JP2529929B2 - Method for separating and recovering carbon monoxide gas - Google Patents

Method for separating and recovering carbon monoxide gas

Info

Publication number
JP2529929B2
JP2529929B2 JP5219323A JP21932393A JP2529929B2 JP 2529929 B2 JP2529929 B2 JP 2529929B2 JP 5219323 A JP5219323 A JP 5219323A JP 21932393 A JP21932393 A JP 21932393A JP 2529929 B2 JP2529929 B2 JP 2529929B2
Authority
JP
Japan
Prior art keywords
gas
adsorption tower
pressure
carbon monoxide
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5219323A
Other languages
Japanese (ja)
Other versions
JPH0768119A (en
Inventor
省吾 藤谷
憲一 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IWATANI GASU KK
Original Assignee
IWATANI GASU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IWATANI GASU KK filed Critical IWATANI GASU KK
Priority to JP5219323A priority Critical patent/JP2529929B2/en
Publication of JPH0768119A publication Critical patent/JPH0768119A/en
Application granted granted Critical
Publication of JP2529929B2 publication Critical patent/JP2529929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、製鉄所や石油化学での
副生ガス及び石油天然ガス等の改質ガス、部分酸化ガ
ス、石炭タールサンド等の改質ガス、メタノール分解ガ
ス等の主として水素、メタン、窒素、一酸化炭素ガスを
含んだ混合ガスから一酸化炭素ガスのみを圧力スイング
吸着法を用いて有効に分離回収する方法に関する。
BACKGROUND OF THE INVENTION The present invention is mainly applied to reformed gas such as by-product gas and petroleum natural gas in steel mills and petrochemicals, partial oxidation gas, reformed gas such as coal tar sand, and methanol decomposition gas. The present invention relates to a method for effectively separating and recovering only carbon monoxide gas from a mixed gas containing hydrogen, methane, nitrogen, and carbon monoxide gas by using a pressure swing adsorption method.

【0002】[0002]

【従来技術】混合ガスから一酸化炭素ガスを分離除去す
る方法として、従来は液体吸収剤を用いて再生する方法
や深冷分離方法等が使用されてきた。しかし、液体吸収
剤を用いる方法では、液体吸収剤の取り扱いが面倒であ
る、装置が腐食しやすい、溶液の損失が大きい、沈殿物
の生成を防ぐための運転管理が面倒である、高圧処理の
ために設備費が高くなる等の問題がある。一方、深冷分
離法は大規模な装置の場合には大きな利点があるが、低
温装置であることから、中小規模の装置にになると、設
備費が高くつき、実用的でない。
2. Description of the Related Art As a method for separating and removing carbon monoxide gas from a mixed gas, conventionally, a method of regenerating with a liquid absorbent, a cryogenic separation method, etc. have been used. However, in the method using the liquid absorbent, the handling of the liquid absorbent is troublesome, the device is easily corroded, the loss of the solution is large, the operation control for preventing the formation of the precipitate is troublesome, and the high pressure treatment Therefore, there is a problem that equipment cost becomes high. On the other hand, the cryogenic separation method has a great advantage in the case of a large-scale apparatus, but since it is a low-temperature apparatus, it becomes unpractical because it requires a high equipment cost for a small-to-medium-sized apparatus.

【0003】そこで近年、圧力スイング吸着法を用いて
一酸化炭素ガスを回収する方法が提案されている。この
圧力スイング吸着法を用いて一酸化炭素ガスを回収する
ものとして、従来、例えば特公平3−65207号に示
されるものがある。この従来の方法では、一酸化炭素を
選択的に吸収する吸着剤を充填した吸着塔に一酸化炭素
が含有されている原料ガスを吸着塔に導入した原料ガス
中の一酸化炭素濃度とブレークスルーガスの一酸化炭素
ガス濃度がほぼ等しくなるまで供給し、吸着剤で原料ガ
ス中の一酸化炭素を選択的に吸着する吸着工程と、吸着
塔に製品ガスの一部を供給して吸着塔内を一酸化炭素ガ
スで置換するパージ工程と、吸着塔を真空引きして吸着
剤に吸着されている一酸化炭素ガスを回収する回収工程
と、他の吸着塔でのパージ工程後半で排出されるパージ
排ガスを吸着塔に供給したのち続いて原料ガス供給して
吸着塔を加圧する加圧工程を順次繰り返すようにしたも
のである。
Therefore, in recent years, a method of recovering carbon monoxide gas using a pressure swing adsorption method has been proposed. As a method for recovering carbon monoxide gas using this pressure swing adsorption method, there is a method disclosed in Japanese Patent Publication No. 3-65207, for example. In this conventional method, a carbon monoxide concentration in the adsorbing column filled with an adsorbent that selectively absorbs carbon monoxide and a breakthrough through the raw material gas introduced into the adsorbing column. The adsorption process in which the gas is supplied until the carbon monoxide gas concentration becomes almost equal and the carbon monoxide in the raw material gas is selectively adsorbed by the adsorbent, and a part of the product gas is supplied to the adsorption tower Is purged with carbon monoxide gas, a recovery step of evacuating the adsorption tower to recover the carbon monoxide gas adsorbed by the adsorbent, and a purge step in the other adsorption tower. After the purged exhaust gas is supplied to the adsorption tower, the pressurizing step of pressurizing the adsorption tower by subsequently supplying the raw material gas is sequentially repeated.

【0004】[0004]

