JPH0493036A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH0493036A
JPH0493036A JP2211110A JP21111090A JPH0493036A JP H0493036 A JPH0493036 A JP H0493036A JP 2211110 A JP2211110 A JP 2211110A JP 21111090 A JP21111090 A JP 21111090A JP H0493036 A JPH0493036 A JP H0493036A
Authority
JP
Japan
Prior art keywords
drain
source
gate electrode
insulating film
contact hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2211110A
Other languages
Japanese (ja)
Other versions
JP2982249B2 (en
Inventor
Hideyuki Ooka
大岡 秀幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16600577&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0493036(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2211110A priority Critical patent/JP2982249B2/en
Publication of JPH0493036A publication Critical patent/JPH0493036A/en
Application granted granted Critical
Publication of JP2982249B2 publication Critical patent/JP2982249B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To disperse a current route against static electricity from the outside without increasing an area and to enhance the withstand voltage to an electrostatic breakdown by a method wherein contact holes of a source and a drain are not arranged in positions which are symmetric with respect to a line with reference to a gate electrode. CONSTITUTION:An element isolation region on the surface of a p-type silicon substrate 1 is precribed by a field insulating film 2; gate electrodes 4 are formed in the element isolation region via a gate insulating film 3. A source and a drain of an LDD structure composed of an n<+> layer 7 and an n<-> layer 8 are formed in a self-aligned manner with an insulating film 6 and the gate electrodes 4. A metal silicide layer 5 of titanium silicide or the like is formed on the surface of the source and the drain. Contact holes 10, 10A, 10B, 10C are opened in an interlayer insulating film 9. At an internal gate, the contact hole 10 and the contact hole 10A are arranged so as to be faced with the gate electrode 4, at an input/output buffer part, the contact hole 10B and the contact hole 10C are arranged so as to be faced with the gate electrode 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路装置に関し、特に拡散層表面上
に金属シリサイド層が形成されたMOSトランジスタに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit device, and particularly to a MOS transistor in which a metal silicide layer is formed on the surface of a diffusion layer.

〔従来の技術〕[Conventional technology]

半導体集積回路装置の高集積化のため、デバイスの微細
化が急速に進展している。デバイスの縮小は、横方向だ
けではなく、縦方向に対しても行なわれる。このため、
MO8+−ランジスタのソース、ドレイン、および拡散
層の層抵抗が急増し、回路の動作速度が著しく低下する
という問題が深刻となっている。
2. Description of the Related Art As semiconductor integrated circuit devices become more highly integrated, device miniaturization is rapidly progressing. The reduction of the device is performed not only in the horizontal direction but also in the vertical direction. For this reason,
The problem has become serious that the layer resistance of the source, drain, and diffusion layer of the MO8+- transistor increases rapidly, and the operating speed of the circuit decreases significantly.

そこで、近年ソース、ドレイン、および拡散層表面上に
、低い層抵抗を有する金属シリサイド層を形成する方法
か、例えはシー・シー・ラウらにより、1982年 ア
イ・イー・ティー・エム テクニカル ダイジIスl−
、7]、 4−717ページ (C,に、Lau  e
t  al:IEDM Tech、Dig、、pp7]
4−717.1982)に提案されている。ソース、お
よびドレイン表面のシリサイド化は、層抵抗を従来の数
十〜百数十Ω/口から、数Ω/口に低減できるため、デ
バイス特性の向上に有効である。
Therefore, in recent years, a method of forming a metal silicide layer with low layer resistance on the surfaces of the source, drain, and diffusion layers has been proposed, for example, by C. C. Lau et al. in 1982. Sl-
, 7], pages 4-717 (C., Lau e
tal:IEDM Tech, Dig,, pp7]
4-717.1982). Silicidation of the source and drain surfaces is effective in improving device characteristics because the layer resistance can be reduced from the conventional several tens to hundreds of ohms/hole to several ohms/hole.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上述のソース、ドレイン等の拡散層にシリサ
イド化を適用したMOSテバイスにおける静電破壊の耐
性が、拡散層上にシリサイド化を適用しない場合に比べ
て劣化するという問題が、例えばシー・エル・チェノ 
らによ リ 、 1.986年 アイ・イー・デイ−・
エムテクニカル タイジェスl−、484−487ペー
ジ (K、L、Chen  et  aIEDM Te
ch、Dig、、pP484−487.1986)に報
告されている。
However, there is a problem that the resistance to electrostatic discharge damage in MOS devices in which silicide is applied to the diffusion layers such as the source and drain described above is lower than that in the case where silicide is not applied to the diffusion layers.・Cheno
Rayo Ri, 1.986 I.E.D.
M Technical Tijes l-, pages 484-487 (K, L, Chen et aIEDM Te
ch, Dig, pP484-487.1986).

この原因は、金属シリサイド層の層抵抗か低いため、外
部からの静電気による電流がシイサイドと半導体基板と
の界面から更にゲート電極端部に集中し、この部分ての
局所的な発熱によるp−n接合の熱破壊が生し易いため
と考えられている。
The reason for this is that because the layer resistance of the metal silicide layer is low, current due to static electricity from the outside concentrates from the interface between the silicide and the semiconductor substrate to the end of the gate electrode, and local heat generation in this area causes p-n This is thought to be because thermal breakdown of the bond is likely to occur.

従って、半導体集積回路、特にMO3型集積回路の入出
力ハラファーでは、保護回路を構成するMOS)ランジ
スタの静電破壊耐量が低下するため、装置の信頼性上重
要な問題となる。
Therefore, in a semiconductor integrated circuit, especially an input/output halafah of an MO3 type integrated circuit, the electrostatic breakdown resistance of the MOS (MOS) transistor constituting the protection circuit is reduced, which poses an important problem in terms of device reliability.

なお上述した静電破壊に対する耐性向上には、静電気の
放電電流の集中を緩和し、また、放電電流密度を低くす
ることか必要である。これには、入出力保護部のMOS
トランジスタのゲート幅を広くし、コンタクト孔とシー
I〜電極との間を離すことが考えられるが、入出力保護
部の面積の大幅な増大を招き、非現実的である。
In order to improve the resistance to electrostatic damage as described above, it is necessary to alleviate the concentration of electrostatic discharge current and to lower the discharge current density. This includes the MOS of the input/output protection section.
It is conceivable to widen the gate width of the transistor and space the contact hole from the I electrode, but this would result in a significant increase in the area of the input/output protection section, which is unrealistic.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体集積回路装置は、 半導体基板」二に、ゲート絶縁膜を介して形成されたケ
ート電極と、該ゲート電極に対して自己整合的に形成さ
れたソース、ドレインを有し、前記ソース、ドレイン表
面上および拡散層表面上に金属シリサイド層が形成され
てなる半導体集積回路装置において、 金属シリサイド層を有するトランジスタのソース、ドレ
インのコンタク1へ孔が、少なくとも入出力回路部にお
いて、トランジスタのゲート電極に対して線対称となら
ない位置に配置されている。
A semiconductor integrated circuit device of the present invention has a gate electrode formed on a semiconductor substrate via a gate insulating film, and a source and a drain formed in self-alignment with the gate electrode, and In a semiconductor integrated circuit device in which a metal silicide layer is formed on the surface of the drain and on the surface of the diffusion layer, holes to the source and drain contacts 1 of the transistor having the metal silicide layer are formed at least in the input/output circuit section of the transistor. It is arranged at a position that is not line symmetrical with respect to the gate electrode.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)は本発明の第1の実施例の半導体集積回路
装置の一部分を示す平面図、第1図(b)は同じく第1
図(a)のA−A″線に沿った断面図である。
FIG. 1(a) is a plan view showing a part of a semiconductor integrated circuit device according to a first embodiment of the present invention, and FIG.
FIG. 2 is a sectional view taken along line AA″ in FIG.

p型シリコン基板1表面はフィールド絶縁膜2により素
子分離領域か規定され、p型シリコン基板1表面の素子
領域にはゲート絶縁膜3を介してゲート電極4が形成さ
れる。本実施例では、ゲート電極4は、例えばタングス
テン・シリサイド膜4aと多結晶シリコン膜4aとの積
層構造(ポリサイド構造)となっている。絶縁膜(サイ
ド・ウオール)6.クー1〜電極4に対して自己整合的
に、例えはn+層7.n−層8からなるLDDI造のソ
ース、ドレインが形成されている。ソース、ドレインの
表面上には、例えばチタンシリサイド等の金属シリサイ
ド層5か形成されている。層間絶縁膜9には、金属シリ
サイド層5に対する電気的接続を取るためのコンタクト
孔10.l0A10B、IOCが開口されている。第1
図(a)に示すように、内部ゲート(内部回路)ではゲ
ート電極4に対向してコンタクト孔10とコンタクト孔
10Aとが配置されている。一方、人出カバッファ一部
ではゲート電極4に対して線対称の位置にならぬように
例えばコンタクト孔]、 OBとコンタクト孔10Cと
が配置されている。
An element isolation region is defined on the surface of the p-type silicon substrate 1 by a field insulating film 2, and a gate electrode 4 is formed in the element region on the surface of the p-type silicon substrate 1 via a gate insulating film 3. In this embodiment, the gate electrode 4 has a laminated structure (polycide structure) of, for example, a tungsten silicide film 4a and a polycrystalline silicon film 4a. Insulating film (side wall)6. For example, the n+ layer 7. An LDDI source and drain consisting of an n-layer 8 are formed. A metal silicide layer 5, such as titanium silicide, is formed on the surfaces of the source and drain. Contact holes 10 are formed in the interlayer insulating film 9 for electrical connection to the metal silicide layer 5. l0A10B, IOC is opened. 1st
As shown in Figure (a), in the internal gate (internal circuit), a contact hole 10 and a contact hole 10A are arranged opposite to the gate electrode 4. On the other hand, in a part of the crowd buffer, for example, a contact hole], OB, and a contact hole 10C are arranged so as not to be line-symmetrical with respect to the gate electrode 4.

第2図は本発明の第2の実施例の半導体集積回路装置の
一部分を示す平面図である。本実施例では、入出力バッ
ファ一部のコンタクト孔10B10Cは、ゲート電極4
に対して互いに点対称の位置に配置されている。そのた
め、電流分散の効果が大きい。また、内部ゲートについ
ても、同様にコンタクト孔10.IOAをゲート電極4
に対して互いに線対称の位置に置かないので、内部ゲー
トも静電破壊に対する耐性が強化される。
FIG. 2 is a plan view showing a portion of a semiconductor integrated circuit device according to a second embodiment of the present invention. In this embodiment, the contact hole 10B10C of a part of the input/output buffer is connected to the gate electrode 4.
They are arranged at points symmetrical positions with respect to each other. Therefore, the effect of current dispersion is large. Similarly, for the internal gate, contact hole 10. IOA to gate electrode 4
Since the inner gates are not placed in line-symmetrical positions with respect to each other, the internal gates also have enhanced resistance to electrostatic discharge damage.

なお、ソース、ドレイン上に金属シリサイド層が形成さ
れていない場合のMOS)ランジスタにおける各種のコ
ンタクト孔配置てのトランジスタのオン電流の測定結果
の一例を、第3図に示す。
Incidentally, FIG. 3 shows an example of measurement results of the on-current of a transistor with various contact hole arrangements in a MOS transistor in which a metal silicide layer is not formed on the source and drain.

この測定結果から、本発明のコンタクト孔の配置ではオ
ン電流が低下するという危惧がある。しかし、このオン
電流の低下はソース、ドレインの層抵抗によるものであ
り、層抵抗を低くしておくことによりこの危惧は解消さ
れる。
From this measurement result, there is a concern that the on-current will decrease with the arrangement of the contact holes of the present invention. However, this decrease in on-current is due to the layer resistance of the source and drain, and this concern can be resolved by keeping the layer resistance low.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ソース、ドレイン上に低
抵抗の金属シリサイド層を有するMOSトランジスタ、
特に入出力回路部のトランジスタにおいて、ソース、ド
レインのコンタクト孔をゲート電極に対して線対称の位
置に配置しないことにより、外部からの静電気に対する
電流経路を、面積の増加を要せずに分散でき、これによ
り、静電破壊耐性の向上に効果がある。
As explained above, the present invention provides a MOS transistor having a low resistance metal silicide layer on the source and drain;
In particular, in transistors in the input/output circuit section, by not arranging the source and drain contact holes in a line-symmetrical position with respect to the gate electrode, the current path for external static electricity can be distributed without increasing the area. , This is effective in improving resistance to electrostatic discharge damage.

明の第2の実施例を説明するための平面図、第3図は本
発明の詳細な説明するための特性図である。
FIG. 3 is a plan view for explaining the second embodiment of the present invention, and a characteristic diagram for explaining the present invention in detail.

1・・p型シリコン基板、2・・フィールド絶縁膜、4
・・・クー1〜電極、5・・金属シリサイ1〜性、10
、IOA、IOB、IOC・コンタクト孔。
1...p-type silicon substrate, 2...field insulating film, 4
・・・Coo 1~Electrode, 5...Metal silicide 1~Sensitivity, 10
, IOA, IOB, IOC/contact hole.

Claims (1)

【特許請求の範囲】 1、半導体基板上に、ゲート絶縁膜を介して形成された
ゲート電極と、該ゲート電極に対して自己整合的に形成
されたソース、ドレインを有し、前記ソース、ドレイン
表面上および拡散層表面上に金属シリサイド層が形成さ
れてなる半導体集積回路装置において、 前記金属シリサイド層を有するトランジスタの前記ソー
ス、ドレインのコンタクト孔が、前記トランジスタの前
記ゲート電極に対して線対称とならない位置に配置され
ることを特徴とする半導体集積回路。 2、請求項1記載の半導体集積回路装置において、 前記トランジスタが入出力回路を構成するトランジスタ
であることを特徴とする半導体集積回路。
[Claims] 1. A gate electrode formed on a semiconductor substrate via a gate insulating film, and a source and a drain formed in self-alignment with the gate electrode, the source and drain In a semiconductor integrated circuit device in which a metal silicide layer is formed on a surface and a surface of a diffusion layer, contact holes for the source and drain of the transistor having the metal silicide layer are line symmetrical with respect to the gate electrode of the transistor. A semiconductor integrated circuit characterized in that it is arranged in a position that does not 2. The semiconductor integrated circuit device according to claim 1, wherein the transistor is a transistor constituting an input/output circuit.
JP2211110A 1990-08-09 1990-08-09 Semiconductor integrated circuit device Expired - Lifetime JP2982249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2211110A JP2982249B2 (en) 1990-08-09 1990-08-09 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2211110A JP2982249B2 (en) 1990-08-09 1990-08-09 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPH0493036A true JPH0493036A (en) 1992-03-25
JP2982249B2 JP2982249B2 (en) 1999-11-22

Family

ID=16600577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2211110A Expired - Lifetime JP2982249B2 (en) 1990-08-09 1990-08-09 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JP2982249B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100243117B1 (en) * 1996-04-04 2000-02-01 아베 아키라 Liquid crystal device
KR100288039B1 (en) * 1994-06-02 2001-05-02 야마자끼 순페이 Display and Electro-Optical Devices
KR100292044B1 (en) * 1997-05-23 2001-09-17 구본준, 론 위라하디락사 Method for manufacturing liquid crystal display
KR100316269B1 (en) * 1997-07-04 2003-01-06 엘지.필립스 엘시디 주식회사 Thin film transistor, liquid crystal display and method for fabricating the same
JP2008218564A (en) * 2007-03-01 2008-09-18 Matsushita Electric Ind Co Ltd Semiconductor device
JP2009038101A (en) * 2007-07-31 2009-02-19 Sanyo Electric Co Ltd Semiconductor device
CN102856317A (en) * 2011-07-01 2013-01-02 美格纳半导体有限会社 Electro-Static Discharge protection device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7459724B2 (en) 1994-06-02 2008-12-02 Semiconductor Energy Laboratory Co., Ltd. Active matrix display and electrooptical device
KR100288039B1 (en) * 1994-06-02 2001-05-02 야마자끼 순페이 Display and Electro-Optical Devices
US6259117B1 (en) 1994-06-02 2001-07-10 Semiconductor Energy Laboratory Co., Ltd. Active matrix display having storage capacitor associated with each pixel transistor
US6297518B1 (en) 1994-06-02 2001-10-02 Semiconductor Energy Laboratory Co., Ltd. Active matrix display and electrooptical device
US6495858B1 (en) 1994-06-02 2002-12-17 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device having thin film transistors
US6885027B2 (en) 1994-06-02 2005-04-26 Semiconductor Energy Laboratory Co., Ltd. Active matrix display and electrooptical device
US7148506B2 (en) 1994-06-02 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Active matrix display and electrooptical device
KR100243117B1 (en) * 1996-04-04 2000-02-01 아베 아키라 Liquid crystal device
KR100292044B1 (en) * 1997-05-23 2001-09-17 구본준, 론 위라하디락사 Method for manufacturing liquid crystal display
KR100316269B1 (en) * 1997-07-04 2003-01-06 엘지.필립스 엘시디 주식회사 Thin film transistor, liquid crystal display and method for fabricating the same
JP2008218564A (en) * 2007-03-01 2008-09-18 Matsushita Electric Ind Co Ltd Semiconductor device
US8193608B2 (en) 2007-03-01 2012-06-05 Panasonic Corporation Semiconductor device
JP2009038101A (en) * 2007-07-31 2009-02-19 Sanyo Electric Co Ltd Semiconductor device
CN102856317A (en) * 2011-07-01 2013-01-02 美格纳半导体有限会社 Electro-Static Discharge protection device

Also Published As

Publication number Publication date
JP2982249B2 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
US5283449A (en) Semiconductor integrated circuit device including two types of MOSFETS having source/drain region different in sheet resistance from each other
US7777294B2 (en) Semiconductor device including a high-breakdown voltage MOS transistor
JP4790166B2 (en) Protection transistor
JPH0493036A (en) Semiconductor integrated circuit device
JPS63102264A (en) Thin film semiconductor device
JPH0555251A (en) Mos transistor
JP2839375B2 (en) Semiconductor integrated circuit device
JP3775803B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
JPS63244874A (en) Input protective circuit
JPS6110268A (en) Complementary mos semiconductor device and manufacture thereof
JPH0191470A (en) Input protecting circuit
JPH1012746A (en) Semiconductor device
JP2920013B2 (en) Semiconductor electrostatic protection circuit
Hsieh et al. The origins of the performance degradation of implanted p/sup+/polysilicon gated p-channel MOSFET with/without rapid thermal annealing
JPH0468576A (en) Semiconductor device
JP2546179B2 (en) Semiconductor device
JP3830871B2 (en) Electrostatic discharge protection element
JPS592363A (en) Complementary insulated gate field effect device
JPH0468575A (en) Electrostatic breakdown protective element of semiconductor integrated circuit
JPH05267597A (en) Mos transistor for input/output protective device
JPS58142579A (en) Mos transistor
JP2007250684A (en) Circuit board and display device
JPS5835981A (en) Semiconductor device
JPH03255673A (en) Semiconductor integrated circuit
JPH04186674A (en) Semiconductor device