JP3047567B2 - Orientation sensor - Google Patents

Orientation sensor

Info

Publication number
JP3047567B2
JP3047567B2 JP3288316A JP28831691A JP3047567B2 JP 3047567 B2 JP3047567 B2 JP 3047567B2 JP 3288316 A JP3288316 A JP 3288316A JP 28831691 A JP28831691 A JP 28831691A JP 3047567 B2 JP3047567 B2 JP 3047567B2
Authority
JP
Japan
Prior art keywords
magnetic field
bias
coil
magnetoresistive element
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3288316A
Other languages
Japanese (ja)
Other versions
JPH05126577A (en
Inventor
正憲 鮫島
邦宏 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP3288316A priority Critical patent/JP3047567B2/en
Publication of JPH05126577A publication Critical patent/JPH05126577A/en
Application granted granted Critical
Publication of JP3047567B2 publication Critical patent/JP3047567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気抵抗素子に適当な
バイアス磁界を付与し、地磁気を検出して方位を知る方
位センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an azimuth sensor for applying an appropriate bias magnetic field to a magnetoresistive element and detecting the terrestrial magnetism to determine the azimuth.

【0002】[0002]

【従来の技術】一般に、地磁気を検出するセンサとして
は、回転自在の磁石を用いたもの、コアに検出用のコイ
ルを巻き付けたもの、磁気抵抗素子を用いたもの等があ
る。回転自在の磁石を用いたものは、一般に永久磁石の
N極とS極の中心点を回転自在に支持したもので、地磁
気の方向に沿ってN極とS極が常に南北をさすことによ
り方位が検知される。しかしながらこの方式は、可動部
があるために、素子が小型化しにくいうえ、検出結果を
電気信号に換え、他の用途と組み合わせるという応用が
難しい。また、コアに検出用のコイルを巻いたものは、
地磁気信号をコイルで検出し回路処理することにより、
方位を検出するものであるが、これもまた、小型化が難
しいものであった。
2. Description of the Related Art In general, sensors for detecting geomagnetism include those using a rotatable magnet, those using a core wound with a detection coil, and those using a magnetoresistive element. The one using a rotatable magnet generally supports the center point of the N and S poles of a permanent magnet rotatably, and the N and S poles always point north and south along the direction of geomagnetism. Is detected. However, this method is difficult to downsize the element due to the presence of the movable portion, and it is difficult to apply the detection result to an electric signal and combine it with another use. In addition, the thing which wound the coil for detection on the core,
By detecting the geomagnetic signal with a coil and processing the circuit,
Although the azimuth is detected, it is also difficult to reduce the size.

【0003】これに対し、弱磁界感度が良好な強磁性の
磁気抵抗素子を用いた方位センサは、検出信号の処理の
容易さ及び他の電気制御への応用が可能である。更に小
型化が可能である等の利点があり、磁気抵抗素子を用い
た方位センサが考えられている。
On the other hand, a direction sensor using a ferromagnetic magnetoresistive element having good weak magnetic field sensitivity can easily process a detection signal and can be applied to other electric controls. Further, there is an advantage that the size can be reduced, and a direction sensor using a magnetoresistive element has been considered.

【0004】図4に磁気抵抗素子を用いた従来の方位セ
ンサを示す。方位センサは、A,B2つのセンサ部から
なる。図6において11a,11bは磁気抵抗素子であ
り、そのエレメントのパターン方向は同一方向である。
この磁気抵抗素子11a,11bの、外部磁界に対する
抵抗値変化の様子を図7(a)に示すが、図7(b)の
ようにエレメントのパターンに対して回転方向に磁界が
加わった時の抵抗値の変化である。12a,12bはバ
イアス磁界発生用の永久磁石であり、前記磁気抵抗素子
11a,11bに加わる磁界Ha,Hbは図に示すよう
に互いに直交している。いま、地磁気Heの方向が図6
に示す向きとすると、各磁気抵抗素子11a,11bが
感じる磁界は、磁界Ha,HbとHeとの合成磁界Ht
a,Htbで表される。すなわち、前記センサAの前記
バイアス磁界と地磁気とのなす角度をθとすると、前記
センサBと地磁気とのなす角度は、θ+90°となり、
θがわかれば、方位が検出できることになる。
FIG. 4 shows a conventional direction sensor using a magnetoresistive element. The direction sensor includes two sensor units A and B. In FIG. 6, reference numerals 11a and 11b denote magnetoresistive elements, and the pattern directions of the elements are the same.
FIG. 7A shows how the magnetoresistive elements 11a and 11b change their resistance values with respect to an external magnetic field. When a magnetic field is applied to the element pattern in the rotational direction as shown in FIG. This is a change in the resistance value. Reference numerals 12a and 12b denote permanent magnets for generating a bias magnetic field, and the magnetic fields Ha and Hb applied to the magnetoresistive elements 11a and 11b are orthogonal to each other as shown in the drawing. Now, the direction of the geomagnetic He is shown in FIG.
, The magnetic field felt by each of the magnetoresistive elements 11a and 11b is a combined magnetic field Ht of the magnetic fields Ha, Hb and He.
a, Htb. That is, assuming that the angle between the bias magnetic field of the sensor A and the terrestrial magnetism is θ, the angle between the sensor B and the terrestrial magnetism is θ + 90 °,
If θ is known, the azimuth can be detected.