【発明が解決しようとする課題】ところが、従来の圧力
スイング吸着法による一酸化炭素ガスの分離回収方法で
は、吸着工程終了後に一旦回収した製品ガスの一部を導
入して吸着塔内をパージし、このパージガスを排出する
ことにより、不純成分を除去するようにしていることか
ら、製品のかなりの部分をパージガスに使用する必要が
あり、動作効率が低いという問題がある。また、回収後
の製品ガスをパージガスとして使用する場合、吸着塔内
は加圧状態にあることから、パージガスを昇圧しなけれ
ばならず、パージガスを加圧するためのコンプレッサが
必要となり、設備費が高くなるという問題がある。本発
明はこのような点に着目してなされたもので、安価な設
備費で、高収率に混合ガスから一酸化炭素ガスを分離回
収できる方法を提供することを目的とする。
However, in the conventional method of separating and recovering carbon monoxide gas by the pressure swing adsorption method, a part of the product gas once recovered after the adsorption step is introduced to purge the inside of the adsorption tower. Since the impure component is removed by discharging the purge gas, it is necessary to use a considerable part of the product as the purge gas, which causes a problem of low operating efficiency. In addition, when the product gas after recovery is used as a purge gas, the pressure inside the adsorption tower must be increased, which requires a compressor to pressurize the purge gas, resulting in high equipment costs. There is a problem of becoming. The present invention has been made in view of such a point, and an object thereof is to provide a method capable of separating and recovering carbon monoxide gas from a mixed gas in a high yield at a low equipment cost.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明は、一酸化炭素ガスを主成分とした混合ガ
スから一酸化炭素ガスを選択的に吸着する特性を備えた
吸着剤を充填した複数の吸着塔を用いて圧力スイング式
吸着法を利用して一酸化炭素を分離回収する方法におい
て、 (a) 一定圧力に維持した吸着塔に原料ガスを流し込
み、吸着塔出口から放出されるガス中に一酸化炭素ガス
が混じり込んでくる破過開始状態まで流し続け、その間
に一酸化炭素を吸着する第1吸着工程、 (b) 破過開始後も原料ガスを流し続け、吸着塔出口か
ら放出されるガス中の一酸化炭素ガス濃度が原料ガスの
一酸化炭素ガス濃度と等しくなる完全破過後も原料ガス
を流し続け、一酸化炭素を吸着する第2吸着工程、 (c) 第2吸着工程が終了した吸着塔に対して吸着塔入
口を閉じて吸着塔出口を開いた状態と、吸着塔出口を閉
じて吸着塔入口を開いた状態とを順次切り換えて繰り返
し、原料ガス中の一酸化炭素ガスの分圧以下で、且つ大
気圧以上となるように吸着塔を放圧し、その放圧によっ
て吸着塔内の吸着剤から離脱した一酸化炭素ガスで吸着
塔内に残留する不純物を吸着塔から追い出し、上記放圧
によって吸着塔内の吸着剤から離脱した一酸化炭素ガス
量が吸着塔内の吸着剤に吸着させた一酸化炭素ガス量の
50%以下の状態で終了する減圧工程、 (d) 減圧工程終了時の圧力を維持したままパージガス
を流し、吸着塔内の残留不純物を追い出すパージ工程、 (e) パージ工程での圧力から大気圧まで吸着塔入口よ
り放圧し、製品1とする降圧工程、 (f) 降圧工程に続いて吸着塔入口より真空引きを行
い、製品2とする脱着回収工程、 (g) 脱着回収工程が終了した吸着塔に、減圧工程で放
出されるガスを供給して昇圧する昇圧工程1、 (h) パージ工程で排出されるパージガスを、昇圧工程
1を行った吸着塔入口に流し込み昇圧する昇圧工程2、 (i) 吸着工程において一酸化炭素の破過が始まった吸
着塔出口から流出してくるブレークスルーガスを、昇圧
工程2を行った吸着塔入口に流し込み昇圧する昇圧工程
3、からなる一連の工程をサイクリックに順次各吸着塔
に自動制御手段により行わせることを特徴としている。
In order to achieve the above object, the present invention provides an adsorbent having a characteristic of selectively adsorbing carbon monoxide gas from a mixed gas containing carbon monoxide gas as a main component. In a method of separating and recovering carbon monoxide by using a pressure swing adsorption method using a plurality of adsorption towers filled with (a), a raw material gas is flown into the adsorption tower maintained at a constant pressure and is discharged from the adsorption tower outlet. The first adsorption step in which carbon monoxide gas continues to be mixed into the gas until it reaches the breakthrough initiation state, during which carbon monoxide is adsorbed, (b) The raw material gas continues to flow even after the breakthrough begins and adsorption A second adsorption step in which the carbon monoxide gas concentration in the gas discharged from the tower outlet is equal to the carbon monoxide gas concentration in the raw material gas, and the raw material gas is kept flowing even after complete breakthrough to adsorb carbon monoxide, (c) In the adsorption tower where the second adsorption step is completed Then, the state where the adsorption tower inlet is closed and the adsorption tower outlet is opened, and the state where the adsorption tower outlet is closed and the adsorption tower inlet is opened are sequentially switched and repeated, so that the partial pressure of carbon monoxide gas in the raw material gas or less is reduced. , And release the pressure of the adsorption tower so that the pressure becomes equal to or higher than the atmospheric pressure, and expel impurities remaining in the adsorption tower from the adsorption tower by the carbon monoxide gas released from the adsorbent in the adsorption tower due to the released pressure, A decompression step which ends when the amount of carbon monoxide gas desorbed from the adsorbent in the adsorption tower is 50% or less of the amount of carbon monoxide gas adsorbed by the adsorbent in the adsorption tower, (d) when the decompression step ends Purge process to purge the residual impurities in the adsorption tower by flowing purge gas while maintaining the pressure, (e) Pressure reducing process from the pressure in the purging process to atmospheric pressure from the adsorption tower inlet to make product 1, (f) Pressure reducing True from the adsorption tower inlet following the process (G) The desorption / recovery process to obtain the product 2, and (g) the adsorption tower where the desorption / recovery process is completed are supplied with the gas released in the decompression process to raise the pressure, and (h) is discharged in the purging process. The purge gas that flows into the adsorption tower inlet where the pressurization step 1 is performed is boosted, and (i) The breakthrough gas flowing out from the adsorption tower outlet where carbon monoxide breakthrough has started in the adsorption step is boosted. It is characterized in that each adsorption tower is cyclically and sequentially operated by an automatic control means to perform a series of steps consisting of a pressurization step 3 in which the pressure is increased by pouring into the inlet of the adsorption tower after performing step 2.

【0006】[0006]

【作用】本発明では、第1吸着工程と第2吸着工程とに
よって、原料ガスが完全破過した後まで吸着塔に流し込
まれて、吸着塔の吸着剤に一酸化炭素が吸着される。次
に、減圧工程によって、吸着塔入口を閉じて吸着塔出口
を開いた状態と、吸着塔出口を閉じて吸着塔入口を開い
た状態とが順次切り換えられて繰り返され、原料ガス中
の一酸化炭素ガスの分圧以下で、且つ大気圧以上となる
ように吸着塔が放圧されて、吸着塔内の吸着剤から離脱
した一酸化炭素ガスで吸着塔内に残留する不純物が吸着
塔から追い出される。そして、その放圧によって吸着塔
内の吸着剤から離脱した一酸化炭素ガス量が吸着塔内の
吸着剤に吸着させた一酸化炭素ガス量の50%以下の状
態で減圧工程が終了される。その後、減圧工程終了時の
圧力を維持したままでパージガスが流されて、吸着塔内
に未だ残留している不純物が吸着塔内から追い出され
る。次いで、パージ工程での圧力から大気圧まで放圧す
る際に吸着塔入口より放出されるガスが製品1として回
収され、脱着回収工程で吸着塔入口より真空引きして吸
着塔入口より放出されるガスが製品2として回収され
る。続いて、脱着回収工程が終了した昇圧工程1の吸着
塔に上記減圧工程によって吸着塔より放出されたガスが
供給されて昇圧され、その昇圧工程1が終了した昇圧工
程2の吸着塔にパージ工程で吸着塔より放出されたガス
が供給されて昇圧され、さらに、その昇圧工程2が終了
した昇圧工程3の吸着塔に上記第2吸着工程によって吸
着塔より流出されたブレークスルーガスが供給されて昇
圧される。そして、この一連の工程がサイクリックに順
次各吸着塔に自動制御手段により行われる。
In the present invention, by the first adsorption step and the second adsorption step, the raw material gas is flowed into the adsorption tower until after the complete breakthrough, and carbon monoxide is adsorbed by the adsorbent in the adsorption tower. Next, in the depressurization step, the state where the adsorption tower inlet is closed and the adsorption tower outlet is opened and the state where the adsorption tower outlet is closed and the adsorption tower inlet is opened are sequentially switched and repeated, and the monoxide in the raw material gas is oxidized. The carbon monoxide gas released from the adsorbent in the adsorption tower causes the impurities remaining in the adsorption tower to be expelled from the adsorption tower by releasing the pressure of the adsorption tower so that the partial pressure of the carbon gas is equal to or higher than the atmospheric pressure. Be done. Then, the depressurization step is terminated when the amount of carbon monoxide gas released from the adsorbent in the adsorption tower due to the released pressure is 50% or less of the amount of carbon monoxide gas adsorbed by the adsorbent in the adsorption tower. Then, the purge gas is flowed while maintaining the pressure at the end of the depressurization step, and the impurities still remaining in the adsorption tower are expelled from the adsorption tower. Next, the gas released from the adsorption tower inlet when the pressure is released from the pressure in the purging step to the atmospheric pressure is recovered as the product 1, and the gas released from the adsorption tower inlet is evacuated from the adsorption tower inlet in the desorption recovery step. Is collected as product 2. Subsequently, the gas released from the adsorption tower in the depressurization step is supplied to the adsorption tower of the pressurization step 1 in which the desorption / recovery step is completed to increase the pressure, and the adsorption tower of the pressurization step 2 in which the pressurization step 1 is completed is purged in the adsorption tower. The gas released from the adsorption tower is supplied and pressure is increased, and the breakthrough gas discharged from the adsorption tower by the second adsorption step is supplied to the adsorption tower of the pressure increasing step 3 after the pressure increasing step 2 is completed. Boosted. Then, this series of steps is cyclically and sequentially performed for each adsorption tower by the automatic control means.

【0007】[0007]

【実施例】図面は本発明方法を実施する装置の一例を示
し、図1は一酸化炭素ガスの分離回収工程のフローシー
ト、図2は各塔間の工程の関係図である。図1において
符号(1)は4基の吸着塔(A)(B)(C)(D)をそれぞれ示
し、各吸着塔(1)の入口管(2)に原料供給ライン(3)、
降圧ライン(4)、回収ライン(5)、及びパージライン
(6)がそれぞれ流路切換弁(7)(8)(9)(10)を介して接
続してあり、各吸着塔(1)の出口管(11)にそれぞれ放出
ライン(12)が連通接続してある。そして、各吸着塔(1)
内には、配位結合による金属錯体を形成し一酸化炭素ガ
スのみを選択的に吸着し、他のガス成分については少量
しか吸着しない特性をもつ吸着剤(例えば、活性炭にハ
ロゲン化第1銅を担持させたもの)を充填してある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The drawings show an example of an apparatus for carrying out the method of the present invention. FIG. 1 is a flow sheet of a carbon monoxide gas separation and recovery step, and FIG. 2 is a relationship diagram of steps between respective columns. In FIG. 1, reference numeral (1) indicates four adsorption towers (A), (B), (C) and (D), respectively, and a raw material supply line (3) is connected to an inlet pipe (2) of each adsorption tower (1),
Step-down line (4), recovery line (5), and purge line
(6) are connected via the flow path switching valves (7), (8), (9) and (10) respectively, and the discharge line (12) communicates with the outlet pipe (11) of each adsorption tower (1). It is connected. And each adsorption tower (1)
Inside, an adsorbent having the property of forming a metal complex by a coordinate bond and selectively adsorbing only carbon monoxide gas, and adsorbing only a small amount of other gas components (for example, activated carbon to cuprous halide). (On which is carried) are filled.

【0008】放出ライン(12)は高圧放出ライン(12a)と
低圧放出ライン(12b)とに分岐してあり、高圧放出ライ
ン(12a)には高圧側保圧弁(13a)が、低圧放出ライン(1
2b)には低圧側保圧弁(13b)がそれぞれ配置してあ
る。
The discharge line (12) is branched into a high pressure discharge line (12a) and a low pressure discharge line (12b). The high pressure discharge line (12a) has a high pressure side holding valve (13a) and a low pressure discharge line (12a). 1
Low pressure holding valves (13b) are arranged in 2b).

【0009】また、出口管(11)から分岐導出したガス導
出管を流路開閉弁(14)を介して入口管(2)に接続するこ
とにより循環ライン(15)を形成してある。そして、この
循環ライン(15)は途中を並列回路に形成し、一方に高圧
側圧力調整弁(16)を配置して高圧連通路、他方に低圧側
圧力調整弁(17)を配置して低圧連通路に形成してある。
Further, a circulation line (15) is formed by connecting a gas outlet pipe branched from the outlet pipe (11) to the inlet pipe (2) through a flow passage opening / closing valve (14). The circulation line (15) is formed in a parallel circuit partway, the high pressure side pressure regulating valve (16) is arranged on one side to form a high pressure communication passage, and the low pressure side pressure regulating valve (17) is arranged on the other side to form a low pressure side. It is formed in the communication passage.

【0010】なお、各吸着塔(1)の入口管(2)と原料供
給ライン(3)、降圧ライン(4)、回収ライン(5)、パー
ジライン(6)との間に配置した流路切換弁(7)(8)(9)
(10)や出口管(11)に配置した出口弁(18)、あるいは循環
ライン(15)の入口管(2)への接続部に配置した流路切換
弁(19)は図示を省略した通常の自動制御手段により該弁
類の開閉を自動的に行うようになっている。
A flow path arranged between the inlet pipe (2) of each adsorption tower (1) and the raw material supply line (3), the pressure reducing line (4), the recovery line (5) and the purge line (6). Switching valve (7) (8) (9)
The outlet valve (18) arranged in (10) and the outlet pipe (11), or the flow path switching valve (19) arranged in the connection part of the circulation line (15) to the inlet pipe (2) is not shown in the drawing. The automatic control means automatically opens and closes the valves.

