JPS6071502A - Purifying apparatus of gaseous hydrogen - Google Patents
Purifying apparatus of gaseous hydrogenInfo
- Publication number
- JPS6071502A JPS6071502A JP18140083A JP18140083A JPS6071502A JP S6071502 A JPS6071502 A JP S6071502A JP 18140083 A JP18140083 A JP 18140083A JP 18140083 A JP18140083 A JP 18140083A JP S6071502 A JPS6071502 A JP S6071502A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen gas
- gaseous hydrogen
- vessel
- hydrogen
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は水素ガス精製装置に関し、詳しくは、金属水素
化物を利用した水素ガス精製装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrogen gas purification apparatus, and more particularly to a hydrogen gas purification apparatus using metal hydrides.
一般に水素ガスは炭化水素やアンモニアの分解、或いは
水の電気分解等によって工業的に製造されているが、か
かる水素ガスは不純物ガスとしてヘリウム、アルゴン等
の不活性ガスのほか、酸素、水、窒素、−酸化炭素、二
酸化炭素、二酸化イオウ、窒素酸化物、メタン等を含有
しているため、例えば、半導体工業、金属処理工業或い
は機器分析等の分野においては、上記の粗製水素ガスを
精製した後に使用している。Hydrogen gas is generally produced industrially by decomposition of hydrocarbons and ammonia, or water electrolysis, but such hydrogen gas contains impurity gases such as inert gases such as helium and argon, as well as oxygen, water, and nitrogen. , - Since it contains carbon oxide, carbon dioxide, sulfur dioxide, nitrogen oxide, methane, etc., for example, in the semiconductor industry, metal processing industry, or instrumental analysis, after the crude hydrogen gas is purified, I am using it.
水素ガスを精製するための方法は既に従来より種々知ら
れているが、近年、ある種の金属又は合金が水素ガスを
選択的に吸蔵して金属水素化物を形成し、また、この金
属水素化物がこの水素を可逆的に放出する特性を利用し
た水素ガス精製が提案されるに至っている。この方法は
、金属水素化物を充填した容器内に粗製水素ガスを所定
の加圧下に充填し、金属水素化物に水素ガスを選択的に
吸蔵させた後、容器内に金属水素化物に吸蔵されないで
残存する不純物ガスを容器からパージさせることにより
除去し、この後に金属水素化物の有する水素平衡分解圧
で水素を放出させて、精製水素ガスを得るものである。Various methods for purifying hydrogen gas have been known in the past, but in recent years certain metals or alloys have selectively absorbed hydrogen gas to form metal hydrides. Hydrogen gas purification using the property of reversibly releasing hydrogen has been proposed. This method involves filling a container filled with metal hydride with crude hydrogen gas under a predetermined pressure, allowing hydrogen gas to be selectively occluded by the metal hydride, and then making sure that hydrogen gas is not occluded by the metal hydride in the container. Remaining impurity gas is removed by purging the container, and then hydrogen is released at the hydrogen equilibrium decomposition pressure of the metal hydride to obtain purified hydrogen gas.
しかし、一般に市販されている粗製水素ガスは前記した
ように種々の不純物ガスを含有し、このなかで特に水及
び酸素は、金属水素化物として例えば希土類元素系合金
、マグネシウム系合金、鉄系合金等を使用した場合、こ
れらを酸化劣化させ、経時的にその水素吸蔵能力を低下
させるので、得られる水素ガスのti製度も低下する。However, generally commercially available crude hydrogen gas contains various impurity gases as described above, and among these, water and oxygen are particularly susceptible to metal hydrides such as rare earth element alloys, magnesium alloys, iron alloys, etc. When these are used, they are deteriorated by oxidation and their hydrogen storage capacity is reduced over time, so that the Ti production degree of the obtained hydrogen gas is also reduced.
また、酸素及び水のほか、−m化炭素、二酸化炭素、二
酸化イオウ、窒素酸化物等の不純物酸化物ガスも金属水
素化物表面に強く化学吸着して、金属水素化物の水素の
吸蔵放出反応を阻害する被毒効果を有すると共に、その
強い吸着性のために、水素ガスを容器内に充填した後の
パージ操作によっては除去することができないうえに、
金属水素化物表面でのこれらの吸着量が多くなると、金
属水素化物から水素を放出させる際に、これら不純物ガ
スが金属水素化物より脱着するので、得られる精製水素
ガスを汚染し、また、精製水素ガスの純度が脈動するこ
ととなる。In addition to oxygen and water, impurity oxide gases such as carbon dioxide, carbon dioxide, sulfur dioxide, and nitrogen oxides are also strongly chemically adsorbed onto the surface of metal hydrides, inhibiting the hydrogen absorption and release reactions of metal hydrides. In addition to having an inhibiting poisoning effect, due to its strong adsorption properties, it cannot be removed by a purge operation after filling the container with hydrogen gas.
If the amount of these adsorbed on the surface of the metal hydride increases, these impurity gases will be desorbed from the metal hydride when hydrogen is released from the metal hydride, contaminating the purified hydrogen gas obtained. The purity of the gas will pulsate.
本発明は金属水素化物を利用する水素ガスの精製におけ
る上記した問題を解決するためになされたものであって
、金属水素化物の劣化がなく、長期間にわたって安定に
精製水素ガスを得ることができる水素ガス精製装置を提
供することを目的とする。The present invention was made to solve the above-mentioned problems in hydrogen gas purification using metal hydrides, and it is possible to stably obtain purified hydrogen gas over a long period of time without deterioration of metal hydrides. The purpose is to provide hydrogen gas purification equipment.
本発明による水素ガス精製装置は、粗製水素ガス中の酸
素を水に接触変換する触媒反応器と、この反応器からの
水素中の水を吸着除去するための吸着剤容器と、この吸
着剤容器からの水素ガスを吸蔵放出し得る金属水素化物
を充填した金属水素化物容器とを備え、この金属水素化
物容器から精製水素ガスを得るようにしたことを特徴と
する。The hydrogen gas purification apparatus according to the present invention includes a catalytic reactor for catalytically converting oxygen in crude hydrogen gas into water, an adsorbent container for adsorbing and removing water in the hydrogen from this reactor, and this adsorbent container. The present invention is characterized in that it comprises a metal hydride container filled with a metal hydride capable of absorbing and releasing hydrogen gas from the metal hydride container, and purified hydrogen gas is obtained from the metal hydride container.
以下に実施例を示す第1図に基づいて本発明を説明する
。The present invention will be explained below based on FIG. 1 showing an embodiment.
本発明の装置においては、水素貯蔵容器としての例えば
水素ボンへ1からの粗製水素ガスはバルブ2により適宜
の圧力に調整された後、管3を経て上記粗製水素ガス中
の酸素を接触的に水に変換する触媒反応器4に導かれる
。このための触媒としてはパラジウム系の触媒が適当で
あり、一般に市販されている酸素−水変換用パラジウム
系触媒を使用することができる。In the apparatus of the present invention, the crude hydrogen gas from 1 to a hydrogen storage container, for example, is adjusted to an appropriate pressure by a valve 2, and then passes through a pipe 3 to catalytically remove oxygen from the crude hydrogen gas. It is led to a catalytic reactor 4 where it is converted into water. As a catalyst for this purpose, a palladium-based catalyst is suitable, and a commercially available palladium-based catalyst for oxygen-water conversion can be used.
このようにして処理された水素ガスは次いで、バルブ5
を備えた管6を経て吸着剤容器7に導かれ、前記反応器
で生じた水素ガス中の水が吸着剤により吸着除去される
。この吸着剤としては、例えば、モレキュラー・シーブ
5A、モレキュラー・シービング・カーボン、シリカ・
ゲル、活性アルミナ、活性炭等を用いることができる。The hydrogen gas treated in this way is then transferred to valve 5
The water in the hydrogen gas generated in the reactor is adsorbed and removed by the adsorbent. Examples of this adsorbent include molecular sieve 5A, molecular sieving carbon, silica
Gel, activated alumina, activated carbon, etc. can be used.
尚、二酸化炭素、二酸化イオウ等もこの吸着剤により吸
着除去される。Note that carbon dioxide, sulfur dioxide, etc. are also adsorbed and removed by this adsorbent.
一方、−酸化炭素は酸素の存在下に白金系触媒その他に
よって二酸化炭素に変換さ・ヒ得ることが既に知られて
おり、従って、本発明の装装置においても、必要に応じ
て、前記触媒反応器の前に一酸化炭素一二酸化炭素変換
のための触媒反応器(図示せず)を設けることができる
。On the other hand, it is already known that -carbon oxide can be converted into carbon dioxide by a platinum-based catalyst or other catalyst in the presence of oxygen. A catalytic reactor (not shown) for carbon monoxide to carbon dioxide conversion can be provided in front of the vessel.
吸着剤容器にて処理された水素ガスは次いでバルブ8を
備えた管9により金属水素化物容器1゜に加圧下に充填
される。ここにおいて、水素ガスが尚含有する不純物ガ
スは、上記の一連の処理によって殆どが金属水素化物へ
の吸着性が著しく弱い不活性ガス、窒素、メタン等であ
るので、水素ガスば選択的に金属水素化物に吸蔵される
一方、不純物ガスは金属水素化物に吸蔵されないまま、
容器内に残存する。従って、所定の圧力にて金属水素化
物容器に水素を充填した後、バルブ8及び精製水素ガス
供給管ll上のバルブ12を閉じ、パージ管13のパー
ジ・バルブ14を開いて容器内のガスを一部容器から放
出すれば、上記不純物゛ ガスが容器から除かれる。従
って、この後にバルブ12を開き、好ましくは金属水素
化物の水素平衡分解圧付近にて金属水素化物から水素ガ
スを放出させれば、この水素ガスを水素供給管11より
精製水素ガスとして得ることができる。The hydrogen gas treated in the adsorbent vessel is then filled under pressure into the metal hydride vessel 1° via a pipe 9 equipped with a valve 8. Here, the impurity gases that the hydrogen gas still contains are mostly inert gases, nitrogen, methane, etc. that have extremely weak adsorption properties to metal hydrides due to the above series of treatments, so hydrogen gas selectively absorbs metal hydrides. While the impurity gas is occluded by the hydride, the impurity gas is not occluded by the metal hydride.
Remains in container. Therefore, after filling the metal hydride container with hydrogen at a predetermined pressure, close the valve 8 and the valve 12 on the purified hydrogen gas supply pipe ll, and open the purge valve 14 on the purge pipe 13 to drain the gas in the container. If a portion of the gas is released from the container, the impurity gas mentioned above will be removed from the container. Therefore, if the valve 12 is then opened and hydrogen gas is released from the metal hydride, preferably near the hydrogen equilibrium decomposition pressure of the metal hydride, this hydrogen gas can be obtained as purified hydrogen gas from the hydrogen supply pipe 11. can.
本発明において用いる金属水素化物は特に制限されるも
のではないが、本発明の装置によれば、前記したように
、粗製水素ガスを金属水素化物容器に充填する前に、予
め酸素及び水を除去するので、これによって酸化劣化を
受けやすい希土類元素系合金からなる金属水素化物をも
好適に用いることができ、しかも、かかる金属水素化物
は廉価でもある。かかる希土類元素からなる金属水素化
物として、例えば、LaNi 、、LaNi 4.7A
l o、3.5
MmNi4,5 AlCl、5 (Mmはミツシュメタ
ルを意味する。)等を例示することができる。また、こ
れら以外にも鉄系合金、マグネシウム系合金等も用いる
ことができる。Although the metal hydride used in the present invention is not particularly limited, according to the apparatus of the present invention, oxygen and water are removed in advance before filling the crude hydrogen gas into the metal hydride container, as described above. Therefore, metal hydrides made of rare earth element alloys that are susceptible to oxidative deterioration can also be suitably used, and such metal hydrides are also inexpensive. Examples of metal hydrides made of rare earth elements include LaNi, LaNi 4.7A, etc.
Examples include 3.5 MmNi4,5 AlCl,5 (Mm means mitshu metal). In addition to these, iron-based alloys, magnesium-based alloys, etc. can also be used.
以上のように、本発明の装置によれば、予め粗製水素ガ
スを処理して、特に金属水素化物を被毒する酸素及び水
、また、金属水素化物表面に強く吸着される不純物ガス
成分を実質的に除去した後に金属水素化物容器に充填し
、金属水素化物に吸蔵させるので、金属水素化物は劣化
することがなく、また、得られる精製水素ガスはその純
度が脈動することもない。更に、金属水素化物容器に導
かれる水素ガスが尚不純物ガスを含有しているとしても
、その不純物ガスは殆どが金属水素化物への吸着性が著
しく弱いガスであるから、容器内に金属水素化物に吸着
されないままに残存し、従って、所定の圧力で水素ガス
を金属水素化物容器に充填後に容器をパージすればこれ
ら不純物ガスは容易に容器から除去される。このように
して、本発明の装置によれば、金属水素化物の劣化がな
く、長期間にわたって安定して精製水素ガスを得ること
ができる。As described above, according to the apparatus of the present invention, crude hydrogen gas is treated in advance to substantially remove oxygen and water that poison metal hydrides, as well as impurity gas components that are strongly adsorbed on the surface of metal hydrides. Since the metal hydride is charged into a metal hydride container after being removed and stored in the metal hydride, the metal hydride does not deteriorate, and the purity of the purified hydrogen gas obtained does not fluctuate. Furthermore, even if the hydrogen gas introduced into the metal hydride container still contains impurity gases, most of the impurity gases are gases that have extremely weak adsorption to metal hydrides. Therefore, these impurity gases can be easily removed from the metal hydride container by purging the container after filling the metal hydride container with hydrogen gas at a predetermined pressure. In this way, according to the apparatus of the present invention, purified hydrogen gas can be stably obtained over a long period of time without deterioration of the metal hydride.
以下に実施例を挙げて本発明を説明する。The present invention will be explained below with reference to Examples.
実施例
第1図に示した装置において、触媒反応器に市販粒状パ
ラジウム触媒を、吸着剤容器の吸着剤としてモレキュラ
ー・シーブ5Aを、また、金属水素化物としてLaNi
5をそれぞれ用い、水素純度99.99%、酸素含有量
5 ppm及び水含有量40ppmの工業用水素ガスを
室温で処理し、最終的に8kg/cnTの圧力で金属水
素化物容器に水素ガスを充填した。触媒反応器及び吸着
剤容器で処理された水素ガス中の水は約0.5 ppm
、酸素は約0.lppmであった。Example In the apparatus shown in FIG. 1, a commercially available granular palladium catalyst was used in the catalytic reactor, Molecular Sieve 5A was used as the adsorbent in the adsorbent container, and LaNi was used as the metal hydride.
5 was used to treat industrial hydrogen gas with a hydrogen purity of 99.99%, an oxygen content of 5 ppm, and a water content of 40 ppm at room temperature, and finally hydrogen gas was introduced into a metal hydride container at a pressure of 8 kg/cnT. Filled. The water content in the hydrogen gas treated in the catalytic reactor and adsorbent vessel is approximately 0.5 ppm.
, oxygen is about 0. It was lppm.
パージ・バルブを開いて5%のガスを容器から放出した
後、水素供給管より精製水素ガスを得た。After opening the purge valve and releasing 5% of the gas from the container, purified hydrogen gas was obtained from the hydrogen supply pipe.
この水素ガスはガスクロマトグラフ(検出器TcD、
T i D)の検出限界を越えた99.9999%以上
の高純度を有していた。This hydrogen gas is detected using a gas chromatograph (detector TcD,
It had a high purity of 99.9999% or more, which exceeded the detection limit of T i D).
上記のような粗製水素ガスの精製操作を繰り返したとき
の金属水素化物の水素吸蔵能力の相対的な経時変化を初
期を100として第2図に示す。FIG. 2 shows the relative change over time in the hydrogen storage capacity of the metal hydride when the crude hydrogen gas purification operation as described above is repeated, with the initial value being 100.
また、比較のために、上記と同じ工業用水素ガスをその
まま直接に金属水素化物容器に充填し、水素ガスを精製
する操作を繰り返したときの金属水素化物の相対的な水
素吸蔵能力の経時変化を併せて第2図に示す。比較のた
めの後者の方法によれば、104回のサイクル後に金属
水素化物の水素吸蔵能力は当初の50%に低下するが、
本発明の装置によれば、lO回のサイクル後にも70%
以上を保持している。更にこのときの水素ガスも前記と
同様にガスクロマトグラフの検出限界を越えた高純度を
保っていた。In addition, for comparison, the same industrial hydrogen gas as above was directly filled into a metal hydride container, and the relative hydrogen storage capacity of the metal hydride was changed over time when the operation of refining the hydrogen gas was repeated. These are also shown in Figure 2. According to the latter method for comparison, after 104 cycles the hydrogen storage capacity of the metal hydride decreases to 50% of its original value;
According to the device of the present invention, even after 10 cycles, 70%
It holds more than that. Furthermore, the hydrogen gas at this time also maintained a high purity exceeding the detection limit of the gas chromatograph, as described above.
第1図は本発明の水素ガス精製装置の一実施例を示す構
成図、第2図は本発明の装置及び従来の装置による金属
水素化物容器内の金属水素化物の水素吸蔵能力の経時変
化を示すグラフである。
l・・・水素貯蔵容器、4・・・触媒反応器、7・・・
吸着剤容器、10・・・金属水素化物容器、11・・・
精製水素ガス供給管、14・・・パージ・バルブ。
特許出願人 積水化学工業株式会社
代表者藤沼基利Fig. 1 is a block diagram showing an embodiment of the hydrogen gas purification device of the present invention, and Fig. 2 shows the change over time in the hydrogen storage capacity of the metal hydride in the metal hydride container by the device of the present invention and the conventional device. This is a graph showing. l...Hydrogen storage container, 4...Catalytic reactor, 7...
Adsorbent container, 10... Metal hydride container, 11...
Purified hydrogen gas supply pipe, 14...purge valve. Patent applicant Mototoshi Fujinuma, representative of Sekisui Chemical Co., Ltd.
Claims (1)
応器と、この反応器からの水素中の水を吸着除去するた
めの吸着剤容器と、この吸着剤容器からの水素ガスを吸
蔵放出し得る金属水素化物を充填した金属水素化物容器
とを備え、この金属水素化物容器から精製水素ガスを得
るようにしたことを特徴とする水素ガス精製装置。(11) A catalytic reactor for catalytically converting oxygen in crude hydrogen gas into water, an adsorbent container for adsorbing and removing water in the hydrogen from this reactor, and an adsorbent container for absorbing and releasing hydrogen gas from this adsorbent container. 1. A hydrogen gas purification apparatus, comprising: a metal hydride container filled with a metal hydride capable of producing purified hydrogen gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18140083A JPS6071502A (en) | 1983-09-28 | 1983-09-28 | Purifying apparatus of gaseous hydrogen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18140083A JPS6071502A (en) | 1983-09-28 | 1983-09-28 | Purifying apparatus of gaseous hydrogen |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6071502A true JPS6071502A (en) | 1985-04-23 |
Family
ID=16100083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18140083A Pending JPS6071502A (en) | 1983-09-28 | 1983-09-28 | Purifying apparatus of gaseous hydrogen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6071502A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007045655A (en) * | 2005-08-09 | 2007-02-22 | Japan Pionics Co Ltd | Method and apparatus for refining gas |
CN109734997A (en) * | 2018-12-18 | 2019-05-10 | 东华能源(宁波)新材料有限公司 | A method of polypropylene material is prepared using hydrogen reconciliation edman degradation Edman |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54163796A (en) * | 1977-12-19 | 1979-12-26 | Billings Energy Corp | Method and apparatus for removing oxygen and impurities of water from hydrogen |
-
1983
- 1983-09-28 JP JP18140083A patent/JPS6071502A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54163796A (en) * | 1977-12-19 | 1979-12-26 | Billings Energy Corp | Method and apparatus for removing oxygen and impurities of water from hydrogen |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007045655A (en) * | 2005-08-09 | 2007-02-22 | Japan Pionics Co Ltd | Method and apparatus for refining gas |
CN109734997A (en) * | 2018-12-18 | 2019-05-10 | 东华能源(宁波)新材料有限公司 | A method of polypropylene material is prepared using hydrogen reconciliation edman degradation Edman |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3279585B2 (en) | Method for producing purified air | |
US5536302A (en) | Adsorbent for removal of trace oxygen from inert gases | |
US4869883A (en) | Inert gas purifier for bulk nitrogen without the use of hydrogen or other reducing gases | |
JPH10114508A (en) | Method for purifying flow of inert gas | |
US8187365B2 (en) | Process for removal of metal carbonyls from a synthesis gas stream | |
WO1997011768A1 (en) | Low temperature inert gas purifier | |
WO1997011768A9 (en) | Low temperature inert gas purifier | |
JPH08509454A (en) | Improved method for removing gaseous impurities from hydrogen streams | |
JPH07330313A (en) | Method and apparatus for preparation of high purity liquid nitrogen | |
CA2016613C (en) | Adsorptive process for producing two gas streams from a gas mixture | |
CN103569979B (en) | The purification process and purification devices of argon gas | |
US6589493B2 (en) | Gas purification-treating agents and gas purifying apparatuses | |
US6017502A (en) | Hydrogen purification using metal hydride getter material | |
JPH0624962B2 (en) | Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace | |
JPS6071502A (en) | Purifying apparatus of gaseous hydrogen | |
US5737941A (en) | Method and apparatus for removing trace quantities of impurities from liquified bulk gases | |
JP4013007B2 (en) | Method and apparatus for producing hydrogen-nitrogen mixed gas | |
US5064627A (en) | Continuous process for separating hydrogen in high purity from a gaseous hydrogen-containing mixture | |
JP4101955B2 (en) | Ammonia purification method | |
JPS60241931A (en) | Adsorbent for pressure-variable separation by adsorption | |
US5874007A (en) | Purification of an inert fluid in the liquid state with respect to H2 and/or CO | |
JP3213851B2 (en) | Removal method of carbon monoxide in inert gas | |
JPH02293310A (en) | Equipment for high-purity refining of rare gas | |
KR20000040605A (en) | Method for removing methane gas using activated carbon | |
KR20000042032A (en) | Method for removing methane gas using zeolite |