【0005】ところで、このようなA,B各センサを同
一平面内で回転して、地磁気を検出すると、その出力
は、理論的には図6に示すような互いに90°位相がず
れた波形になる。すなわち、センサA,Bの各出力は、 Va=Asinθ Vb=Bcosθ と表すことができ、これから、センサに対する地磁気の
方向角度は、 tanθ=sinθ/cosθ=(Va×B)/(vb×A) として得られる。この算出は、マイクロコンピュータを
用いれば簡単に行える。
When the A and B sensors are rotated in the same plane to detect terrestrial magnetism, the output of the sensor is theoretically shifted to a waveform as shown in FIG. Become. That is, each output of the sensors A and B can be expressed as Va = Asinθ Vb = Bcosθ. From this, the directional angle of the terrestrial magnetism with respect to the sensor is tanθ = sinθ / cosθ = (Va × B) / (vb × A) Is obtained as This calculation can be easily performed using a microcomputer.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記の磁
気抵抗素子11a,11bを用いた従来の方位センサで
は、以下の点でその示す方位に誤差が生じ易い。まず、
2つの磁気抵抗素子11a,11bからの出力の比で方
位を求めるのであるから、各センサの感度は同一でない
と誤差が生じる。すなわち、各磁気抵抗素子間の磁気特
性が同一でなければならない。次に、素子に加わる合成
磁界も同一でなければならず、バイアス磁界の大きさ、
各磁気抵抗素子エレメントに対する方向が一定でなけれ
ばならない。
However, in the conventional direction sensor using the above-described magnetoresistive elements 11a and 11b, an error tends to occur in the direction indicated by the following points. First,
Since the azimuth is determined by the ratio of the outputs from the two magnetoresistive elements 11a and 11b, an error occurs unless the sensitivity of each sensor is the same. That is, the magnetic characteristics between the magnetoresistive elements must be the same. Next, the combined magnetic field applied to the element must be the same, the magnitude of the bias magnetic field,
The direction for each magnetoresistive element must be constant.

【0007】しかしながら、実際に図8に示すような特
性が完全に一致した磁気抵抗素子11a,11bを作成
することは困難である。また、精度良くバイアス磁石を
設置することも困難であり、図9の特性図に示すよう
に、各エレメントの動作中心が異なり、出力が小さくな
るとともに、上述のように各センサ間の出力にばらつき
が生じ、その結果方位検出に誤差が生じるという課題が
あった。
However, it is difficult to actually produce the magnetoresistive elements 11a and 11b whose characteristics completely match as shown in FIG. In addition, it is difficult to accurately install the bias magnet, and as shown in the characteristic diagram of FIG. 9, the operation centers of the respective elements are different, the output is reduced, and the output between the sensors varies as described above. This causes a problem that an error occurs in the direction detection.

【0008】更にバイアス磁界Ha,Hbを永久磁石に
より形成するため各バイアス磁界Ha,Hbが互いに影
響しあい、正確に直交するバイアス磁界Ha,Hbが得
られない。以上のように従来の方位センサでは検出方位
に誤差が含まれやすいという課題があった。
Further, since the bias magnetic fields Ha and Hb are formed by permanent magnets, the respective bias magnetic fields Ha and Hb influence each other, so that it is impossible to obtain bias magnetic fields Ha and Hb which are orthogonal to each other. As described above, the conventional direction sensor has a problem that the detected direction tends to include an error.

