis and metal hydrogen storage alloy
JPH04265217A (en) Method for purifying gas consisting of mainly carbon monoxide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees