JPS60264306A - Method for purifying hydrogen gas - Google Patents

Method for purifying hydrogen gas

Info

Publication number
JPS60264306A
JPS60264306A JP59121442A JP12144284A JPS60264306A JP S60264306 A JPS60264306 A JP S60264306A JP 59121442 A JP59121442 A JP 59121442A JP 12144284 A JP12144284 A JP 12144284A JP S60264306 A JPS60264306 A JP S60264306A
Authority
JP
Japan
Prior art keywords
metal hydride
hydrogen
hydrogen gas
vessel
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59121442A
Other languages
Japanese (ja)
Inventor
Yasushi Nakada
泰詩 中田
Shigemasa Kawai
河合 重征
Katsuhiko Yamaji
克彦 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP59121442A priority Critical patent/JPS60264306A/en
Publication of JPS60264306A publication Critical patent/JPS60264306A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To prevent the deterioration of a metal hydride in purifying hydrogen gas by injecting crude hydrogen gas into a vessel filled with the metal hydride to occlude the hydrogen in the metal hydride, decompressing the vessel to expel impurity gases remaining in the vessel, by decompressing the interior of the vessel previously to a specific pressure. CONSTITUTION:A metal hydride (MH1) is filled in the first vessel 1, and crude hydrogen gas containing impurity gases is introduced from a gas cylinder 7 thereinto under pressure to occlude the hydrogen in the metal hydride (MH1). A valve 9 of a purge pipe 8 is then opened to expel the residual impurity gases in the vessel 1, and a valve 10 is opened to decompress the interior of the vessel 1. Hydrogen gas of high purity is released from the metal hydride (MH1) in the vessel and fed to a system 13 for using the purified hydrogen gas. In this case, the vessel is connected to a vessel 14 filled with a metal hydride (MH2) having a lower hydrogen occlusion pressure than the hydrogen release pressure in the alpha-phase region of the metal hydride (MH1) through a pipe 17 to occlude the hydrogen occluded in the metal hydride (MH1) in the metal hydride (MH2). Crude hydrogen gas is then injected into the vessel 1 to prevent the deterioration of the performance due to the repeated use of the metal hydride (MH1).

Description

【発明の詳細な説明】 (技術分野) 本発明は水素ガス精製方法に関し、詳しくは、金属水素
化物を利用した水素ガス精製方法に関す(従来技術) 一般に水素ガスは炭化水素やアンモニアの分解、或いは
水の電気分解等によって工業的に製造されているが、か
かる水素ガスはヘリウム、アルゴン等の不活性ガスのほ
か、酸素、水、窒素、−酸化炭素、二酸化炭素等、種々
の不純物ガスを含有しているため、例えば、半導体工業
、金属処理工業或いは機器分析等の分野においては、」
二記の粗製水素ガスを精製した後に使用している。
Detailed Description of the Invention (Technical Field) The present invention relates to a hydrogen gas purification method, and more particularly to a hydrogen gas purification method using metal hydrides (prior art) Generally, hydrogen gas is produced by decomposition of hydrocarbons and ammonia, Alternatively, hydrogen gas is produced industrially by electrolysis of water, etc., but in addition to inert gases such as helium and argon, hydrogen gas also contains various impurity gases such as oxygen, water, nitrogen, carbon oxide, and carbon dioxide. For example, in the semiconductor industry, metal processing industry, or instrumental analysis,
The crude hydrogen gas described in Section 2 is used after being purified.

水素ガスを精製するための方法は既に従来より種々知ら
れているが、近年、ある種の金属又は合金が水素ガスを
選択的に吸蔵して金属水素化物を形成し、また、この金
属水素化物がこの水素を可逆的に放出する特性を利用し
た水素ガス精製が提案されている。
Various methods for purifying hydrogen gas have been known in the past, but in recent years certain metals or alloys have selectively absorbed hydrogen gas to form metal hydrides. Hydrogen gas purification has been proposed using the property of reversibly releasing hydrogen.