【0009】また、2つの磁気抵抗素子を用いておりセ
ンサが大きくなるという課題もあった。
There is also a problem that the size of the sensor is increased by using two magnetoresistive elements.

【0010】本発明は上記従来の課題を解決するもの
で、簡単な構成で地磁気を検出し小型で正確な方位を示
す方位センサを提供することを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a small and accurate azimuth sensor which detects geomagnetism with a simple structure and shows an accurate azimuth.

【0011】[0011]

【課題を解決するための手段】この目的を達成するため
に本発明の方位センサは、4つの直交する辺を有する絶
縁基板上にパターンの長手方向に通電すると電気抵抗が
パターンに直交する磁界の強さに応じて変化する4個の
磁気抵抗エレメントをパターンの長手方向が互いに直交
しかつ前記絶縁基板の各辺に対して45°の方向を向く
ように配置し互いに直列に接続するとともに所定の入力
端子と出力端子を設けて構成した磁気抵抗素子と、前記
磁気抵抗エレメントを形成した面がその中心部にくるよ
うに上記磁気抵抗素子を設置する台座を有し、かつ上記
磁気抵抗エレメントに対して45°方向にバイアス磁界
を付与するための第1のバイアスコイルを前記磁気抵抗
エレメントから所定の距離で巻くための第1の溝とさら
に前記第1のバイアスコイルに対して直交する第2のバ
イアスコイルを前記第1のバイアスコイルに触れないよ
うな所定の位置に形成するための第2の溝とを有するホ
ルダーと前記ホルダーにそれぞれ所定の巻数で形成した
2つのバイアスコイルとを備えたものである。
In order to achieve this object, an azimuth sensor according to the present invention is arranged such that when an electric current is applied to an insulating substrate having four orthogonal sides in the longitudinal direction of a pattern, an electric resistance of the magnetic field is perpendicular to the pattern. Four magnetoresistive elements that change according to the strength are arranged so that the longitudinal directions of the patterns are orthogonal to each other and are oriented at 45 ° to each side of the insulating substrate, and are connected in series with each other. A magnetoresistive element configured by providing an input terminal and an output terminal, and a pedestal for installing the magnetoresistive element such that the surface on which the magnetoresistive element is formed is located at the center thereof, and A first groove for winding a first bias coil for applying a bias magnetic field in a 45 ° direction at a predetermined distance from the magnetoresistive element; A holder having a second groove for forming a second bias coil orthogonal to the coil at a predetermined position so as not to touch the first bias coil, and a predetermined number of turns on the holder. And two bias coils.

【0012】[0012]

【作用】本発明によれば、磁気抵抗素子は、同一形成条
件でしかもきわめて近くに隣接する位置に形成された磁
気抵抗エレメントにて構成される磁気抵抗素子を用いて
おり、外部磁界と各直交バイアス磁界との合成磁界に対
する出力特性はどの磁気抵抗エレメントも同一である。
According to the present invention, the magneto-resistive element uses a magneto-resistive element composed of magneto-resistive elements formed at very close and adjacent positions under the same forming conditions, and is orthogonal to the external magnetic field. The output characteristics with respect to the combined magnetic field with the bias magnetic field are the same for all magnetoresistive elements.

【0013】また、バイアス磁界は、各バイアスコイル
に流す電流のON,OFFを瞬時に切り替えて、2つの
バイアスコイルのうちどちらか一方のみがバイアス磁界
を印加する方式で方位を検出するので、お互い他方のバ
イアス磁界が影響してバイアス磁界の印加方向にずれが
生じて誤差が生じるということもない。また、磁気抵抗
素子はバイアスコイルを形成するホルダーにて保持さ
れ、予めその磁気抵抗エレメントが外部に形成するバイ
アスコイルの中心部にくるように台座にて設置されてお
り、バイアス磁界との位置関係も所定値に保てる。さら
に外巻のバイアスコイルは内巻のコイルに直接巻かれる
ことが無いのでコイルの形状が安定し発生磁界も安定す
る。そのうえ各バイアスコイルの巻き数は所定の巻き数
に設定するので、同一の定電流源で励磁しても同程度の
磁界が得られる。
In addition, the bias magnetic field instantaneously switches ON and OFF of the current flowing through each bias coil, and only one of the two bias coils detects the direction by applying the bias magnetic field. There is no possibility that the other bias magnetic field influences and shifts in the bias magnetic field application direction to cause an error. The magnetoresistive element is held by a holder that forms a bias coil, and is previously set on a pedestal such that the magnetoresistive element comes to the center of a bias coil that is formed outside. Can also be maintained at a predetermined value. Further, since the outer-wound bias coil is not directly wound around the inner-wound coil, the shape of the coil is stabilized and the generated magnetic field is also stabilized. In addition, since the number of turns of each bias coil is set to a predetermined number, the same magnetic field can be obtained even when excited by the same constant current source.

【0014】また、磁気抵抗エレメントに対して45°
方向にバイアス磁界を付与するようにバイアスコイルを
巻線する場合、磁気抵抗エレメントの長手方向が絶縁基
板の4つの辺に対して45°方向になるように形成した
場合は、絶縁基板の4つの辺に対して平行に形成した場
合よりもセンサ全体として小形化が実現できる。
In addition, 45 ° with respect to the magnetoresistive element
Bias coil to apply a bias magnetic field in the
When winding, the longitudinal direction of the magnetoresistive element is
Formed so as to be in a 45 ° direction with respect to the four sides of the plate
In this case, if it is formed parallel to the four sides of the insulating substrate,
The size of the sensor as a whole can be made smaller than in the case of the above .

【0015】これにより簡単な構成で地磁気を検出し正
確な方位を示す方位センサを実現できる。
This makes it possible to realize an azimuth sensor which detects geomagnetism and indicates an accurate azimuth with a simple configuration.

【0016】[0016]

【実施例】以下、本発明の一実施例の方位センサについ
て、図面を参照しながら説明する。図1(a),(b)
はそれぞれ本実施例における方位センサの外形を示した
斜視図及び平面図であり、図2(a)は同センサの上面
を切り欠いた断面図である。図2(b)は同センサの側
面の断面図である。図において、1は磁気抵抗素子であ
り、四角形の平板上のガラスからなる絶縁基板上に形成
されたパターンの長手方向が互いに直交し直列に接続さ
れた4つの磁気抵抗エレメント3からなる。この4つの
磁気抵抗エレメント3は、NiFeを膜厚1000Åを
真空蒸着したのち、フォトリソグラフィーおよびエッチ
ングにより所定のパターンに加工したものであり、前記
ガラス基板の4辺に対してパターンの長手方向を45°
方向になるようにしている。また3aは磁気抵抗素子端
子である。2a,2bはバイアス磁界発生用のバイアス
コイルであり、前記磁気抵抗素子1を箱形の素子ホルダ
ー4内の設置台部4aに設置したのち、この素子ホルダ
ー4に設けたコイル用溝4b,4cに絶縁被覆線を所定
の数だけ巻いて作成した。ここで、素子ホルダー4のコ
イル用溝4b,4cの深さは図3(a),(b)に示す
ようにh1,h2であり、内側に形成されるコイルのコイ
ル用溝4bの方が深くなっている。そしてなお、外側に
巻くコイルの位置は内側のコイルの厚さd1を考慮し
て、予め外巻き用溝の位置をd1だけ高く変えている。
(h1−h2=Δh≧d1)各バイアスコイル2a,2b
の形成方向は互いに直交し、また各バイアスコイル2
a,2bと前記磁気抵抗エレメント3のなす角度は互い
に45°方向になるように素子ホルダー4にて決められ
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an orientation sensor according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 (a), (b)
2A and 2B are a perspective view and a plan view, respectively, showing the outer shape of the direction sensor according to the present embodiment, and FIG. 2A is a cross-sectional view in which the upper surface of the sensor is cut away. FIG. 2B is a side sectional view of the sensor. In the figure, reference numeral 1 denotes a magneto-resistive element, which is composed of four magneto-resistive elements 3 whose longitudinal directions are perpendicular to each other and are connected in series with each other, formed on an insulating substrate made of glass on a rectangular flat plate. The four magnetoresistive elements 3 are formed by vacuum-depositing NiFe to a film thickness of 1000 ° and then processing the same into a predetermined pattern by photolithography and etching. °
The direction is set. Reference numeral 3a denotes a magnetoresistive element terminal. Reference numerals 2a and 2b denote bias coils for generating a bias magnetic field. After the magnetoresistive element 1 is installed on a mounting table 4a in a box-shaped element holder 4, coil grooves 4b and 4c provided on the element holder 4 are provided. A predetermined number of insulated wires were wound around the wire. Here, the depths of the coil grooves 4b and 4c of the element holder 4 are h 1 and h 2 as shown in FIGS. 3A and 3B, respectively. Is deeper. In addition, the position of the outer winding groove is changed in advance by d1 in consideration of the thickness d1 of the inner coil.
(H 1 −h 2 = Δh ≧ d 1 ) Each bias coil 2a, 2b
Are orthogonal to each other, and each bias coil 2
The angles formed by the elements a and 2b and the magnetoresistive element 3 are determined by the element holder 4 so as to be at 45 ° to each other.

【0017】このような構成の方位センサの動作は次の
通りである。出力は図2(a)に示す端子T1,T3間
に定電圧を加え、端子T2,T4間の出力電圧を更に増
幅回路で処理する。いま、バイアスコイル2a,2bの
いずれかに所定の電流を流しながら、このセンサを同一
平面内で1回転して地磁気を検出すると、その出力は図
4のようになり、90°位相がずれ、しかも振幅の大き
さは同等の波形が得られる。よって下記の式から地磁気
の方向を正確に検出することができる。
The operation of the azimuth sensor having such a configuration is as follows. As for the output, a constant voltage is applied between terminals T1 and T3 shown in FIG. 2A, and the output voltage between terminals T2 and T4 is further processed by an amplifier circuit. Now, when a predetermined current is applied to one of the bias coils 2a and 2b and this sensor is rotated once in the same plane to detect terrestrial magnetism, the output becomes as shown in FIG. Moreover, a waveform having the same amplitude can be obtained. Therefore, the direction of terrestrial magnetism can be accurately detected from the following equation.

【0018】 tanθ=sinθ/cosθ=va/Vb 以上のように本実施例によれば磁気抵抗素子1は、同一
形成条件でしかもきわめて近くに隣接する位置に形成さ
れた磁気抵抗エレメント3にて構成される磁気抵抗素子
1を1つしか用いておらず、外部磁界と各直交バイアス
磁界との合成磁界に対する出力特性はどの磁気抵抗エレ
メント3も同一である。
Tan θ = sin θ / cos θ = va / Vb As described above, according to the present embodiment, the magneto-resistive element 1 is constituted by the magneto-resistive element 3 formed at an extremely close position under the same forming conditions. Only one magnetoresistive element 1 is used, and all magnetoresistive elements 3 have the same output characteristics with respect to the combined magnetic field of the external magnetic field and each of the orthogonal bias magnetic fields.

【0019】また、バイアス磁界は、各バイアスコイル
2a,2bに流す電流のON,OFFを瞬時に切り替え
て、2つのバイアスコイル2a,2bのうちどちらか一
方のみがバイアス磁界を印加する方式で方位を検出する
ので、お互い他方のバイアス磁界が影響してバイアス磁
界の印加方向にずれが生じるということもない。さら
に、バイアス磁界と磁気抵抗素子の位置関係は予め素子
ホルダー4にて決められているとともにバイアス磁界の
大きさもその形成位置及び巻き数を所定値に決めてある
のでばらつきが低減される。その上磁気抵抗エレメント
3を、各エレメントがそのパターン方向を互いに直交す
るようにして直列接続し、かつ、エレメントに対して4
5°方向にバイアス磁界を加えることは、すべての磁気
抵抗エレメントに対して同一の動作をさせることにな
る。また、45°方向にバイアス磁界が加わることは、
特性検出を、微少磁界に対してダイナミックに特性変化
する領域で行うことになり、わずかの誤差に対する安定
性が向上する。
The bias magnetic field is switched by turning on and off the current flowing through each of the bias coils 2a and 2b instantaneously, and only one of the two bias coils 2a and 2b applies a bias magnetic field. Is detected, there is no possibility that the bias magnetic field of the other will affect and shift in the bias magnetic field application direction. Further, since the positional relationship between the bias magnetic field and the magnetoresistive element is determined in advance by the element holder 4, and the magnitude of the bias magnetic field is determined at a predetermined position and the number of turns, the variation is reduced. In addition, the magnetoresistive elements 3 are connected in series such that each element has its pattern direction orthogonal to each other, and 4
Applying a bias magnetic field in the 5 ° direction causes the same operation for all magnetoresistive elements. Also, the application of the bias magnetic field in the 45 ° direction is as follows.
Since the characteristic detection is performed in a region where the characteristic dynamically changes with respect to the minute magnetic field, the stability against a slight error is improved.

【0020】また、磁気抵抗エレメントに対して45°
方向にバイアス磁界を付与するようにバイアスコイルを
巻線する場合、図5(a)に示すように磁気抵抗エレメ
ントの長手方向が絶縁基板の4つの辺に対して45°方
向になるように形成した場合は、図5(b)のように絶
縁基板の4つの辺に対して平行に形成した場合よりも
ンサ全体として小形化が実現できる。(2.8×X<
X:磁気抵抗素子に占める引き回しおよび電極パターン
幅>)
In addition, 45 ° with respect to the magnetoresistive element
Bias coil to apply a bias magnetic field in the
In case of winding, as shown in FIG.
45 ° to the four sides of the insulating substrate
When formed so that they are oriented in the same direction, as shown in FIG.
The size of the entire sensor can be reduced as compared with the case where the edge substrate is formed in parallel with the four sides . (2.8 × X <
X: routing and electrode pattern width in the magnetoresistive element>)

【0021】[0021]

【発明の効果】以上のように本発明によれば、1つの磁
気抵抗素子に90°異なる方向からバイアスコイルによ
り別々にバイアス磁界を加え、更にその磁界方向と磁気
抵抗エレメントの方向を45°にすること、また、バイ
アス磁界と磁気抵抗素子の位置関係およびコイルの巻き
数を設定することにより地磁気の検出を正確に測定する
ことが可能となる。更に、磁気抵抗エレメントの長手方
向を絶縁基板の4つの辺に対して45°方向に形成する
ので、センサの形状が小型になる。
As described above, according to the present invention, a bias magnetic field is separately applied to one magnetoresistive element by a bias coil from directions different from 90 °, and the magnetic field direction and the direction of the magnetoresistive element are set to 45 °. In addition, by setting the positional relationship between the bias magnetic field and the magnetoresistive element and the number of turns of the coil, it becomes possible to accurately measure the detection of terrestrial magnetism. Further, since the longitudinal direction of the magnetoresistive element is formed at a direction of 45 ° with respect to the four sides of the insulating substrate, the size of the sensor is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の一実施例における方位センサ
の斜視図 (b)は同平面図
1A is a perspective view of an orientation sensor according to an embodiment of the present invention, and FIG.

【図2】(a)は同断面図 (b)は同断面図2A is a cross-sectional view of FIG. 2B is a cross-sectional view of FIG.

【図3】(a),(b)はそれぞれ同実施例の素子ホル
ダーの断面図
FIGS. 3A and 3B are cross-sectional views of the element holder of the same embodiment.

【図4】同実施例における地磁気検出の出力波形図FIG. 4 is an output waveform diagram of geomagnetism detection in the embodiment.

【図5】(a),(b)は磁気抵抗エレメントの配置方
向とセンサ形状比較を示した平面図
FIGS. 5A and 5B are plan views showing arrangement directions of a magnetoresistive element and comparison of a sensor shape;

【図6】従来の方位センサの外形図FIG. 6 is an external view of a conventional direction sensor.

【図7】(a)は磁気抵抗素子の磁気抵抗特性図 (b)は磁気抵抗素子に流れる電流iと印加される磁界
Hとの関係を示した説明図
7A is a diagram showing a magnetoresistive characteristic of a magnetoresistive element. FIG. 7B is an explanatory diagram showing a relationship between a current i flowing through the magnetoresistive element and a magnetic field H applied.

【図8】従来の方位センサの地磁気検出の出力波形図FIG. 8 is an output waveform diagram of geomagnetism detection of a conventional direction sensor.

【図9】同センサの出力波形図FIG. 9 is an output waveform diagram of the sensor.

【符号の説明】[Explanation of symbols]

1 磁気抵抗素子 2a,2b バイアスコイル 3 磁気抵抗エレメント 3a 磁気抵抗素子端子 4 素子ホルダー 4a 設置台部 4b,4c コイル用溝 DESCRIPTION OF SYMBOLS 1 Magnetoresistive element 2a, 2b Bias coil 3 Magnetoresistive element 3a Magnetoresistive element terminal 4 Element holder 4a Installation base 4b, 4c Coil groove

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01C 17/30 G01C 17/28 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) G01C 17/30 G01C 17/28

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】4つの直交する辺を有する絶縁基板上にパ
ターンの長手方向に通電すると電気抵抗がパターンに直
交する磁界の強さに応じて変化する4個の磁気抵抗エレ
メントをパターンの長手方向が互いに直交しかつ前記絶
縁基板の各辺に対して45°の方向を向くように配置し
互いに直列に接続するとともに所定の入力端子と出力端
子を設けて構成した磁気抵抗素子と、前記磁気抵抗エレ
メントを形成した面がその中心部にくるように上記磁気
抵抗素子を設置する台座を有するホルダーと、このホル
ダーにそれぞれ所定の巻数で形成した2つのバイアスコ
イルとを備え、かつ前記ホルダーに上記磁気抵抗エレメ
ントに対して45°方向にバイアス磁界を付与するため
の第1のバイアスコイルを前記磁気抵抗エレメントから
所定の距離で巻くための第1の溝と前記第1のバイアス
コイルに対して直交する第2のバイアスコイルを前記第
1のバイアスコイルに触れないような所定の位置に形成
するための第2の溝とを有する方位センサ。
When a current is applied to an insulating substrate having four orthogonal sides in the longitudinal direction of a pattern, four magnetoresistive elements whose electric resistance changes according to the strength of a magnetic field orthogonal to the pattern are formed in the longitudinal direction of the pattern. Are arranged so as to be orthogonal to each other and oriented at 45 ° to each side of the insulating substrate, connected in series with each other, and provided with predetermined input terminals and output terminals; A holder having a pedestal for mounting the magnetoresistive element such that the surface on which the element is formed is located at the center thereof; and two bias coils formed with a predetermined number of turns in each of the holders. A first bias coil for applying a bias magnetic field in a 45 ° direction to the resistive element is wound at a predetermined distance from the magnetoresistive element. And a second groove for forming a second bias coil orthogonal to the first bias coil at a predetermined position so as not to touch the first bias coil. Orientation sensor.
JP3288316A 1991-11-05 1991-11-05 Orientation sensor Expired - Fee Related JP3047567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3288316A JP3047567B2 (en) 1991-11-05 1991-11-05 Orientation sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3288316A JP3047567B2 (en) 1991-11-05 1991-11-05 Orientation sensor

Publications (2)

Publication Number Publication Date
JPH05126577A JPH05126577A (en) 1993-05-21
JP3047567B2 true JP3047567B2 (en) 2000-05-29

Family

ID=17728604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3288316A Expired - Fee Related JP3047567B2 (en) 1991-11-05 1991-11-05 Orientation sensor

Country Status (1)

Country Link
JP (1) JP3047567B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4016857B2 (en) 2002-10-18 2007-12-05 ヤマハ株式会社 Magnetic sensor and manufacturing method thereof
JP4557134B2 (en) 2004-03-12 2010-10-06 ヤマハ株式会社 Manufacturing method of magnetic sensor, magnet array used in manufacturing method of magnetic sensor, and manufacturing method of magnetic array

Also Published As

Publication number Publication date
JPH05126577A (en) 1993-05-21

Similar Documents

Publication Publication Date Title
US7733210B2 (en) Magnetic field detector and manufacturing method thereof
JP2579995B2 (en) Magnetic sensor
JP2000035343A (en) Encoder provided with gigantic magnetic resistance effect element
JP2000514920A (en) Thin layer magnetic field sensor
JPH08304466A (en) Ammeter
JPH08178937A (en) Magnetism detecting device
JPH06130088A (en) Current sensor
JPH07270507A (en) Terrestrial magnetism azimuth sensor
JP3047567B2 (en) Orientation sensor
JP4244807B2 (en) Direction sensor
JPH0720218A (en) Magnetic sensor
JP2016217932A (en) Rotation detection device
JP2576763B2 (en) Ferromagnetic magnetoresistive element
JP3019546B2 (en) Magnetic detector
JP4501858B2 (en) Magneto-impedance element and current / magnetic field sensor
JP2923959B2 (en) Magnetic bearing detector
JP2002094140A (en) Magnetic impedance effect element
JP3047568B2 (en) Orientation sensor
JPH06174752A (en) Current sensor
JPH069306Y2 (en) Position detector
JP2576136B2 (en) Magnetic direction measurement device
US20050016006A1 (en) Magnetic compass
JPH04138215U (en) Orientation sensor
JP2003014458A (en) Azimuth sensor
JPH0329875A (en) Magnetoresistance element made of ferromagnetic body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees