JPH0473087B2 - - Google Patents

Info

Publication number
JPH0473087B2
JPH0473087B2 JP58110400A JP11040083A JPH0473087B2 JP H0473087 B2 JPH0473087 B2 JP H0473087B2 JP 58110400 A JP58110400 A JP 58110400A JP 11040083 A JP11040083 A JP 11040083A JP H0473087 B2 JPH0473087 B2 JP H0473087B2
Authority
JP
Japan
Prior art keywords
magnetoresistive element
degrees
magnetic field
magnetoresistive
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58110400A
Other languages
Japanese (ja)
Other versions
JPS601515A (en
Inventor
Yoshi Yoshino
Kenichi Ao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP58110400A priority Critical patent/JPS601515A/en
Publication of JPS601515A publication Critical patent/JPS601515A/en
Publication of JPH0473087B2 publication Critical patent/JPH0473087B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/147Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】 この発明は、例えば回転検出装置を効果的に構
成させることができる強磁性磁気抵抗体を用いた
磁気検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic detection device using a ferromagnetic magnetoresistive material that can effectively configure a rotation detection device, for example.

強磁性材料(例えばNi−Co)を用いて磁気抵
抗素子が構成される。すなわち、第1図に示すよ
うに絶縁性基板11の一方の主面上に、強磁性薄
膜によつて、複数の平行状態にした長辺を複数の
短辺によつて順次直列状に接続する状態の抵抗パ
ターン12を形成するもので、この抵抗体パター
ン12の各端に電極13を形成しブリツジを形成
する。そして、このブリツジの対向する2個の電
極13間に定電圧、定電流の電源を接続し、抵抗
体パターン12の抵抗値変化を測定して、この抵
抗体パターン12に作用する磁界変化を検出する
ものである。
A magnetoresistive element is constructed using a ferromagnetic material (for example, Ni-Co). That is, as shown in FIG. 1, a plurality of parallel long sides are sequentially connected in series by a plurality of short sides using a ferromagnetic thin film on one main surface of an insulating substrate 11. This resistor pattern 12 is formed with electrodes 13 at each end of the resistor pattern 12 to form a bridge. Then, a constant voltage and constant current power source is connected between the two opposing electrodes 13 of this bridge, and changes in the resistance value of the resistor pattern 12 are measured, and changes in the magnetic field acting on this resistor pattern 12 are detected. It is something to do.

また、絶縁性基板11の裏面に図示の如く磁化
されたバイアス磁石14を固定して、この基板面
に平行にのびるバイアス磁界(飽和磁界)を磁気
抵抗素子である抵抗体パターン12に加えるよう
にしている。
Further, a magnetized bias magnet 14 is fixed as shown on the back surface of the insulating substrate 11, and a bias magnetic field (saturation magnetic field) extending parallel to the substrate surface is applied to the resistor pattern 12, which is a magnetoresistive element. ing.

このような磁気抵抗素子を用いて磁気検出を行
なうには、第2図AにHで示すように基板11の
面にほぼ平行な面の磁場成分の方向変化を検出す
るものであり、抵抗体パターン12の抵抗値変化
すなわち出力は、磁界方向の変化角度に対応して
第2図Bで示すようなサインカーブで得られる。
この場合、抵抗体パターン12の長辺部と短辺部
との長さの比率に対応して、磁場成分方向が90度
の場合と180度の場合とでは抵抗値変化が大きく
相違するようになり、この抵抗値変化に対応する
出力信号を波形整形する際に出力波形に影響を与
え、磁場成分Hを回転させた時の出力波形のデユ
ーテイ比がばらつくような状態となる。
To perform magnetic detection using such a magnetoresistive element, the direction change of the magnetic field component in a plane substantially parallel to the surface of the substrate 11 is detected as shown by H in FIG. The change in resistance value of the pattern 12, that is, the output, is obtained as a sine curve as shown in FIG. 2B, corresponding to the angle of change in the direction of the magnetic field.
In this case, depending on the ratio of the lengths of the long side and the short side of the resistor pattern 12, the resistance value changes greatly when the magnetic field component direction is 90 degrees and when it is 180 degrees. This affects the output waveform when waveform shaping the output signal corresponding to this change in resistance value, resulting in a state in which the duty ratio of the output waveform varies when the magnetic field component H is rotated.

この発明は上記のような点に鑑みなされたもの
で、ノイズ磁界に強く、磁界成分を回転させた場
合に、常に安定したデユーテイ比の出力信号波形
が得られ、例えば回転検出装置等として効果的に
用いることができるようにする磁気検出装置を提
供しようとするものである。
This invention was made in view of the above points, and is resistant to noise magnetic fields, and when the magnetic field component is rotated, an output signal waveform with a stable duty ratio is always obtained, making it effective as, for example, a rotation detection device. The present invention aims to provide a magnetic detection device that can be used for.

特に、本発明では、絶縁性基板上に強磁性薄膜
からなる細線状の第1、第2の磁気抵抗素子を形
成し、両磁気抵抗素子の長手方向のなす角度を特
定角度、90〜180度または270〜360度の範囲、望
ましくは100〜150度または280〜330度に設定し
て、良好な出力波形を得るようにしたものであ
る。
In particular, in the present invention, thin wire-shaped first and second magnetoresistive elements made of a ferromagnetic thin film are formed on an insulating substrate, and the angle formed by the longitudinal direction of both magnetoresistive elements is set to a specific angle of 90 to 180 degrees. Alternatively, it is set in the range of 270 to 360 degrees, preferably 100 to 150 degrees or 280 to 330 degrees to obtain a good output waveform.

以下、図面に示す実施例により本発明を説明す
る。本実施例では回転検出装置を構成するように
している。第3図は本装置を模式的に示した平面
図である。
The present invention will be explained below with reference to embodiments shown in the drawings. In this embodiment, a rotation detection device is configured. FIG. 3 is a plan view schematically showing the present device.

第3図において回転体1を磁性体から成る歯車
で構成し、この歯車に対向して回転検出器2を所
定の位置関係に固定してある。また回転検出器2
は以下の様な構成になつている。例えばシリコン
酸化膜の基板から成る絶縁性基板3上にNi−Co
合金薄膜を蒸着し、細線状の磁気抵抗素子4,5
をエツチングして形成し、ブリツジを組む。この
際、第1の磁気抵抗素子4の長手方向と第2の磁
気抵抗素子5の長手方向のなす角度を120°で作成
する。また、絶縁性基板3の側面には永久磁石6
が固定されており、第1の磁気抵抗素子4の面に
対し、水平方向で、かつその長手方向に直角の方
向にバイアス磁界が印加されるように構成されて
いる。
In FIG. 3, a rotating body 1 is constituted by a gear made of a magnetic material, and a rotation detector 2 is fixed in a predetermined positional relationship opposite to this gear. Also, rotation detector 2
has the following structure. For example, on an insulating substrate 3 consisting of a silicon oxide film substrate, Ni-Co
A thin wire-shaped magnetoresistive element 4, 5 is formed by depositing an alloy thin film.
Form by etching and assemble the bridge. At this time, the angle formed by the longitudinal direction of the first magnetoresistive element 4 and the longitudinal direction of the second magnetoresistive element 5 is 120°. In addition, a permanent magnet 6 is attached to the side surface of the insulating substrate 3.
is fixed, and a bias magnetic field is applied to the surface of the first magnetoresistive element 4 in a horizontal direction and in a direction perpendicular to its longitudinal direction.

なお、バイアス磁界の方向は第1の磁気抵抗素
子4の長手方向であつてもよく、また第1の磁気
抵抗素子4に代えて第2の磁気抵抗素子5に対し
上記したようなバイアス磁界を印加するようにし
てもよい。
Note that the direction of the bias magnetic field may be the longitudinal direction of the first magnetoresistive element 4, or the bias magnetic field as described above may be applied to the second magnetoresistive element 5 instead of the first magnetoresistive element 4. Alternatively, the voltage may be applied.

上記構成によると、回転体(歯車1)の回転に
より、第4図に示すような出力電圧が得られる。
この場合、磁石6は一定のもので、磁界強度は一
定であり、出力は安定して得られるので、波形整
形してもデユーテイ比は非常に安定している。ま
た、このものは回転体1として多極回転磁石のか
わりに歯車を使用するため、コストも安価で、精
度よい回転パルスを得ることができる。
According to the above configuration, the output voltage as shown in FIG. 4 is obtained by the rotation of the rotating body (gear 1).
In this case, the magnet 6 is constant, the magnetic field strength is constant, and the output can be stably obtained, so even if the waveform is shaped, the duty ratio is very stable. Furthermore, since this device uses a gear instead of a multipolar rotating magnet as the rotating body 1, the cost is low and rotational pulses with high precision can be obtained.

次に、第1の磁気抵抗素子4の長手方向と第2
の磁気抵抗素子5の長手方向のなす角度(θ)の
設定について第5図を用いて説明する。なお、第
5図は第1の磁気抵抗素子4と第2の磁気抵抗素
子5の長手方向のなす角度(θ)と出力電圧
(mV)の関係を示したものである。角度(θ)
がほぼ90度〜180度、またはほぼ270度〜360度の
範囲にある場合、他の角度範囲にある場合より出
力が大きくなり、好しくは角度(θ)がほぼ100
度〜150度、またはほぼ280度〜330度の範囲にあ
るとき出力電圧は急激に増大し、良好な感度を示
すことが分かる。
Next, the longitudinal direction of the first magnetoresistive element 4 and the second
The setting of the angle (θ) formed by the longitudinal direction of the magnetoresistive element 5 will be explained using FIG. Note that FIG. 5 shows the relationship between the angle (θ) formed by the longitudinal direction of the first magnetoresistive element 4 and the second magnetoresistive element 5 and the output voltage (mV). Angle (θ)
If the angle (θ) is in the range of approximately 90 degrees to 180 degrees, or approximately 270 degrees to 360 degrees, the output will be greater than in other angle ranges, preferably when the angle (θ) is approximately 100 degrees.
It can be seen that the output voltage increases rapidly when the temperature ranges from 150 degrees to 150 degrees, or approximately 280 degrees to 330 degrees, indicating good sensitivity.

次に、他の実施例を第6図により説明する。回
転検出器2は以下の構成からなつている。ガラス
基板3A上にNi−Fe合金薄膜を蒸着し、細線状
の磁気抵抗素子4A,4B,5A,5Bをエツチ
ングして形成する。各抵抗素子4A,4B,5
A,5Bの端子部に電極7,8を形成し、フルブ
リツジ構造とする。この際、第1、第3の磁気抵
抗素子4A,5A、第2、第4の磁気抵抗素子4
B,5Bのそれぞれの長手方向の交差する角度を
330°とする。また第1、第2の磁気抵抗素子4
A,4Bの面に対し、水平方向で、かつその長手
方向に直角の方向に永久磁石6Aによりバイアス
磁界を印加するように構成されている。
Next, another embodiment will be explained with reference to FIG. The rotation detector 2 has the following configuration. A Ni--Fe alloy thin film is deposited on a glass substrate 3A, and thin wire magnetoresistive elements 4A, 4B, 5A, and 5B are formed by etching. Each resistance element 4A, 4B, 5
Electrodes 7 and 8 are formed at the terminal portions of A and 5B to form a full bridge structure. At this time, the first and third magnetoresistive elements 4A, 5A, the second and fourth magnetoresistive elements 4
The angle at which the longitudinal directions of B and 5B intersect is
Set to 330°. In addition, the first and second magnetoresistive elements 4
The permanent magnet 6A is configured to apply a bias magnetic field horizontally to the surfaces A and 4B and in a direction perpendicular to the longitudinal direction thereof.

そこで回転体(歯車1)の回転により、第7図
に示すような出力電圧が得られる。この場合も磁
石6Aは一定磁界のものであるため、出力は安定
して得られる。
Therefore, by rotating the rotating body (gear 1), an output voltage as shown in FIG. 7 is obtained. In this case as well, since the magnet 6A has a constant magnetic field, the output can be stably obtained.

以上の如く本発明によれば、ノイズ磁界に対し
て強くなり、検出信号を波形整形等を行つて出力
する場合でも、磁界の回転に対応してデユーテイ
比を確実にした信号が取出されるようにできると
共に、安定して磁気検出信号がより高出力で得ら
れるようになるものであり、本装置を用いれば回
転検出器等を効果的に構成し得るようになる。
As described above, according to the present invention, even when outputting a detection signal after waveform shaping, etc., which is strong against a noise magnetic field, a signal with a reliable duty ratio corresponding to the rotation of the magnetic field can be extracted. In addition, it is possible to stably obtain a magnetic detection signal with a higher output, and by using this device, it becomes possible to effectively configure a rotation detector and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁気検出装置を説明する図、第
2図は上記装置の出力波形を示す図、第3図は本
発明の一実施例に係る磁気検出装置を説明する
図、第4図は上記実施例の出力波形を示す図、第
5図は第1、第2の磁気抵抗素子の長手方向の交
差角度と出力電圧との関係を示す図、第6図及び
第7図は本発明の他の実施例を示す図及びその出
力波形図である。 1……回転体、2……回転検出器、4……絶縁
性基板、4,5……第1、第2の磁気抵抗素子、
6……永久磁石。
FIG. 1 is a diagram explaining a conventional magnetic detection device, FIG. 2 is a diagram showing the output waveform of the above device, FIG. 3 is a diagram explaining a magnetic detection device according to an embodiment of the present invention, and FIG. is a diagram showing the output waveform of the above embodiment, FIG. 5 is a diagram showing the relationship between the intersection angle in the longitudinal direction of the first and second magnetoresistive elements and the output voltage, and FIGS. FIG. 2 is a diagram showing another embodiment of the invention and its output waveform diagram. DESCRIPTION OF SYMBOLS 1... Rotating body, 2... Rotation detector, 4... Insulating substrate, 4, 5... First and second magnetoresistive elements,
6...Permanent magnet.

Claims (1)

【特許請求の範囲】 1 絶縁性基板上に強磁性薄膜による細線状の抵
抗パターンを形成しブリツジを構成した第1、第
2の磁気抵抗素子と、前記第1の磁気抵抗素子ま
たは前記第2の磁気抵抗素子に対し、水平方向で
かつその長手方向または直角方向にバイアス磁界
を加える磁石と、磁性体の歯を有する回転体より
なりその回転により前記磁気抵抗素子に対し磁界
を作用させる手段とを備え、かつ前記第1、第2
の磁気抵抗素子の長手方向のなす角度が90〜180
度または270〜360度である所定角度範囲に設定さ
れている磁気検出装置。 2 前記第1、第2の磁気抵抗素子の長手方向の
なす角度が100〜150度または280〜330度の範囲に
設定されている特許請求の範囲第1項記載の磁気
検出装置。
[Scope of Claims] 1. First and second magnetoresistive elements forming a bridge by forming a thin line-shaped resistance pattern of a ferromagnetic thin film on an insulating substrate, and the first magnetoresistive element or the second magnetoresistive element. a magnet that applies a bias magnetic field horizontally and in the longitudinal direction or perpendicular direction to the magnetoresistive element, and a means for applying a magnetic field to the magnetoresistive element by rotation of the rotating body having magnetic teeth and the first and second
The angle formed by the longitudinal direction of the magnetoresistive element is 90 to 180
Magnetic detection device that is set to a predetermined angle range that is 270 to 360 degrees. 2. The magnetic detection device according to claim 1, wherein the angle between the longitudinal directions of the first and second magnetoresistive elements is set in a range of 100 to 150 degrees or 280 to 330 degrees.
JP58110400A 1983-06-20 1983-06-20 Magnetism detecting device Granted JPS601515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58110400A JPS601515A (en) 1983-06-20 1983-06-20 Magnetism detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58110400A JPS601515A (en) 1983-06-20 1983-06-20 Magnetism detecting device

Publications (2)

Publication Number Publication Date
JPS601515A JPS601515A (en) 1985-01-07
JPH0473087B2 true JPH0473087B2 (en) 1992-11-19

Family

ID=14534840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58110400A Granted JPS601515A (en) 1983-06-20 1983-06-20 Magnetism detecting device

Country Status (1)

Country Link
JP (1) JPS601515A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081387B2 (en) * 1985-12-23 1996-01-10 松下電器産業株式会社 Magnetic sensor
JP4298691B2 (en) 2005-09-30 2009-07-22 Tdk株式会社 Current sensor and manufacturing method thereof
JP2012063203A (en) * 2010-09-15 2012-03-29 Hamamatsu Koden Kk Magnetic sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774612A (en) * 1980-10-28 1982-05-10 Nec Home Electronics Ltd Linear displacement detection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774612A (en) * 1980-10-28 1982-05-10 Nec Home Electronics Ltd Linear displacement detection

Also Published As

Publication number Publication date
JPS601515A (en) 1985-01-07

Similar Documents

Publication Publication Date Title
JPH06148301A (en) Magnetic sensor
JPH0720218A (en) Magnetic sensor
JPH0473087B2 (en)
JPH0870148A (en) Magnetoresistance element
JPS59142417A (en) Magnetism detecting device
JPH0778528B2 (en) Magnetic sensor
JP2576763B2 (en) Ferromagnetic magnetoresistive element
JPS63202979A (en) Magnetic sensor for encoder
JP2503481B2 (en) Rotation detector
JPH069306Y2 (en) Position detector
JPH11311543A (en) Magnetoresistive element and magnetic detector
JP3186258B2 (en) Non-contact potentiometer
JPH08316548A (en) Magnetoresistive element
JPH01110215A (en) Angle of rotation sensor
JPH0329875A (en) Magnetoresistance element made of ferromagnetic body
JPS625284B2 (en)
JP3047567B2 (en) Orientation sensor
KR940008887B1 (en) Magnetic resistance element
JP2576136B2 (en) Magnetic direction measurement device
JPH06174752A (en) Current sensor
JPS5979807A (en) Magnetic detector
JPS6329837B2 (en)
JPS6280572A (en) Magnetic detector
JPH0561562B2 (en)
JPH06177454A (en) Ferromagnetic thin film magnetoresistance element and magnetic sensor using it