この方法は、原理的には、このような金属水素化物を充
填した容器内に所定量の粗製水素ガスを加圧下に充填し
、金属水素化物に水素ガスを選択的に吸蔵させた後、容
器内を減圧して、好ましくは金属水素化物に水素を一部
放出させ、容器内に金属水素化物に吸蔵されないで残存
する不純物ガスをこの水素と共に容器からパージさせる
ことにより除去し、この後に金属水素化物の有する水素
放出圧力で水素を放出させて、精製水素ガスを得るもの
である。例えば、特開昭57−156304号公報に6
才、−に記のようにして、容器内の金属水素化物に所定
量の水素を吸蔵させた後、容器内を減圧して水素と共に
不純物ガスを放出する操作を複数回繰り返して、金属水
素化物の水素平衡放出圧力まで減圧する方法か記載さJ
9でいる。
In principle, this method involves filling a container filled with such a metal hydride with a predetermined amount of crude hydrogen gas under pressure, allowing the metal hydride to selectively absorb hydrogen gas, and then filling the container with the metal hydride. Preferably, some hydrogen is released from the metal hydride by reducing the pressure inside the container, and the impurity gas remaining in the container without being occluded by the metal hydride is removed by purging the container together with this hydrogen. Purified hydrogen gas is obtained by releasing hydrogen at the hydrogen release pressure of the compound. For example, in JP-A-57-156304, 6
After storing a predetermined amount of hydrogen in the metal hydride in the container as described in step 1-, the operation of reducing the pressure inside the container and releasing impurity gas along with the hydrogen is repeated several times to absorb the metal hydride. Is there a method to reduce the pressure to the hydrogen equilibrium release pressure of J?
I'm at 9.

しかし、前記したように、水素ガスは種々の不純物ガス
を含有する。特に、絹製水素ガスに比較的多量に含まれ
ている一酸化炭素は、金属水素化物に吸着して、これを
最も強く劣化させ、その水素吸蔵を■害するが、上記方
法によれば、金属水素化物の水素ガスの吸蔵放出反応を
利用する水素ガスの精製を繰り返すとき、金属水素化物
への吸着−酸化炭素量が蓄積されて、その劣化が進行し
1.1.・ 水素吸蔵量7′減少ta、=共°°・水素
0吸蔵放出0反応速度が低下し、その結果、長期間にわ
たって安定して精製水素ガスを得ることができない。
However, as described above, hydrogen gas contains various impurity gases. In particular, carbon monoxide, which is contained in a relatively large amount in silk hydrogen gas, adsorbs to metal hydrides and degrades them most strongly, impairing their hydrogen storage. When hydrogen gas is repeatedly purified using the absorption and release reaction of hydrogen gas in hydrides, the amount of adsorbed and oxidized carbon on the metal hydride accumulates, and its deterioration progresses.1.1.・Hydrogen storage amount 7' decrease ta, = co°°・Hydrogen 0 absorption and release 0 The reaction rate decreases, and as a result, purified hydrogen gas cannot be stably obtained over a long period of time.

(発明の目的) 従って、本発明は金属水素化物を利用する水素ガスの精
製における上記した問題を解決するためになされたもの
であって、水素の吸蔵放出の繰り返しによる金属水素化
物の劣化を抑えて、長jU1間にわたって安定して高純
度の精製水素ガスを得ることができる水素精製方法を提
供することを目的とする。
(Object of the Invention) Therefore, the present invention was made to solve the above-mentioned problems in hydrogen gas purification using metal hydrides, and suppresses the deterioration of metal hydrides due to repeated absorption and release of hydrogen. Therefore, it is an object of the present invention to provide a hydrogen purification method that can stably obtain purified hydrogen gas of high purity over a long period of time.

(発明の構成) 本発明の水素精製方法は、水素を吸蔵、放出し得る金属
水素化物を充填した容器内に、前記金属水素化物の吸蔵
圧力よりも高い圧力にて絹製水素ガスを印加して、前記
金属水素化物に所定量の水素を吸蔵させた後、前記容器
内を減圧して前記容器内の不純物ガスを排除し、この後
に前記金属水素化物から水素を放出さ一部、この水素を
精製水素ガスとして前記容器から得る方法において、前
記金属水素化物に和製水素ガスを印加する簡に、前記容
器内を前記金属水素化物のα相領域における水素放出圧
力以下に減圧することを特徴とする。
(Structure of the Invention) The hydrogen purification method of the present invention involves applying silk hydrogen gas at a pressure higher than the occlusion pressure of the metal hydride into a container filled with a metal hydride that can absorb and release hydrogen. After the metal hydride absorbs a predetermined amount of hydrogen, the pressure inside the container is reduced to eliminate impurity gas in the container, and after this, hydrogen is released from the metal hydride. The method for obtaining hydrogen from the container as purified hydrogen gas is characterized in that the pressure inside the container is reduced to below the hydrogen release pressure in the alpha phase region of the metal hydride before applying Japanese hydrogen gas to the metal hydride. do.

第1図は、本発明の方法において好ましく用い得る金属
水素化物の一つ、1.aNin、as八へ+1.15の
40℃の温度における水素平衡圧曲線を示し、横軸は金
属水素化物にお4−する結合水素−3t(H/M比)、
縦軸は水素平衡圧Pの自然対数である。この水素平衡圧
には、実線で示す水素吸蔵圧力と、破線で示す水素放出
圧力とがあり、水素吸蔵圧力の方が水素放出圧力よりも
高く、更に、11/M比の増加に対して、Pが実質的に
一定である平坦な所謂プラトー領域においては、両者間
の圧力差ばほぼ一定である。
FIG. 1 shows one of the metal hydrides that can be preferably used in the method of the present invention, 1. The hydrogen equilibrium pressure curve at a temperature of 40°C at +1.15 to aNin, as8 is shown, and the horizontal axis is the bonded hydrogen -3t (H/M ratio) to the metal hydride,
The vertical axis is the natural logarithm of the hydrogen equilibrium pressure P. This hydrogen equilibrium pressure has a hydrogen storage pressure shown by a solid line and a hydrogen release pressure shown by a broken line.The hydrogen storage pressure is higher than the hydrogen release pressure, and furthermore, as the 11/M ratio increases, In a flat so-called plateau region where P is substantially constant, the pressure difference between the two is approximately constant.

−に記金属水素化物を用いる絹製水素ガスの精製におい
ては、所定1話度、例えば40°Cにおいて金属水素化
物の水素吸蔵圧力より高い所定の圧力で粗製水素ガスを
容器内に印加し、所定量の水素を金属水素化物に吸蔵さ
せた後、容器内を減圧し、金属水素化物にその吸蔵水素
の一部を放出させて、容器内に残存している不純物ガス
をこの水素と共に容器から排除し、この後にこの金属水
素化物が放出する水素を精製水素ガスとして使用に供す
る。
- In the purification of silk hydrogen gas using a metal hydride, crude hydrogen gas is applied to the container at a predetermined pressure higher than the hydrogen absorption pressure of the metal hydride at a predetermined degree, for example, 40°C, After a predetermined amount of hydrogen is stored in the metal hydride, the pressure inside the container is reduced and the metal hydride releases a portion of the stored hydrogen, removing the impurity gas remaining in the container from the container along with the hydrogen. The hydrogen released by the metal hydride is then used as purified hydrogen gas.

金属水素化物の水素の吸蔵放出は、im常、前記プラト
ー領域で行なわれる。金属水素化物に水素を印加するに
際しては、印加圧力と金属水素化物の水素吸蔵圧力との
差圧を大きく確保して、水素吸蔵を速やかに行なわせ、
また、容器から精製水素を得るに際しては、精製水素ガ
スの使用系における水素圧力との差圧を大きく確保して
、金属水素化物に精製水素ガスを円滑に放出させるため
である。
The absorption and desorption of hydrogen in metal hydrides usually takes place in the plateau region. When applying hydrogen to the metal hydride, ensure a large pressure difference between the applied pressure and the hydrogen storage pressure of the metal hydride to ensure rapid hydrogen storage.
Further, when obtaining purified hydrogen from the container, a large pressure difference between the hydrogen pressure in the system in which the purified hydrogen gas is used is ensured, and the purified hydrogen gas is smoothly released into the metal hydride.

また、容器内を減圧して容器から排除する水素の量は、
jm常、容器内に充填した全水素量の5〜10%が適当
である。更に、前記したように最終的な水素吸蔵量は、
プラトー領域が終わる近傍付近とするのが好ましい。
Also, the amount of hydrogen removed from the container by reducing the pressure inside the container is
Usually, 5 to 10% of the total amount of hydrogen filled in the container is suitable. Furthermore, as mentioned above, the final hydrogen storage capacity is
It is preferable to set it near the end of the plateau region.

このようにして、プラトー領域において金属水素化物が
精製水素をほぼ放出しなくなったとき、再び上記の操作
を繰り返して、粗製水素ガスを精製する。
In this way, when the metal hydride releases almost no purified hydrogen in the plateau region, the above operation is repeated again to purify the crude hydrogen gas.

本発明において番J、以−1−のような水素ガスの精製
において、金属水素化物に粗製水素ガスを印加する前に
、容器内を金属水素化物のα相領域における水素放出圧
力以下に減圧し、α相領域で金属水素化物に吸蔵されて
いる水素をも放出さセ、このようにして、金属水素化物
に吸着されている不純物ガス、特に−酸化炭素を水素と
共に肌着させ、金属水素化物を再生さゼるので、この後
にこの金属水素化物に粗製水素ガスを印加し、精製する
操作を繰り返1〜で行なっても、金属水素化物の劣化が
抑制され、安定して高純度の精製水素ガスを得ることが
できる。
In the present invention, in the purification of hydrogen gas such as No. J, below-1-, before applying crude hydrogen gas to the metal hydride, the pressure inside the container is reduced to below the hydrogen release pressure in the alpha phase region of the metal hydride. In this way, the impurity gas adsorbed on the metal hydride, especially carbon oxide, is deposited together with hydrogen, and the metal hydride is released. Since the metal hydride is regenerated, even if the process of applying crude hydrogen gas to the metal hydride and refining it is repeated from step 1 onwards, the deterioration of the metal hydride is suppressed and stable, highly purified purified hydrogen is produced. You can get gas.

尚、本発明の方法においては、容器内に和製水素ガスの
精製操作毎に、上記のように容器内を減圧して、金属水
素化物を再生してもよいが、或いは適宜回の精製操作の
後に、金属水素化物を再生してもよい。
In the method of the present invention, the pressure inside the container may be reduced as described above each time the Japanese hydrogen gas is purified, and the metal hydride may be regenerated. The metal hydride may then be regenerated.

第2図に本発明の方法を実施するのに好適な装置の一例
を示す。第1の容器1は、第1の金属水、:j 素化物
M H+を充填されていると共に、この第1の金属水素
化物を所定温度に保持するための熱媒回路2を有し、調
圧器3、流量計4及び粗製水素ガス供給弁5を備えた和
製水素ガス管6にて、和製水素ガスボンベ7に接続され
ている。水素ガスの精製においては、この第1の金属水
素化物は熱媒回路によって所定の温度に保持されつつ、
上記ボンベから所定の圧力で容器内に和製水素ガスが所
定用印加される。次いで、弁5を閉じた後、パージ管8
−にのパージ弁9を所定時間開けて、容器内の不純物ガ
スを容器から排除する。
FIG. 2 shows an example of an apparatus suitable for carrying out the method of the present invention. The first container 1 is filled with a first metal water, a hydride M H+, and has a heating medium circuit 2 for maintaining the first metal hydride at a predetermined temperature. A Japanese hydrogen gas pipe 6 equipped with a pressure vessel 3, a flow meter 4, and a crude hydrogen gas supply valve 5 is connected to a Japanese hydrogen gas cylinder 7. In the purification of hydrogen gas, this first metal hydride is maintained at a predetermined temperature by a heat medium circuit, and
A predetermined amount of Japanese hydrogen gas is applied from the cylinder to the container at a predetermined pressure. Then, after closing the valve 5, the purge pipe 8
- Open the purge valve 9 for a predetermined period of time to remove impurity gas from the container.

このようにして精製された水素ガスは、精製水素ガス供
給弁10及び調圧器11を有する精製水素ガス管12を
経て、精製水素ガス使用系13に所定の圧力にて供給さ
れる。
The hydrogen gas purified in this manner is supplied to the purified hydrogen gas use system 13 at a predetermined pressure through a purified hydrogen gas pipe 12 having a purified hydrogen gas supply valve 10 and a pressure regulator 11.

第1の容器を減圧するための手段としての第2の容器1
4は、装置の作動使用温度領域で第1の金属水素化物の
α相領域における水素放出圧力よりも低い水素吸蔵圧力
を有する第2の金属水素化物M Hzが充填されている
と共に、この金属水素化物を所定の温度に保持するため
の熱媒回路15を有し、弁16を有する導管17にて上
記第1の容器1に導通可能に接続されている。例えば、
第1の金属水素化物が前記した1aNis、6であると
き、第2の金属水素化物はその水素平衡分解圧曲線を第
1図に示ず1、aNi4. as^1o15である。
Second container 1 as means for depressurizing the first container
No. 4 is filled with a second metal hydride M Hz which has a hydrogen storage pressure lower than the hydrogen release pressure in the alpha phase region of the first metal hydride in the operating temperature range of the device, and this metal hydrogen It has a heat medium circuit 15 for maintaining the compound at a predetermined temperature, and is electrically connected to the first container 1 through a conduit 17 having a valve 16. for example,
When the first metal hydride is 1aNis,6 described above, the second metal hydride has a hydrogen equilibrium decomposition pressure curve whose hydrogen equilibrium decomposition pressure curve is not shown in FIG. It is as^1o15.

従って、この装置によれば、水素ガスの精製操作の前に
、弁16を開けて導管17により第1の容器を第2の容
器に導通し、第1と第2の金属水素化物の水素平衡分解
圧の差圧を利用して、第1の金属水素化物から水素を放
出させ、これを第2の金属水素化物に吸蔵させる。この
場合において、必要に応じて、第1の金属水素化物を加
熱し、及び/又は第2の金属水素化物を冷却して、第1
の金属水素化物から第2の金属水素化物への水素の移動
を促進してもよい。
Therefore, according to this device, before the hydrogen gas purification operation, the valve 16 is opened to conduct the first container to the second container through the conduit 17, and the hydrogen balance between the first and second metal hydrides is established. Hydrogen is released from the first metal hydride using the pressure difference between the decomposition pressures, and hydrogen is stored in the second metal hydride. In this case, if necessary, the first metal hydride is heated and/or the second metal hydride is cooled to
may promote hydrogen transfer from one metal hydride to a second metal hydride.

このようにして、第1の金属水素化物のα相領域相から
水素を放出させて再生した後、この第1の金属水素化物
に前記したようにして、粗製水素ガスを印加して精製処
理する。
After regenerating hydrogen by releasing hydrogen from the α-phase region phase of the first metal hydride in this manner, crude hydrogen gas is applied to the first metal hydride for purification treatment as described above. .

尚、第2の金属水素化物に吸蔵された水素は、本来的に
純度が高いので、必要に応じてこれを第2の金属水素化
物から放出さゼれば、これも精製水素ガスとして使用す
ることができる。また、減圧手段としては、上記第2の
金属水素化物を充填した容器に代えて、真空ポンプを用
いることができ、或いは第1の金属水素化物のα碩域相
における水素放出圧力よりも圧力を低くしたリザバーを
用いることもできる。
Note that the hydrogen occluded in the second metal hydride is inherently highly pure, so if it is released from the second metal hydride as necessary, it can also be used as purified hydrogen gas. be able to. Further, as the pressure reduction means, a vacuum pump can be used instead of the container filled with the second metal hydride, or a pressure lower than the hydrogen release pressure in the α region phase of the first metal hydride can be used. A lowered reservoir can also be used.

(発明の効果) 以−ヒのように、本発明の方法によれば、容器内の金属
水素化物に和製水素ガスを印加する前に、容器内の金属
水素化物のα相領域における水素放出圧力以下に減圧し
、α相領域において金属水素化物に吸蔵されている水素
を放出させ、金属水素化物を再生させるので、金属水素
化物の劣化が有効に抑えられ、このようにして、長期間
にわたって安定して高度に精製された水素を得ることが
できる。
(Effects of the Invention) As described below, according to the method of the present invention, before applying Japanese hydrogen gas to the metal hydride in the container, the hydrogen release pressure in the α phase region of the metal hydride in the container is reduced. The pressure is reduced to below, the hydrogen stored in the metal hydride is released in the α phase region, and the metal hydride is regenerated, so the deterioration of the metal hydride is effectively suppressed, and in this way, it is stable for a long period of time. highly purified hydrogen can be obtained.

(実施例) 以下に実施例を挙げて本発明を説明する。(Example) The present invention will be explained below with reference to Examples.

0 実施例1 第2図に示す装置において、第1の容器に第1の金属水
素化物としてLaNi5.6を3.5 kg充填した。
0 Example 1 In the apparatus shown in FIG. 2, the first container was filled with 3.5 kg of LaNi5.6 as the first metal hydride.

この容器を内蔵させた熱媒回路によって40℃に保持し
、粗製水素ガスを15気圧の圧力にて5分間印加して、
容器に取付けた水素流量計からH7M比0.9まで水素
を吸蔵させた。この後、容器内を減圧し、金属水素化物
からH/M比で0.1相当分の水素を放出させ、容器内
に残存する不純物ガスと共に容器からパージした。次い
で、調圧器にて2気圧に減圧して、容器を使用系に接続
した。
This container was maintained at 40°C by a built-in heating medium circuit, and crude hydrogen gas was applied at a pressure of 15 atm for 5 minutes.
Hydrogen was stored up to an H7M ratio of 0.9 using a hydrogen flow meter attached to the container. Thereafter, the pressure inside the container was reduced, hydrogen equivalent to 0.1 in H/M ratio was released from the metal hydride, and the container was purged together with the impurity gas remaining in the container. Next, the pressure was reduced to 2 atm using a pressure regulator, and the container was connected to the system in use.

この精製処理において、純度99.99%の粗製水素ガ
スを処理して、純度99.9999%以上の精製水素ガ
スを得ることができた。
In this purification process, crude hydrogen gas with a purity of 99.99% was processed to obtain purified hydrogen gas with a purity of 99.9999% or more.

このようにして、H/M比で0.1まで精製水素ガスを
使用した後、第1の容器と使用系とを遮断、再び上記と
同様にして、粗製水素ガスを精製した。
After using the purified hydrogen gas until the H/M ratio reached 0.1 in this manner, the first container and the system used were shut off, and the crude hydrogen gas was purified again in the same manner as above.

この精製処理を10回繰り返し、精製水素ガスを使用し
た後、LaNi4. as^10.15を3.5kg充
填し、111・・ 熱媒回路にて温度30℃に保持した
第2の容器に1 第1の容器を導通させ、第1の金属水素化物から水素を
放出させ、これを第2の金属水素化物に吸蔵させて、第
1の金属水素化物を再生した。
After repeating this purification process 10 times and using purified hydrogen gas, LaNi4. 3.5 kg of as^10.15 is filled, and 111... 1. The first container is electrically connected to the second container, which is maintained at a temperature of 30°C in the heating medium circuit, and hydrogen is released from the first metal hydride. This was absorbed into the second metal hydride to regenerate the first metal hydride.

このようにして、精製操作結果、第1の金属水素化物に
水素を吸蔵放出させるサイクルを5000回行なったと
き、第1の金属水素化物は初期の水素吸蔵量の90%を
保持していた。
As a result of the purification operation, the first metal hydride retained 90% of its initial hydrogen storage capacity when the cycle of absorbing and releasing hydrogen into the first metal hydride was repeated 5,000 times.

一方、比較のために、上記において、第1の金属水素化
物の再生を行なうことなく、5000回の水素の吸蔵放
出サイクルを繰り返した結果、第1の金属水素化物の水
素吸蔵量は、初期の70%まで低下した。
On the other hand, for comparison, as a result of repeating 5000 hydrogen storage and desorption cycles without regenerating the first metal hydride, the hydrogen storage amount of the first metal hydride was It decreased to 70%.

また、第2の容器の第2の金属水素化物を80℃に加熱
して、吸蔵水素を放出させたところ、この水素も99.
9999%以上の純度を有していた。
In addition, when the second metal hydride in the second container was heated to 80°C to release occluded hydrogen, this hydrogen was also heated to 99.9°C.
It had a purity of 9999% or more.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するための金属水素化物の
水素平衡圧曲線、第2図は本発明の方法を実施するため
の装置の一例を示す装置構成図である。 2 1・・・第1の容器、7・・・粗製水素ガスボンベ、9
・・・パージ弁、13・・・精製水素ガス使用系、14
・・・第2の容器。 特許出願人 積水化学工業株式会社 代表者藤沼基利 3 第1図 H/M
FIG. 1 is a hydrogen equilibrium pressure curve of a metal hydride for explaining the present invention in detail, and FIG. 2 is an apparatus configuration diagram showing an example of an apparatus for carrying out the method of the present invention. 2 1... First container, 7... Crude hydrogen gas cylinder, 9
... Purge valve, 13 ... Purified hydrogen gas use system, 14
...Second container. Patent applicant Sekisui Chemical Co., Ltd. Representative Mototoshi Fujinuma 3 Figure 1 H/M

Claims (1)

【特許請求の範囲】[Claims] (1)水素を吸蔵、放出し得る金属水素化物を充填した
容器内に、前記金属水素化物の吸蔵圧力よりも高い圧力
にて粗製水素ガスを印加して、前記金属水素化物に所定
量の水素を吸蔵させた後、前記容器内を減圧して前記容
器内の不純物ガスを排除し、この後に前記金属水素化物
から水素を放出させ、この水素を精製水素ガスとして前
記容器から得る方法において、前記金属水素化物に粗製
水素ガスを印加する前に、前記容器内を前記金属水素化
物のα相領域における水素放出圧力以下に減圧すること
を特徴とする水素ガス精製方法。
(1) A predetermined amount of hydrogen is applied to the metal hydride by applying crude hydrogen gas at a pressure higher than the storage pressure of the metal hydride into a container filled with a metal hydride that can absorb and release hydrogen. After occluding hydrogen, the pressure in the container is reduced to eliminate impurity gas in the container, and then hydrogen is released from the metal hydride, and the hydrogen is obtained from the container as purified hydrogen gas, the method comprising: A method for purifying hydrogen gas, characterized in that before applying crude hydrogen gas to a metal hydride, the pressure inside the container is reduced to a hydrogen release pressure in an α-phase region of the metal hydride or less.
JP59121442A 1984-06-12 1984-06-12 Method for purifying hydrogen gas Pending JPS60264306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59121442A JPS60264306A (en) 1984-06-12 1984-06-12 Method for purifying hydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59121442A JPS60264306A (en) 1984-06-12 1984-06-12 Method for purifying hydrogen gas

Publications (1)

Publication Number Publication Date
JPS60264306A true JPS60264306A (en) 1985-12-27

Family

ID=14811239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59121442A Pending JPS60264306A (en) 1984-06-12 1984-06-12 Method for purifying hydrogen gas

Country Status (1)

Country Link
JP (1) JPS60264306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246699A (en) * 1986-04-18 1987-10-27 Sanyo Electric Co Ltd Metal hydride container

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761601A (en) * 1980-09-29 1982-04-14 Sekisui Chem Co Ltd Reactor for metal hydride
JPS57156304A (en) * 1981-03-16 1982-09-27 Matsushita Electric Ind Co Ltd Purifying method of hydrogen gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761601A (en) * 1980-09-29 1982-04-14 Sekisui Chem Co Ltd Reactor for metal hydride
JPS57156304A (en) * 1981-03-16 1982-09-27 Matsushita Electric Ind Co Ltd Purifying method of hydrogen gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246699A (en) * 1986-04-18 1987-10-27 Sanyo Electric Co Ltd Metal hydride container

Similar Documents

Publication Publication Date Title
WO1997011768A1 (en) Low temperature inert gas purifier
JPH0372566B2 (en)
US6017502A (en) Hydrogen purification using metal hydride getter material
JPS60264306A (en) Method for purifying hydrogen gas
JPS60264307A (en) Method for purifying hydrogen gas
US4215008A (en) Rare earth-containing alloys and method for purification of hydrogen gas therewith
JPS60161304A (en) Purification of hydrogen
US5064627A (en) Continuous process for separating hydrogen in high purity from a gaseous hydrogen-containing mixture
JPH049723B2 (en)
JPH01126203A (en) Production of high-purity gaseous hydrogen
JPH0253366B2 (en)
JP2529929B2 (en) Method for separating and recovering carbon monoxide gas
JPH08337402A (en) Device for removing impurity from gaseous hydrogen and its operating method
JP3292995B2 (en) Gas purification method and apparatus
JPS6071502A (en) Purifying apparatus of gaseous hydrogen
JP2002146449A (en) Method for regenerating hydrogen storage alloy
JPS6096506A (en) Method and apparatus for purification of hydrogen gas
JPH02293310A (en) Equipment for high-purity refining of rare gas
JP3213851B2 (en) Removal method of carbon monoxide in inert gas
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method
JP4391620B2 (en) A hydrogen storage alloy for hydrogen purification and a method for purifying a hydrogen-containing gas.
JPS6086007A (en) Hydrogen gas purification
JPS6410443B2 (en)
JPS6313925B2 (en)
JPH0692605A (en) Recovery and purification of hydrogen and equipment therefor