【0011】このシステムを使用しての一酸化炭素ガス
回収工程は、図2の工程関係図からも分かるように、各
吸着塔は同じ一連の工程をサイクリックに順次繰り返し
ているので、以下、1つの吸着塔(A)を中心にして説明
する。
In the carbon monoxide gas recovery process using this system, as can be seen from the process relationship diagram of FIG. 2, since each adsorption tower cyclically repeats the same series of processes, A description will be given centering on one adsorption tower (A).

【0012】《原料ガス吸着工程》吸着工程は、吸着剤
が破過をするまで原料を流し続ける第1吸着工程と、破
過開始後も原料ガスを流し続ける第2吸着工程とで構成
されている。第1吸着工程では、原料供給ライン(3)に
配置した流路開閉弁(7a)を開いて入口管(2)と原料供
給ライン(3)とを連通させるとともに、出口弁(18a)、
高圧放出ライン(12a)の弁を解放する。そして、後述す
る昇圧工程により昇圧した一定圧力に吸着塔内の圧力を
維持したまま原料ガスを供給する。塔出口から高圧放出
ライン(12a)を通って放出されるガス中に一酸化炭素ガ
スが混じり込んでくる破過開始状態まで原料ガスを流し
続け、その間吸着剤で一酸化炭素を吸着する。この工程
中は、破過以前であることから、当然放出ガスには一酸
化炭素はほとんど含まれていない。
<< Raw Material Gas Adsorption Step >> The adsorption step is composed of a first adsorption step in which the raw material continues to flow until the adsorbent breaks through, and a second adsorption step in which the raw material gas continues to flow even after the breakthrough starts. There is. In the first adsorption step, the flow passage opening / closing valve (7a) arranged in the raw material supply line (3) is opened to communicate the inlet pipe (2) with the raw material supply line (3), and the outlet valve (18a),
Release the valve on the high pressure discharge line (12a). Then, the raw material gas is supplied while maintaining the pressure in the adsorption tower at the constant pressure increased by the pressure increasing step described later. The raw material gas is kept flowing until the breakthrough start state in which carbon monoxide gas is mixed into the gas discharged from the tower outlet through the high pressure discharge line (12a), and during that time, carbon monoxide is adsorbed by the adsorbent. During this step, the released gas contains almost no carbon monoxide because it was before breakthrough.

【0013】第2吸着工程は、破過が始まっても吸着剤
は完全に飽和しておらず、ミクロの細孔等に吸着能力が
残存していることから、吸着剤の吸着能力を有効に利用
するため、吸着剤が完全に飽和する状態まで原料ガスを
流し続け、さらに、この破過状態になった後も原料ガス
を流し続る。しかし、この時の放出ガス中には高濃度の
一酸化炭素が含まれる。それを回収するため、出口管(1
1)から放出ライン(12)への流出を遮断するとともに、循
環ライン入口の弁を開いて吸着塔から流出するガスを循
環ライン(15)に流す。そして、吸着塔内の圧力を一定圧
力以上に維持するために、排出ガスは高圧側圧力調整弁
(16)で圧力調整されて入口管(2)側に流される。後述す
る昇圧工程1の終了した吸着塔(B)の入口管(2)に接続
する循環ライン(15)中の流路開閉弁(19b)を開いて吸着
塔(B)に送り込む。
In the second adsorption step, since the adsorbent is not completely saturated even when the breakthrough starts and the adsorbing ability remains in the microscopic pores, the adsorbing ability of the adsorbent is made effective. In order to utilize, the raw material gas is kept flowing until the adsorbent is completely saturated, and further, the raw material gas is kept flowing even after the breakthrough state. However, the released gas at this time contains a high concentration of carbon monoxide. In order to collect it, the outlet pipe (1
The flow from 1) to the discharge line (12) is blocked, and the valve at the inlet of the circulation line is opened to allow the gas flowing out of the adsorption tower to flow into the circulation line (15). Then, in order to maintain the pressure inside the adsorption tower above a certain level, the exhaust gas is discharged from the high pressure side pressure control valve.
The pressure is adjusted at (16), and it is made to flow to the inlet pipe (2) side. The flow path opening / closing valve (19b) in the circulation line (15) connected to the inlet pipe (2) of the adsorption tower (B) after completion of the pressurization step 1 described later is opened and fed into the adsorption tower (B).

【0014】《減圧工程》第2吸着工程が終了した塔か
ら塔内に残っている不純物を排出するために所定の圧力
まで減圧するものである。すなわち、第2吸着工程が終
了すると、原料供給ライン(3)から入口管(2)への原料
ガス供給を止めるとともに、循環ライン(15)中の並列回
路を切り換えて、一酸化炭素ガスの分圧以下で大気圧以
上、かつ放出するガス量が吸着ガス量の50%以下とな
る条件で、吸着塔内の圧力が低圧側圧力調整弁(17)で設
定される圧力になるまで吸着塔内の圧力を減少させる。
この減圧工程で排出されるガス中に吸着塔(A)内の不純
物が含まれていることから、この減圧工程で不純物の一
部を吸着塔(A)から追い出すことになる。そして、吸着
塔(A)から排出されるガスは脱着回収が終了した吸着塔
(C)に送り込まれる。
<< Decompression Step >> The pressure is reduced to a predetermined pressure in order to discharge impurities remaining in the tower from the tower after the second adsorption step. That is, when the second adsorption step is completed, the supply of the raw material gas from the raw material supply line (3) to the inlet pipe (2) is stopped and the parallel circuit in the circulation line (15) is switched to separate the carbon monoxide gas. Inside the adsorption tower until the pressure inside the adsorption tower reaches the pressure set by the low pressure side pressure control valve (17) under the condition that the pressure is lower than atmospheric pressure and the released gas amount is 50% or less of the adsorbed gas amount. Reduce the pressure of.
Since the gas discharged in the depressurization step contains impurities in the adsorption tower (A), a part of the impurities is expelled from the adsorption tower (A) in the depressurization step. Then, the gas discharged from the adsorption tower (A) is the adsorption tower whose desorption and recovery have been completed.
It is sent to (C).

【0015】なお、この減圧工程を1/4に区切って出
口側からのガス放出と入口側からのガス放出とを交互に
繰り返すようにしてもよい。この場合には、出口管(11)
に配置した出口弁(18a)と吸着塔(A)の入口管(2)と循
環ライン(15)の接続部に配置した流路切換弁(19a)とを
開閉切り換えすることにより容易に行うことができる。
The depressurizing step may be divided into quarters, and the gas release from the outlet side and the gas release from the inlet side may be alternately repeated. In this case, the outlet pipe (11)
It can be easily performed by opening and closing the outlet valve (18a) arranged at the inlet, the inlet pipe (2) of the adsorption tower (A) and the flow path switching valve (19a) arranged at the connection part of the circulation line (15). You can

【0016】《パージ工程》パージ工程は、減圧工程の
終了した吸着塔内に製品ガスの一部を送り込んで吸着塔
内に残留している不純物を吸着塔から排出するものであ
る。すなわち、吸着塔(A)の入口管(2a)とパージライ
ン(6)との間の流路開閉弁(10)を開放するとともに、循
環ライン(15)と吸着塔(C)の入口管(2c)に接続してい
る開閉弁(19c)を開弁して、吸着塔(A)内をパージした
ガスを吸着塔(C)に導入する。
<< Purge Step >> In the purge step, a part of the product gas is sent into the adsorption tower after the depressurization step, and the impurities remaining in the adsorption tower are discharged from the adsorption tower. That is, the flow path opening / closing valve (10) between the inlet pipe (2a) of the adsorption tower (A) and the purge line (6) is opened, and the circulation line (15) and the inlet pipe (10) of the adsorption tower (C) ( The on-off valve (19c) connected to 2c) is opened, and the gas whose inside of the adsorption tower (A) has been purged is introduced into the adsorption tower (C).

【0017】《降圧工程》降圧工程は、パージ工程の終
了した吸着塔内を大気圧まで降下させるものである。す
なわち、パージ工程の終了した吸着塔内は、大気圧以上
であることから、吸着塔の入口管(2a)を降圧ライン
(4)に連通させて、吸着塔内の圧力を真空ポンプを使用
する前に大気圧まで降下させる。このとき、吸着塔内の
ガスはパージ工程で吸着塔内から不純物が取り除かれて
おり、この工程で排出されるガスは不純物を含まず、回
収して製品とする。
<< Pressure Reduction Step >> The pressure reduction step is a step of reducing the pressure in the adsorption tower after the purge step to atmospheric pressure. That is, since the inside of the adsorption tower after the purging process is at atmospheric pressure or higher, the inlet pipe (2a) of the adsorption tower is connected to the pressure reducing line.
By communicating with (4), the pressure in the adsorption tower is reduced to atmospheric pressure before using a vacuum pump. At this time, impurities in the gas inside the adsorption tower have been removed from the inside of the adsorption tower in the purging step, and the gas discharged in this step does not contain impurities and is recovered to be a product.

【0018】《脱着回収工程》パージ工程が終了する
と、入口管(2a)と降圧ライン(4)との連通を断つとと
もに、入口管(2a)を回収ライン(5)に連通させ、真空
ポンプにより減圧して吸着剤から一酸化炭素ガスを脱離
させて、製品として回収する。
<Desorption / recovery process> When the purging process is completed, the communication between the inlet pipe (2a) and the step-down line (4) is cut off, and the inlet pipe (2a) is communicated with the recovery line (5). Carbon monoxide gas is desorbed from the adsorbent under reduced pressure, and is collected as a product.

【0019】《昇圧工程》昇圧工程は、真空状態にある
吸着塔内を大気圧まで昇圧させる昇圧工程1と、大気圧
にある吸着塔内を中間圧まで昇圧させる昇圧工程2と、
中間圧にある吸着塔内を所定の運転圧力まで昇圧させる
昇圧工程3の3つからなっている。昇圧工程1の始まる
直前までは吸着塔Aは脱着工程にあり真空状態になって
いる。そこで、減圧工程にある吸着塔(C)からの排出ガ
スを循環ライン(15)の低圧側圧力調整弁(17)を介して吸
着塔(A)に供給するとともに、吸着塔(A)の出口管(11)
を低圧放出ライン(12b)に連通させる。したがって、吸
着塔(A)内の圧力は低圧放出ライン(12b)に配置した低
圧側保圧弁(13b)の設定圧力まで昇圧される。
<Pressure raising step> The pressure raising step includes a pressure raising step 1 for raising the pressure inside the adsorption tower in a vacuum state to atmospheric pressure, and a pressure raising step 2 for raising the pressure inside the adsorption tower at atmospheric pressure to an intermediate pressure.
It is composed of three pressure increasing steps 3 for increasing the pressure inside the adsorption tower at an intermediate pressure to a predetermined operating pressure. The adsorption tower A is in the desorption process and is in a vacuum state immediately before the pressurization process 1 starts. Therefore, the exhaust gas from the adsorption tower (C) in the depressurization step is supplied to the adsorption tower (A) through the low pressure side pressure control valve (17) of the circulation line (15) and the outlet of the adsorption tower (A) is supplied. Tube (11)
To the low pressure discharge line (12b). Therefore, the pressure in the adsorption tower (A) is increased to the set pressure of the low pressure side pressure holding valve (13b) arranged in the low pressure release line (12b).

【0020】昇圧工程2は、昇圧工程1に続いて他の吸
着塔(C)からパージ工程で排出されるパージ放出ガスを
導入して、パージ放出ガスに含まれている一酸化炭素を
吸着する。この時も、吸着塔(A)の出口管(11)は低圧放
出ライン(12b)に連通させてある。したがって、吸着塔
(A)内の圧力は低圧放出ライン(12b)に配置した低圧側
保圧弁(13b)の設定圧力まで昇圧される。
In the pressurization step 2, after the pressurization step 1, the purge emission gas discharged from the other adsorption tower (C) in the purge step is introduced to adsorb carbon monoxide contained in the purge emission gas. . Also at this time, the outlet pipe (11) of the adsorption tower (A) is communicated with the low pressure discharge line (12b). Therefore, the adsorption tower
The pressure in (A) is increased to the set pressure of the low pressure side pressure holding valve (13b) arranged in the low pressure discharge line (12b).

【0021】昇圧工程3は、第2吸着工程にある吸着塔
(D)からの破過ガスを循環ライン(15)の高圧側圧力調整
弁(16)を介して導入し吸着塔内を昇圧するものである。
このとき、吸着塔(A)の出口管(11)は高圧放出ライン(1
2a)に連通している。したがって、吸着塔(A)内の圧力
は高圧放出ライン(12a)に配置される高圧側保圧弁(13
a)の設定圧力に維持される。そして、破過ガスは多量
の一酸化炭素ガスを含有しており、一方、吸着塔(A)内
の吸着剤は勿論破過に至っていないことから十分な吸着
能力を有しており、導入された破過ガス中の一酸化炭素
ガスを吸着してしまうので、高圧放出ライン(12a)から
放出されるガスには一酸化炭素ガスはほとんど含まれて
いない。
The pressure raising step 3 is the adsorption tower in the second adsorption step.
The breakthrough gas from (D) is introduced through the high pressure side pressure regulating valve (16) of the circulation line (15) to raise the pressure in the adsorption tower.
At this time, the outlet pipe (11) of the adsorption tower (A) is connected to the high pressure discharge line (1
It communicates with 2a). Therefore, the pressure in the adsorption tower (A) is controlled by the high pressure side pressure holding valve (13) arranged in the high pressure release line (12a).
The set pressure of a) is maintained. The breakthrough gas contains a large amount of carbon monoxide gas, while the adsorbent in the adsorption tower (A) has a sufficient adsorption capacity because it has not reached the breakthrough, and is introduced. Since the carbon monoxide gas in the breakthrough gas is adsorbed, the gas released from the high pressure release line (12a) contains almost no carbon monoxide gas.

【0022】この圧力スイング吸着方法を使用した一酸
化炭素ガス脱着回収方法の減圧工程で、吸着塔内の圧力
を一酸化炭素ガスの分圧以下で大気圧以上、かつ放出す
るガス量が吸着ガス量の50%以下の条件で減圧するの
は、使用している吸収剤が配位結合による金属錯体を形
成するものであることから、一酸化炭素ガスの吸着量が
他の不純物の吸着量より桁違いに大きく、強力なため、
その原料ガス中の一酸化炭素ガス分圧近くまで減圧して
も吸着剤から大きく離脱することがなく、それ以下の圧
力に減圧して行くと、吸着量と圧力の関係を表した吸着
特性線に沿って一酸化炭素ガスが離脱して行くという事
実の知見に基づく。そして、この一酸化炭素ガスの離脱
量は、低圧になればなるほど大きくなる。したがって、
大気圧以下まで低下させると、減圧放出ガス量が大きく
製品動作効率が低下することから不適切である。そし
て、この吸着塔内で離脱した一酸化炭素ガスを放出する
ことにより、パージ工程での負担を軽減し、最少のパー
ジ量で吸着塔内の不純物を排除して高純度にすることが
できる。
In the decompression step of the carbon monoxide gas desorption recovery method using this pressure swing adsorption method, the pressure in the adsorption tower is not more than the partial pressure of carbon monoxide gas and not less than the atmospheric pressure, and the amount of released gas is the adsorption gas. Decreasing the pressure under the condition of 50% or less of the amount of carbon monoxide gas causes the adsorbent to form a metal complex by coordination bond, so that the adsorbed amount of carbon monoxide gas is higher than the adsorbed amount of other impurities. Because it is orders of magnitude larger and more powerful,
Even if the carbon monoxide gas partial pressure in the raw material gas is reduced, it does not largely separate from the adsorbent, and if the pressure is reduced to a pressure lower than that, the adsorption characteristic line showing the relationship between the adsorption amount and the pressure. It is based on the knowledge of the fact that carbon monoxide gas is released along with. Then, the desorbed amount of the carbon monoxide gas becomes larger as the pressure becomes lower. Therefore,
When the pressure is reduced to the atmospheric pressure or lower, the amount of gas released under reduced pressure is large and the product operating efficiency is reduced, which is inappropriate. Then, by releasing the carbon monoxide gas desorbed in the adsorption tower, the burden in the purging step can be reduced, and impurities in the adsorption tower can be eliminated with a minimum purge amount to achieve high purity.

【0023】§ 実験例1 活性炭をベースとした塩化第1銅系の吸着剤を容積20
0cc、長さ300cmの塔に充填し、一酸化炭素ガス3
6.0%、水素64.0%の混合ガスを次の条件で運転
し、分離精製を試みた。 操作温度 20℃ 吸着工程 5.0Kg/cm2・G、6分 減圧工程 0Kg/cm2・G、1分 パージ工程 0Kg/cm2・G、1分 降圧工程 0Kg/cm2・G、0分 脱着工程 30〜50cmHg、 6分 この時の製品として回収したガスの純度は、一酸化炭素
99.985%、水素0.015%となった。また、この
時使用したパージガス量は製品ガス量の10%であっ
た。
Experimental Example 1 A cuprous chloride-based adsorbent based on activated carbon having a volume of 20
Fill a 0 cc, 300 cm long tower with carbon monoxide gas 3
A mixed gas of 6.0% and 64.0% hydrogen was operated under the following conditions to attempt separation and purification. Operating temperature 20 ° C Adsorption process 5.0Kg / cm 2 · G, 6 minutes Depressurization process 0Kg / cm 2 · G, 1min Purging process 0Kg / cm 2 · G, 1min Pressure reduction process 0Kg / cm 2 · G, 0min Desorption step 30 to 50 cmHg, 6 minutes The purity of the gas recovered as a product at this time was 99.985% carbon monoxide and 0.015% hydrogen. The amount of purge gas used at this time was 10% of the amount of product gas.

【0024】§ 比較例1 活性炭をベースとした塩化第1銅系の吸着剤を容積20
0cc、長さ300cmの塔に充填し、一酸化炭素ガス3
6.0%、水素64.0%の混合ガスを次の条件で運転
し、分離精製を試みた。 操作温度 20℃ 吸着工程 5.0Kg/cm2・G、6分 減圧工程 5.0Kg/cm2・G(なし)、1分 パージ工程 5.0Kg/cm2・G、3分 降圧工程 0Kg/cm2・G、0分 脱着工程 30〜50cmHg、 6分 この時の製品として回収したガスの純度は、一酸化炭素
98.98%、水素1.02%となった。また、この時
使用したパージガス量は製品ガス量の約30%であっ
た。
Comparative Example 1 A cuprous chloride-based adsorbent based on activated carbon having a volume of 20
Fill a 0 cc, 300 cm long tower with carbon monoxide gas 3
A mixed gas of 6.0% and 64.0% hydrogen was operated under the following conditions to attempt separation and purification. Operating temperature 20 ℃ Adsorption step 5.0Kg / cm 2 · G, 6 minutes Depressurization step 5.0Kg / cm 2 · G (none), 1 minute Purging step 5.0Kg / cm 2 · G, 3 minutes Pressure reduction step 0Kg / cm 2 · G, 0 minutes Desorption step 30 to 50 cmHg, 6 minutes At this time, the purity of the gas recovered as a product was 98.98% carbon monoxide and 1.02% hydrogen. The amount of purge gas used at this time was about 30% of the amount of product gas.

【0025】§ 比較例2 比較例1において、パージ工程の時間のみを5分にした
とき、製品として回収したガスの純度は、一酸化炭素9
9.71%、水素0.29%となった。また、この時、
使用したパージガス量は製品ガス量の約50%であっ
た。
Comparative Example 2 In Comparative Example 1, when only the purging step time was 5 minutes, the purity of the gas recovered as a product was 9%.
It became 9.71% and hydrogen 0.29%. Also at this time,
The amount of purge gas used was about 50% of the amount of product gas.

【0026】§ 比較例3 比較例1において、パージ工程の時間のみを6分にした
とき、製品として回収したガスの純度は、一酸化炭素9
9.86%、水素0.14%となった。また、この時、使
用したパージガス量は製品ガス量の約60%であった。
Comparative Example 3 In Comparative Example 1, when only the purging step time was set to 6 minutes, the purity of the gas recovered as a product was found to be 9 carbon monoxide.
It became 9.86% and hydrogen 0.14%. At this time, the amount of purge gas used was about 60% of the amount of product gas.

【0027】§ 比較例4 比較例1において、パージ工程の時間のみを7分にした
とき、製品として回収したガスの純度は、一酸化炭素9
9.962%、水素0.038%となった。また、この
時、使用したパージガス量は製品ガス量の約70%であ
った。
Comparative Example 4 In Comparative Example 1, when only the purging step time was set to 7 minutes, the purity of the gas recovered as a product was 9%.
It became 9.962% and hydrogen 0.038%. At this time, the amount of purge gas used was about 70% of the amount of product gas.

【0028】[0028]

【発明の効果】本発明では、パージ工程の前に減圧工程
で吸着塔入口を閉じて吸着塔出口を開いた状態と、吸着
塔出口を閉じて吸着塔入口を開いた状態とを順次切り換
えて繰り返して、原料ガス中の一酸化炭素ガスの分圧以
下で、且つ大気圧以上となるように吸着塔を放圧し、そ
の放圧によって吸着塔内の吸着剤から離脱した一酸化炭
素ガスで吸着塔内に残留する不純物を吸着塔から追い出
すので、パージ工程の前に吸着塔内に残留する不純物を
強力に減少できて、パージ工程でパージに使用する製品
ガスを減らすことができるとともにパージ工程の時間を
短縮できる。また、吸着塔出口を閉じて吸着塔入口を開
いたときには吸着塔入口から不純物が放出されるうえ、
次に吸着塔入口を閉じて吸着塔出口を開いたときに吸着
塔入口付近の圧力低下に伴って吸着塔入口付近の吸着剤
から離脱した一酸化炭素ガスが吸着塔出口へ流れながら
吸着塔入口と吸着塔出口との中間部の不純物を吸着塔出
口から放出させる。しかも、吸着塔出口付近の圧力低下
に伴って吸着塔出口付近の吸着剤から離脱した一酸化炭
素ガスが再び吸着塔出口を閉じて吸着塔入口を開いたと
きに吸着塔入口へ流れながら上記中間部の不純物を吸着
塔出口へ放出させる。これを繰り返すことによって吸着
剤から離脱させた一酸化炭素ガスを有効に利用して吸着
塔内全体の不純物をより迅速に、且つ確実に放出でき
る。
According to the present invention, before the purging step, the state where the adsorption tower inlet is closed and the adsorption tower outlet is opened and the adsorption tower outlet is closed and the adsorption tower inlet is opened in the depressurization step are sequentially switched. Repeatedly, release the pressure of the adsorption tower so that the pressure is not higher than the partial pressure of the carbon monoxide gas in the raw material gas and higher than the atmospheric pressure, and the carbon monoxide gas released from the adsorbent in the adsorption tower is adsorbed by the released pressure. Since the impurities remaining in the tower are expelled from the adsorption tower, the impurities remaining in the adsorption tower can be strongly reduced before the purging step, and the product gas used for purging in the purging step can be reduced and the purge step You can save time. Also, when the adsorption tower outlet is closed and the adsorption tower inlet is opened, impurities are released from the adsorption tower inlet,
Next, when the adsorption tower inlet is closed and the adsorption tower outlet is opened, the carbon monoxide gas released from the adsorbent near the adsorption tower inlet due to the pressure drop near the adsorption tower inlet flows to the adsorption tower outlet while flowing to the adsorption tower outlet. Impurities in the middle of the adsorption tower outlet are released from the adsorption tower outlet. Moreover, when the carbon monoxide gas released from the adsorbent near the adsorption tower outlet due to the pressure drop near the adsorption tower outlet closes the adsorption tower outlet again and opens the adsorption tower inlet, the carbon monoxide gas flows to the adsorption tower inlet while the above intermediate Some impurities are discharged to the outlet of the adsorption tower. By repeating this, the carbon monoxide gas desorbed from the adsorbent can be effectively used to more rapidly and surely release the impurities in the entire adsorption tower.

【図面の簡単な説明】[Brief description of drawings]

【図1】一酸化炭素ガスの分離回収工程のフローシート
である。各塔間の工程の関係図である。
FIG. 1 is a flow sheet of a carbon monoxide gas separation and recovery step. It is a relationship diagram of the process between each tower.

【図2】各塔間の工程タイミング図である。FIG. 2 is a process timing chart between each tower.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一酸化炭素ガスを主成分とした混合ガス
から一酸化炭素ガスを選択的に吸着する特性を備えた吸
着剤を充填した複数の吸着塔を用いて圧力スイング式吸
着法を利用して一酸化炭素を分離回収する方法におい
て、 (a) 一定圧力に維持した吸着塔に原料ガスを流し込
み、吸着塔出口から放出されるガス中に一酸化炭素ガス
が混じり込んでくる破過開始状態まで流し続け、その間
に一酸化炭素を吸着する第1吸着工程、 (b) 破過開始後も原料ガスを流し続け、吸着塔出口か
ら放出されるガス中の一酸化炭素ガス濃度が原料ガスの
一酸化炭素ガス濃度と等しくなる完全破過後も原料ガス
を流し続け、一酸化炭素を吸着する第2吸着工程、 (c) 第2吸着工程が終了した吸着塔に対して吸着塔入
口を閉じて吸着塔出口を開いた状態と、吸着塔出口を閉
じて吸着塔入口を開いた状態とを順次切り換えて繰り返
し、原料ガス中の一酸化炭素ガスの分圧以下で、且つ
気圧以上となるように吸着塔を放圧し、その放圧によっ
て吸着塔内の吸着剤から離脱した一酸化炭素ガスで吸着
塔内に残留する不純物を吸着塔から追い出し、上記放圧
によって吸着塔内の吸着剤から離脱した一酸化炭素ガス
量が吸着塔内の吸着剤に吸着させた一酸化炭素ガス量の
50%以下の状態で終了する減圧工程、 (d) 減圧工程終了時の圧力を維持したままパージガス
を流し、吸着塔内の残留不純物を追い出すパージ工程、 (e) パージ工程での圧力から大気圧まで吸着塔入口よ
り放圧し、製品1とする降圧工程、 (f) 降圧工程に続いて吸着塔入口より真空引きを行
製品2とする脱着回収工程、 (g) 脱着回収工程が終了した吸着塔に、減圧工程で放
出されるガスを供給して昇圧する昇圧工程1、 (h) パージ工程で排出されるパージガスを、昇圧工程
1を行った吸着塔入口に流し込み昇圧する昇圧工程2、 (i) 吸着工程において一酸化炭素の破過が始まった
塔出口から流出してくるブレークスルーガスを、昇圧
工程2を行った吸着塔入口に流し込み昇圧する昇圧工程
3、 からなる一連の工程をサイクリックに順次各吸着塔に自
動制御手段により行わせることを特徴とする一酸化炭素
ガスの分離回収方法。
1. A pressure swing adsorption method is used by using a plurality of adsorption columns filled with an adsorbent having a characteristic of selectively adsorbing carbon monoxide gas from a mixed gas containing carbon monoxide gas as a main component. In the method of separating and recovering carbon monoxide by (a) starting material gas is flown into the adsorption tower maintained at a constant pressure, and carbon monoxide gas is mixed in the gas discharged from the outlet of the adsorption tower to start the breakthrough. The first adsorption step in which the carbon monoxide is adsorbed during that time, and (b) the raw material gas continues to flow even after the start of breakthrough, and the carbon monoxide gas concentration in the gas discharged from the adsorption tower outlet is the raw material gas. after equal to the carbon monoxide gas concentration completely breakthrough also continuously supplied raw material gas <br/>, second adsorption step of adsorbing carbon monoxide, the adsorption with respect to (c) adsorption tower second adsorption step is completed Tower entry
Close the mouth and open the adsorption tower outlet, and close the adsorption tower outlet.
Then, the state where the adsorption tower inlet is opened is sequentially switched and repeated.
And, minute pressure or less of carbon monoxide gas in the raw material gas, and a large
Release the pressure of the adsorption tower so that the pressure is higher than atmospheric pressure.
Adsorption with carbon monoxide gas released from the adsorbent in the adsorption tower
The impurities remaining in the tower are expelled from the adsorption tower and the above pressure is released.
Decompression step ending with less than 50% of carbon monoxide gas amount adsorbed by the adsorbent in the carbon monoxide amount of gas released from the adsorbent the adsorption tower in the adsorption tower by, (d) at reduced pressure step is completed Purging step to purge the residual impurities in the adsorption tower while maintaining the pressure of (1), (e) Pressure reducing step from the pressure in the purging step to atmospheric pressure from the adsorption tower inlet to become the product 1, (f) A depressurizing step is performed by performing vacuuming from the inlet of the adsorption tower subsequent to the depressurizing step to obtain the product 2, and (g) supplying the gas released in the depressurizing step to the adsorbing tower after the desorption collecting step is finished to increase the pressure. 1, (h) a purge gas which is discharged by the purging step, the boost step 2 for boosting cast into the adsorption tower inlet were boosted step 1, the breakthrough of carbon monoxide in the (i) adsorption step began intake
The breakthrough gas flowing out from the adsorption tower outlet is cyclically and sequentially caused by the automatic control means to perform a series of steps including a pressurization step 3 in which the breakthrough gas is injected into the adsorption tower inlet where the pressurization step 2 has been performed and the pressure is increased. A method for separating and recovering carbon monoxide gas, which comprises:
JP5219323A 1993-09-03 1993-09-03 Method for separating and recovering carbon monoxide gas Expired - Fee Related JP2529929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5219323A JP2529929B2 (en) 1993-09-03 1993-09-03 Method for separating and recovering carbon monoxide gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5219323A JP2529929B2 (en) 1993-09-03 1993-09-03 Method for separating and recovering carbon monoxide gas

Publications (2)

Publication Number Publication Date
JPH0768119A JPH0768119A (en) 1995-03-14
JP2529929B2 true JP2529929B2 (en) 1996-09-04

Family

ID=16733674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5219323A Expired - Fee Related JP2529929B2 (en) 1993-09-03 1993-09-03 Method for separating and recovering carbon monoxide gas

Country Status (1)

Country Link
JP (1) JP2529929B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19519197A1 (en) * 1995-05-24 1996-11-28 Linde Ag Process for the recovery of carbon monoxide from a purge gas of acetic acid synthesis containing at least carbon monoxide, nitrogen and hydrogen
CN1073875C (en) * 1997-10-24 2001-10-31 化学工业部西南化工研究设计院 Pressure swing adsorption process for separating carbon monooxide from carbon monooxide contg. mixed gas
JP5675505B2 (en) * 2011-06-07 2015-02-25 住友精化株式会社 Target gas separation method and target gas separation device
JP7147727B2 (en) * 2019-10-08 2022-10-05 Jfeスチール株式会社 Gas separation and recovery method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155519A (en) * 1984-01-26 1985-08-15 Kawasaki Steel Corp Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
FR2633847B1 (en) * 1988-07-08 1991-04-19 Air Liquide PROCESS FOR TREATING A GAS MIXTURE BY ADSORPTION

Also Published As

Publication number Publication date
JPH0768119A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
US5620501A (en) Recovery of trace gases from gas streams
JPS6137968B2 (en)
JPH09150028A (en) Single bed pressure swing type adsorption method for recovering oxygen from air
JP3464766B2 (en) PSA method using simultaneous evacuation of top and bottom of adsorbent bed
JPS6132243B2 (en)
JPH0359727B2 (en)
JPS607920A (en) Separation of mixed gas and its apparatus
JP2529929B2 (en) Method for separating and recovering carbon monoxide gas
JP2529928B2 (en) Method for separating and recovering carbon monoxide gas
JPH0693967B2 (en) Nitrogen gas separation method
JPH0810551A (en) Method for removing carbon dioxide from raw gas
JP2569095B2 (en) Pressure swing adsorption method
JP3015839B2 (en) Pressure swing adsorption method for separating and recovering carbon monoxide from a mixed gas containing carbon monoxide
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
WO1995033681A1 (en) Oxygen generating method based on pressure variation adsorption separation
JPS60103002A (en) Method for purifying carbon monoxide and hydrogen in gaseous mixture containing carbon monoxide, carbon dioxide, hydrogen and nitrogen by adsorption
JP2587334B2 (en) Method of separating CO gas not containing CH4
JP3121293B2 (en) Mixed gas separation method by pressure swing adsorption method
JPH0112529B2 (en)
JP2569091B2 (en) Pressure swing adsorption method
JPS6410443B2 (en)
KR100292555B1 (en) Pressure swing adsorption process for hydrogen purification with high productivity
JPS62153388A (en) Concentration of methane
JPS63103805A (en) Production of nitrogen by pressure swing adsorption process
JP3031797B2 (en) Pressure fluctuation adsorption separation method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees