JPH0720218A - Magnetic sensor - Google Patents

Magnetic sensor

Info

Publication number
JPH0720218A
JPH0720218A JP5143872A JP14387293A JPH0720218A JP H0720218 A JPH0720218 A JP H0720218A JP 5143872 A JP5143872 A JP 5143872A JP 14387293 A JP14387293 A JP 14387293A JP H0720218 A JPH0720218 A JP H0720218A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
magnetoresistive element
respect
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5143872A
Other languages
Japanese (ja)
Inventor
Mieko Kawamoto
美詠子 川元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5143872A priority Critical patent/JPH0720218A/en
Publication of JPH0720218A publication Critical patent/JPH0720218A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To provide a magnetic sensor which detects the strength of magnetic field applied from a specific direction and can cope with a wide range of magnetic field strength with a high sensitivity. CONSTITUTION:A gap 3 is formed by cutting part of a ring-shaped core 2, a magnetic resistance element 7 whose resistance changes according to detection magnetic field generated at the gap 3 is provided with an angle for the detection magnetic field, and then the sensitivity for the detection magnetic field is examined for the installation angle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気センサに係り、特に
所定の方向から印加される磁界の強さを検出する磁気セ
ンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic sensor, and more particularly to a magnetic sensor for detecting the strength of a magnetic field applied from a predetermined direction.

【0002】磁気センサはFA(ファクトリ・オートメ
ーション)、工作機械等の種々の分野で利用されてい
る。特に強磁性薄膜を用いた磁気抵抗素子は高感度に磁
気測定が行なえるため、各種磁気測定への応用が期待さ
れている。
Magnetic sensors are used in various fields such as FA (factory automation) and machine tools. In particular, since a magnetoresistive element using a ferromagnetic thin film can perform magnetic measurement with high sensitivity, it is expected to be applied to various magnetic measurements.

【0003】しかし、強磁性薄膜を用いた磁気抵抗素子
は高感度ではあるが飽和磁界強度が低く、広範囲の磁界
強度での使用が行なえないため、各種分野での使用に耐
えるためには飽和磁界を大きくする必要がある。
However, a magnetoresistive element using a ferromagnetic thin film has a high sensitivity but a low saturation magnetic field strength and cannot be used in a wide range of magnetic field strength. Needs to be increased.

【0004】[0004]

【従来の技術】図12に従来の一例の構成図を示す。図
は磁気抵抗素子(MR素子)51を用いた磁気センサ
で、電流測定を行なう装置が構成されている。
2. Description of the Related Art FIG. 12 shows a block diagram of a conventional example. The figure shows a magnetic sensor using a magnetoresistive element (MR element) 51, which constitutes a device for measuring current.

【0005】測定穴部52にはケーブル53が貫通し、
ケーブル53を流れる電流によりその周囲に配設された
磁性体54に磁束55が貫通する。磁束55は磁性体5
4によりそのギャップ部56まで導びかれる。
A cable 53 passes through the measurement hole 52,
The magnetic flux 55 penetrates through the magnetic body 54 disposed around the cable 53 due to the current flowing through the cable 53. The magnetic flux 55 is the magnetic body 5
4 leads to the gap 56.

【0006】ギャップ部56にはMR素子51が配設さ
れていてMR素子51に磁界が印加される。MR素子5
1はガラス基板上にNi−Co等の磁気抵抗効果を有す
る強磁性体よりなる薄膜を形成してなり、印加磁界の強
度に応じて薄膜の抵抗が変化する素子で、ギャップ部5
6に生じる磁界に応じた信号を出力する。
An MR element 51 is arranged in the gap portion 56 and a magnetic field is applied to the MR element 51. MR element 5
Reference numeral 1 denotes an element in which a thin film made of a ferromagnetic material having a magnetoresistive effect such as Ni-Co is formed on a glass substrate, and the resistance of the thin film changes according to the strength of an applied magnetic field.
A signal corresponding to the magnetic field generated in 6 is output.

【0007】従来のこの種の磁気センサではMR素子5
1はギャップ部56に生じる磁界に対して最も高感度が
得られるように固定されていた。
In this type of conventional magnetic sensor, the MR element 5 is used.
No. 1 was fixed so that the highest sensitivity to the magnetic field generated in the gap portion 56 was obtained.

【0008】[0008]

【発明が解決しようとする課題】しかるに、従来の磁気
センサは磁界の印加方向に対して最も高感度となるよう
に素子が固定されており、一定の磁界強度範囲でのみ用
いられる構成とされており、他の磁界強度範囲の磁界強
度を測定する場合には強磁性薄膜のパターンや結晶の方
向を変えることにより対応しなければならず、広範囲の
磁界強度に対して対応できない等の問題点があった。
However, in the conventional magnetic sensor, the element is fixed so as to have the highest sensitivity in the direction of application of the magnetic field, and is configured to be used only within a certain magnetic field strength range. However, when measuring the magnetic field strength in another magnetic field strength range, it is necessary to deal with it by changing the pattern of the ferromagnetic thin film or the direction of the crystal, and there is a problem that it cannot cope with a wide range of magnetic field strength. there were.

【0009】本発明は上記の点に鑑みてなされたもの
で、簡単に広範囲の磁界強度に高感度に対応できる磁気
センサを提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a magnetic sensor which can easily cope with a wide range of magnetic field strength with high sensitivity.

【0010】[0010]

【課題を解決するための手段】本発明は一定の方向から
印加される磁界に対して一定の検出感度を有する検出素
子に所定の方向から磁界を印加し、磁界の強さを検出す
る磁気センサにおいて、磁界が印加される前記所定の方
向に対して素子の相対的角度を可変にすることにより磁
界の強さの検出感度の調整を得る構成としてなる。
SUMMARY OF THE INVENTION The present invention is a magnetic sensor for detecting the strength of a magnetic field by applying a magnetic field from a predetermined direction to a detection element having a constant detection sensitivity with respect to a magnetic field applied from a constant direction. In the above, the configuration is such that the detection sensitivity of the magnetic field strength is adjusted by making the relative angle of the element variable with respect to the predetermined direction in which the magnetic field is applied.

【0011】[0011]

【作用】本発明によれば、磁界が印加される所定の方向
に対して素子の角度を可変することにより磁界の強さの
検出感度を調整するため、同一の素子を用いて異なる感
度のセンサを構成でき、広範囲の磁界に対して対応でき
る。
According to the present invention, since the detection sensitivity of the strength of the magnetic field is adjusted by changing the angle of the element with respect to the predetermined direction in which the magnetic field is applied, the same element is used for the sensor of different sensitivity. Can be configured, and can cope with a wide range of magnetic fields.

【0012】[0012]

【実施例】図1に本発明の第1実施例の斜視図を示す。1 shows a perspective view of a first embodiment of the present invention.

【0013】本実施例はケーブル5に流れる電流を測定
する電流測定装置を示す。同図中、1は磁気センサ部を
示す。磁気センサ部1はコア2のギャップ3内に配置さ
れる。
This embodiment shows a current measuring device for measuring the current flowing through the cable 5. In the figure, 1 indicates a magnetic sensor unit. The magnetic sensor unit 1 is arranged in the gap 3 of the core 2.

【0014】コア2はNi−Fe等の磁性材を円環状に
形成し、その一部がギャップ3を形成すべく切欠かれて
いる。ギャップ3はコア2の端面が平行となるように形
成されており、均一な磁界が形成される構成とされてい
る。
The core 2 is formed of a magnetic material such as Ni-Fe in an annular shape, and a part of the core 2 is cut out to form the gap 3. The gap 3 is formed so that the end faces of the core 2 are parallel to each other, and a uniform magnetic field is formed.

【0015】磁気センサ部1及びコア2は樹脂製のケー
ス4に収納される。ケース4はコア2の形状に略そっ
て、磁気センサ部1及びコア2を包囲する。
The magnetic sensor unit 1 and the core 2 are housed in a resin case 4. The case 4 substantially follows the shape of the core 2 and surrounds the magnetic sensor unit 1 and the core 2.

【0016】ケーブル5は測定時にはコア2の測定穴6
を貫通して配設される。ケーブル5に電流が流れると電
流により、ケーブル5の周囲に磁界が発生する。このと
き、発生する磁界は電流に比例する。この磁界による磁
束がケーブル5に鎖交するコア2に閉じ込められる。コ
ア2の磁束をギャップ3で磁気センサ部により検出する
ことによりケーブル5に流れる電流を測定する。
The cable 5 has a measuring hole 6 in the core 2 for measurement.
Is arranged so as to penetrate through. When an electric current flows through the cable 5, a magnetic field is generated around the cable 5 due to the electric current. At this time, the generated magnetic field is proportional to the current. The magnetic flux generated by this magnetic field is confined in the core 2 which is linked to the cable 5. The current flowing through the cable 5 is measured by detecting the magnetic flux of the core 2 in the gap 3 by the magnetic sensor unit.

【0017】図2に磁気センサ部1の構成図を示す。磁
気センサ部1は磁気抵抗素子7及びバイアス磁石8より
構成され、磁気抵抗素子7はギャップ3の磁界の印加方
向(矢印A方向)に対して所定の角度θをもってギャッ
プ3内に配設されている。バイアス磁石8はギャップ3
の両側面に配設され、ギャップ3内にギャップ3により
生じる磁界の印加方向(矢印A方向)に対して直交する
方向に一定磁界を発生しており、磁気抵抗素子7にバイ
アス磁界を印加する。
FIG. 2 shows a configuration diagram of the magnetic sensor unit 1. The magnetic sensor unit 1 is composed of a magnetic resistance element 7 and a bias magnet 8. The magnetic resistance element 7 is arranged in the gap 3 at a predetermined angle θ with respect to the magnetic field application direction of the gap 3 (direction of arrow A). There is. Bias magnet 8 has gap 3
Are disposed on both side surfaces of the magnetoresistive element 7 and generate a constant magnetic field in the gap 3 in a direction orthogonal to the application direction of the magnetic field generated by the gap 3 (direction of arrow A), and apply a bias magnetic field to the magnetoresistive element 7. .

【0018】図3に磁気抵抗素子7の構成図を示す。磁
気抵抗素子7は印加磁界に応じて抵抗値が変化する素子
で、ガラス等の絶縁体よりなる基板9上にNi−Fe,
Ni−Co等の磁気抵抗効果を有する強磁性体よりなる
薄膜パターン10,11,12,13を形成してなる。
薄膜パターン10〜13は基板9に平行な矢印X方向に
感度を有するように結晶の磁気異方性が設定され、形成
されており、基板9に平行な方向の印加磁界の強度の測
定が可能な構成とされている。
FIG. 3 shows a block diagram of the magnetoresistive element 7. The magnetoresistive element 7 is an element whose resistance value changes in response to an applied magnetic field, and is formed on a substrate 9 made of an insulating material such as glass by Ni-Fe,
The thin film patterns 10, 11, 12, and 13 made of a ferromagnetic material having a magnetoresistive effect such as Ni-Co are formed.
The thin film patterns 10 to 13 are formed such that the crystal magnetic anisotropy is set so as to have sensitivity in the arrow X direction parallel to the substrate 9, and the strength of the applied magnetic field in the direction parallel to the substrate 9 can be measured. It has been configured.

【0019】薄膜パターン10〜13間には端子14〜
17が接続されていて、薄膜パターン10〜13及び端
子14〜17によりブリッジ回路が構成されている。端
子14,16間には一定電圧が印加され、薄膜パターン
10〜13にはバイアス磁石8によりバイアス磁界が印
加される。
Between the thin film patterns 10 to 13, terminals 14 to
17 is connected, and the thin film patterns 10 to 13 and the terminals 14 to 17 form a bridge circuit. A constant voltage is applied between the terminals 14 and 16, and a bias magnetic field is applied to the thin film patterns 10 to 13 by the bias magnet 8.

【0020】バイアス磁界は基板9に平行で、かつ、検
出磁界の印加方向(矢印X方向)に対して直角な方向
(矢印Y方向)に印加される。バイアス磁界により薄膜
パターン10〜13に一定の磁界が基板9に平行で、か
つ、薄膜パターン10〜13の長手方向に対して一定の
角度(45°)に印加されるため、薄膜パターン10〜
13は略同一の抵抗となる。このため、端子15,17
間の電圧は“0”となる。
The bias magnetic field is applied parallel to the substrate 9 and in a direction (arrow Y direction) perpendicular to the direction of application of the detection magnetic field (arrow X direction). A constant magnetic field is applied to the thin film patterns 10 to 13 by the bias magnetic field in parallel to the substrate 9 and at a constant angle (45 °) with respect to the longitudinal direction of the thin film patterns 10 to 13.
13 has substantially the same resistance. Therefore, the terminals 15 and 17
The voltage between them becomes "0".

【0021】磁気抵抗素子7にバイアス磁界を印加した
状態で、矢印X1 方向に検出磁界が印加されると、その
合成磁界は図3(C)に破線で示すように変化する。こ
のとき、薄膜パターン10,12は合成磁界の印加方向
に対してその長手方向が直交し、薄膜パターン11,1
3は合成磁界の印加方向に対してその長手方向が平行と
なる。このため、薄膜パターン10,12の抵抗が大き
くなり、薄膜パターン11,13の抵抗が小さくなり、
ブリッジ回路の抵抗のバランスがくずれ、端子15,1
7間に電圧が生じる。端子15,17間に生じる電圧は
検出磁界の強度により変化する。
When a detection magnetic field is applied in the direction of arrow X 1 while a bias magnetic field is applied to the magnetoresistive element 7, the combined magnetic field changes as shown by the broken line in FIG. 3 (C). At this time, the longitudinal directions of the thin film patterns 10 and 12 are orthogonal to the application direction of the synthetic magnetic field, and the thin film patterns 11 and 1 are
3 has its longitudinal direction parallel to the application direction of the synthetic magnetic field. Therefore, the resistances of the thin film patterns 10 and 12 increase, and the resistances of the thin film patterns 11 and 13 decrease.
The balance of the resistance of the bridge circuit is lost, and terminals 15 and 1
A voltage develops between 7. The voltage generated between the terminals 15 and 17 changes depending on the strength of the detected magnetic field.

【0022】検出磁界が矢印X2 方向に印加されると、
検出磁界とバイアス磁界との合成磁界は図3(C)に一
点鎖線で示すように変化する。このとき、薄膜パターン
10,12は合成磁界に対して、長手方向が平行とな
り、薄膜パターン11,13は合成磁界に対して長手方
向が直角となる。このため、薄膜パターン10,12の
抵抗は小さく薄膜パターン11,13の抵抗は大きくな
り、ブリッジ回路の抵抗のバランスがくずれ、端子1
5,17間には検出磁界が矢印X1 方向に印加されたと
きとは逆の極性の電圧が生じる。端子15,17間に生
じる電圧は検出磁界の強度により変化する。
When the detection magnetic field is applied in the direction of arrow X 2 ,
The combined magnetic field of the detection magnetic field and the bias magnetic field changes as shown by the alternate long and short dash line in FIG. At this time, the thin film patterns 10 and 12 have their longitudinal directions parallel to the synthetic magnetic field, and the thin film patterns 11 and 13 have their longitudinal directions perpendicular to the synthetic magnetic field. Therefore, the resistances of the thin film patterns 10 and 12 are small, and the resistances of the thin film patterns 11 and 13 are large.
A voltage having a polarity opposite to that when the detection magnetic field is applied in the direction of the arrow X 1 is generated between 5 and 17. The voltage generated between the terminals 15 and 17 changes depending on the strength of the detected magnetic field.

【0023】このように磁気抵抗素子7によれば、端子
15,17間の電圧を測定することにより検出磁界の強
度を測定する構成とされている。以上、磁気抵抗素子7
について説明した。
As described above, according to the magnetoresistive element 7, the strength of the detected magnetic field is measured by measuring the voltage between the terminals 15 and 17. Above, the magnetoresistive element 7
I explained.

【0024】図4に磁気抵抗素子7の変形例の構成図を
示す。本変形例はガラス等よりなる絶縁基板18上に導
電薄膜23と強磁性体薄膜24とを平面的に交互に形成
してなるパターン19〜22が形成されてなる。この導
電薄膜23と磁気抵抗効果を有する強磁性体薄膜24と
の境界線29がバイアス磁界方向Yに対してパターン1
9,21では45°,パターン20,22では−45°
となるいわゆるバーバーポール型に形成されている。
FIG. 4 shows a block diagram of a modification of the magnetoresistive element 7. In this modification, patterns 19 to 22 are formed by alternately forming conductive thin films 23 and ferromagnetic thin films 24 on an insulating substrate 18 made of glass or the like. A boundary line 29 between the conductive thin film 23 and the ferromagnetic thin film 24 having a magnetoresistive effect has a pattern 1 in the bias magnetic field direction Y.
45 degrees for 9 and 21, -45 degrees for patterns 20 and 22
It is formed into a so-called barber pole type.

【0025】パターン19〜22の間には電極25〜2
8が接続され、図3の磁気抵抗素子7と同様にブリッジ
回路が構成されており、電極25,27との間に一定電
圧が印加され、電極26,28間の電圧を測定する。
Between the patterns 19-22 are electrodes 25-2.
8 is connected to form a bridge circuit like the magnetoresistive element 7 of FIG. 3, a constant voltage is applied between the electrodes 25 and 27, and the voltage between the electrodes 26 and 28 is measured.

【0026】本変形例の動作は図3に示す磁気抵抗素子
7と同じであるためその説明は省略する。
Since the operation of this modification is the same as that of the magnetoresistive element 7 shown in FIG. 3, the description thereof will be omitted.

【0027】本変形例では導電薄膜23と強磁性体薄膜
24との境界線29にバイアス磁界方向Yに対して傾き
を設けているため、パターン19〜22自体には傾きを
設ける必要がない。従って、パターン19〜22の形状
を単純化でき、コンパクトなパターンで形成でき、素子
を小型化することができる。
In this modification, since the boundary line 29 between the conductive thin film 23 and the ferromagnetic thin film 24 is inclined with respect to the bias magnetic field direction Y, it is not necessary to incline the patterns 19 to 22 themselves. Therefore, the shapes of the patterns 19 to 22 can be simplified, the patterns can be formed in a compact pattern, and the element can be downsized.

【0028】なお、以上のようなバーバーポール型の磁
気抵抗素子をセンス電流iの方向が異方性方向に45°
となるように構成すれば無バイアス磁界で動作させるこ
ともできる。
In the above-mentioned barber pole type magnetoresistive element, the direction of the sense current i is 45 ° in the anisotropic direction.
It is also possible to operate with a non-biased magnetic field.

【0029】次に再び図2に戻って説明を続ける。磁気
抵抗素子7は検出磁界の印加方向(矢印X方向)に対し
て角度θ傾斜して配設されている。このため、磁気抵抗
素子7には検出磁界をHとすると磁気抵抗素子7に平行
な成分Hcos θが印加されることになる。
Next, returning to FIG. 2 again, the description will be continued. The magnetoresistive element 7 is arranged so as to be inclined by an angle θ with respect to the direction of application of the detection magnetic field (direction of arrow X). Therefore, when the detection magnetic field is H, the component H cos θ parallel to the magnetoresistive element 7 is applied to the magnetoresistive element 7.

【0030】図5に本発明の第1実施例の出力特性図を
示す。図5(A)は検出磁界Hに対する磁気抵抗素子7
の出力レベルを示す。同図中、実線はθ=0,つまり、
検出磁界Hに対して磁気抵抗素子7が平行に配置された
場合の検出磁界Hに対する磁気抵抗素子7の出力特性を
示し、破線はθ=α(−π/2<α<π/2),つま
り、検出磁界Hに対して磁気抵抗素子7がαだけ傾斜し
て配置された場合の検出磁界Hに対する磁気抵抗素子7
の出力特性を示す。
FIG. 5 shows an output characteristic diagram of the first embodiment of the present invention. FIG. 5A shows the magnetoresistive element 7 for the detection magnetic field H.
Indicates the output level of. In the figure, the solid line is θ = 0, that is,
The output characteristics of the magnetoresistive element 7 with respect to the detected magnetic field H when the magnetoresistive element 7 is arranged parallel to the detected magnetic field H are shown, and the broken line shows θ = α (−π / 2 <α <π / 2), That is, the magnetoresistive element 7 with respect to the detection magnetic field H when the magnetoresistive element 7 is arranged to be inclined by α with respect to the detection magnetic field H.
The output characteristics of

【0031】図5(A)に示すように磁気抵抗素子7の
出力は磁気抵抗素子7を検出磁界Hに対して傾斜させる
とその傾斜角度θに応じた分、検出磁界Hに対する出力
の変位が鈍くなることがわかる。つまり、検出感度を低
下させることができる。
As shown in FIG. 5A, when the magnetoresistive element 7 is tilted with respect to the detection magnetic field H, the output is displaced with respect to the detection magnetic field H by an amount corresponding to the tilt angle θ. You can see that it becomes dull. That is, the detection sensitivity can be reduced.

【0032】また、磁気抵抗素子7の飽和磁界HS も検
出磁界Hに対する出力の変位が鈍くなる分、大きく取る
ことができる。図5(B)に磁気抵抗素子7の傾斜角度
θに対する飽和磁界HS の特性を示す。図5(B)に示
すように角度θが大きくなるに従って、飽和磁界HS
増加することがわかる。
Further, the saturation magnetic field H S of the magnetoresistive element 7 can be made large because the displacement of the output with respect to the detection magnetic field H becomes dull. FIG. 5B shows the characteristic of the saturation magnetic field H S with respect to the inclination angle θ of the magnetoresistive element 7. As shown in FIG. 5B, it can be seen that the saturation magnetic field H S increases as the angle θ increases.

【0033】つまり、磁気抵抗素子7の傾斜角度θに応
じて検出結果Hの範囲を拡大させることができる。
That is, the range of the detection result H can be expanded according to the inclination angle θ of the magnetoresistive element 7.

【0034】図6に実際の測定による出力特性図を示
す。図に示すようにθが大きくなるほど出力電圧の傾斜
が緩やかになり、飽和磁界HS1〜HS4も大きくなってい
ることがわかる。
FIG. 6 shows an output characteristic diagram obtained by actual measurement. As shown in the figure, it can be seen that as θ increases, the slope of the output voltage becomes gentler and the saturation magnetic fields H S1 to H S4 also increase.

【0035】図7に素子角度θに対する飽和磁界HS
特性図を示す。同図中、□は実測値、+は理論値(HS
=HS0sec θ)を示す。図に示すように角度θが大きく
なるに従って飽和磁界HS も大きくなることがわかり、
実測値と理論値とが近似していることもわかる。
FIG. 7 shows a characteristic diagram of the saturation magnetic field H S with respect to the element angle θ. In the figure, □ is the measured value, + is the theoretical value (H S
= H S0 sec θ). It can be seen that as the angle θ increases, the saturation magnetic field H S also increases as shown in the figure,
It can also be seen that the measured value and the theoretical value are close.

【0036】図8に素子角度θに対する感度Kの特性図
を示す。同図中、□は実測値、+は理論値(K=K0 co
s θ)を示す。図に示すように角度θが大きくなるに従
って感度K(mV/θe)は小さくなることがわかり、
実測値と理論値とは近似していることがわかる。
FIG. 8 shows a characteristic diagram of the sensitivity K with respect to the element angle θ. In the figure, □ is a measured value, + is a theoretical value (K = K 0 co
s θ). As shown in the figure, the sensitivity K (mV / θe) decreases as the angle θ increases,
It can be seen that the measured value and the theoretical value are close to each other.

【0037】以上のように本実施例によれば、1つの磁
気抵抗素子7の検出磁界Hに対する傾斜角度θを変化さ
せることにより、飽和磁界HS 及び感度Kを調整でき、
測定しようとする磁界に合った飽和磁界HS 及び感度K
が得られ、1つの磁気抵抗素子7を広い検出範囲に適用
できる。このため、安価に磁気センサを構成でき、ま
た、磁気センサの利用可能範囲も拡大できる。
As described above, according to this embodiment, the saturation magnetic field H S and the sensitivity K can be adjusted by changing the inclination angle θ of one magnetoresistive element 7 with respect to the detected magnetic field H.
Saturation magnetic field H S and sensitivity K suitable for the magnetic field to be measured
Therefore, one magnetoresistive element 7 can be applied to a wide detection range. Therefore, the magnetic sensor can be constructed at low cost, and the usable range of the magnetic sensor can be expanded.

【0038】図9に本発明の第2実施例の構成図を示
す。同図中、図1と同一構成部分には同一符号を付し、
その説明は省略する。
FIG. 9 shows a block diagram of the second embodiment of the present invention. In the figure, the same components as those in FIG.
The description is omitted.

【0039】本実施例は検出磁界の方向を折曲させるこ
とにより磁気抵抗素子7に対する検出磁界の方向を調整
する構成としてなる。
In this embodiment, the direction of the detection magnetic field with respect to the magnetoresistive element 7 is adjusted by bending the direction of the detection magnetic field.

【0040】コア32は図1のコア2と略同一の構成で
はあるが、ギャップ3を形成する端面32a,32bに
傾斜が設けてあるところが異なる。
The core 32 has substantially the same structure as the core 2 shown in FIG. 1, except that the end faces 32a and 32b forming the gap 3 are provided with an inclination.

【0041】図10に本発明の第2実施例の要部の構成
図を示す。コア32の端面32aと端面32bとは互い
に平行に形成され、角度θの傾斜をもって形成されてい
る。このため、端面32aから出力磁束は最短距離で端
面32bに到達しようとするため、コア32内を矢印C
方向に流れた磁束はギャップ3で折曲され、略矢印D方
向に曲げられる。このため、第1実施例同様に検出磁界
を磁気抵抗素子7に対して角度をもって印加することが
できる。
FIG. 10 is a block diagram showing the essential parts of the second embodiment of the present invention. The end surface 32a and the end surface 32b of the core 32 are formed in parallel with each other and are formed with an inclination of an angle θ. For this reason, the output magnetic flux from the end face 32a tries to reach the end face 32b in the shortest distance, so that the inside of the core 32 is indicated by the arrow C.
The magnetic flux flowing in the direction is bent at the gap 3 and bent in the direction of the arrow D. Therefore, the detection magnetic field can be applied to the magnetoresistive element 7 at an angle as in the first embodiment.

【0042】端面32a,32bの傾斜角度θを調整す
ることにより検出磁界の磁気抵抗素子7への印加方向を
可変でき、第1実施例と同様な効果を得ることができ
る。
By adjusting the inclination angle θ of the end faces 32a, 32b, the direction of application of the detected magnetic field to the magnetoresistive element 7 can be varied, and the same effect as in the first embodiment can be obtained.

【0043】図11に本発明の第3実施例の構成図を示
す。同図中、図1と同一構成部分には同一符号を付し、
その説明は省略する。
FIG. 11 shows a block diagram of the third embodiment of the present invention. In the figure, the same components as those in FIG.
The description is omitted.

【0044】本実施例は磁気抵抗素子7の傾斜角を可変
できるように構成したものである。図11において、4
1は調整手段を示す。調整手段41はステージ42,回
転軸43,軸受44,調整ツマミ45より構成される。
In this embodiment, the tilt angle of the magnetoresistive element 7 is variable. In FIG. 11, 4
Reference numeral 1 indicates an adjusting means. The adjusting means 41 includes a stage 42, a rotary shaft 43, a bearing 44, and an adjusting knob 45.

【0045】ステージ42は絶縁材よりなり、その上面
に磁気抵抗素子7が固着される。磁気抵抗素子7はステ
ージ32上面に形成された接続パターン46とワイヤ4
7により接続される。接続パターン36はステージ32
の端部に配線され、コネクタ48と接続される。コネク
タ48には接続コード49が接続され、外部の信号処理
部等に接続される。
The stage 42 is made of an insulating material, and the magnetoresistive element 7 is fixed to the upper surface thereof. The magnetoresistive element 7 includes the connection pattern 46 and the wire 4 formed on the upper surface of the stage 32.
Connected by 7. The connection pattern 36 is the stage 32
Is connected to the connector 48. A connection cord 49 is connected to the connector 48 and is connected to an external signal processing unit or the like.

【0046】ステージ42の平行する一対の側端部には
回転軸43が固定される。回転軸43はステージ42の
両側に延出され、軸受44に回転自在に保持される。ま
た回転軸43の一端はバイアス磁石8を貫通してケース
4の外部に延出し、その先端には調整ツマミ45が固定
される。
A rotary shaft 43 is fixed to a pair of parallel side ends of the stage 42. The rotating shaft 43 extends on both sides of the stage 42 and is rotatably held by a bearing 44. Further, one end of the rotary shaft 43 penetrates the bias magnet 8 and extends to the outside of the case 4, and an adjusting knob 45 is fixed to the tip thereof.

【0047】調整ツマミ45を回転させることにより回
転軸33が軸受44に保持されつつ、回転し、ステージ
42が矢印E方向に回転される。
By rotating the adjusting knob 45, the rotary shaft 33 rotates while being held by the bearing 44, and the stage 42 rotates in the direction of arrow E.

【0048】このように、調整ツマミ45を回転させる
ことによりステージ42が矢印E方向に回転し、ステー
ジ42上に搭載された磁気抵抗素子7の角度を調整でき
る。従って、検出磁界Hに対して磁気抵抗素子7の角度
を自由に可変でき、飽和磁界HS 及び感度Kを自由に調
整できるため、広範囲の検出磁界Hに対して対向でき
る。
In this way, by rotating the adjusting knob 45, the stage 42 rotates in the direction of arrow E, and the angle of the magnetoresistive element 7 mounted on the stage 42 can be adjusted. Therefore, the angle of the magnetoresistive element 7 can be freely changed with respect to the detection magnetic field H, and the saturation magnetic field H S and the sensitivity K can be freely adjusted, so that the detection magnetic field H can be opposed to a wide range.

【0049】なお、上記実施例では磁気センサを用いた
電流測定装置に適用しているが、これに限ることはな
く、磁気測定一般に用いることができる。
Although the above embodiment is applied to the current measuring device using the magnetic sensor, the present invention is not limited to this and can be used for general magnetic measurement.

【0050】[0050]

【発明の効果】上述の如く、本発明によれば、磁界が印
加される方向に対して素子の角度を調整することにより
磁界の強さの検出感度を可変できるため、同一の素子で
広範囲の磁界の強さに対応でき、種々の磁気測定に用い
ることができる等の特長を有する。
As described above, according to the present invention, the detection sensitivity of the strength of the magnetic field can be varied by adjusting the angle of the element with respect to the direction in which the magnetic field is applied. It has the features that it can handle the strength of magnetic field and can be used for various magnetic measurements.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の斜視図である。FIG. 1 is a perspective view of a first embodiment of the present invention.

【図2】本発明の第1実施例の要部の斜視図である。FIG. 2 is a perspective view of a main part of the first embodiment of the present invention.

【図3】本発明の第1実施例の磁気抵抗素子の構成図で
ある。
FIG. 3 is a configuration diagram of a magnetoresistive element according to a first embodiment of the present invention.

【図4】本発明の第1実施例の磁気抵抗素子の変形例の
構成図である。
FIG. 4 is a configuration diagram of a modified example of the magnetoresistive element according to the first embodiment of the present invention.

【図5】本発明の第1実施例の出力特性図である。FIG. 5 is an output characteristic diagram of the first embodiment of the present invention.

【図6】本発明の第1実施例の実際の測定による出力特
性図である。
FIG. 6 is an output characteristic diagram of an actual measurement according to the first embodiment of the present invention.

【図7】本発明の第1実施例の素子角度と飽和磁界の関
係を示す図である。
FIG. 7 is a diagram showing a relationship between an element angle and a saturation magnetic field according to the first embodiment of the present invention.

【図8】本発明の第1実施例の素子角度と感度の関係を
示す図である。
FIG. 8 is a diagram showing a relationship between an element angle and sensitivity according to the first embodiment of the present invention.

【図9】本発明の第2実施例の構成図である。FIG. 9 is a configuration diagram of a second embodiment of the present invention.

【図10】本発明の第2実施例の要部の構成図である。FIG. 10 is a configuration diagram of a main part of a second embodiment of the present invention.

【図11】本発明の第3実施例の要部の構成図である。FIG. 11 is a configuration diagram of a main part of a third embodiment of the present invention.

【図12】従来の一例の構成図である。FIG. 12 is a configuration diagram of a conventional example.

【符号の説明】 1 磁気センサ部 2 コア 3 ギャップ 4 ケース 5 ケーブル 6 測定穴 7 磁気抵抗素子 8 バイアス磁石[Explanation of symbols] 1 magnetic sensor part 2 core 3 gap 4 case 5 cable 6 measurement hole 7 magnetoresistive element 8 bias magnet

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一定の方向から印加される磁界に対して
一定の検出感度を有する検出素子(7)に所定の方向か
ら磁界を印加し、該磁界の強さを検出する磁気センサに
おいて、 前記磁界が印加される前記所定の方向に対して前記素子
(7)の相対的角度を可変にすることにより前記磁界の
強さの検出感度の調整を得るように構成することを特徴
とする磁気センサ。
1. A magnetic sensor for detecting a strength of a magnetic field by applying a magnetic field from a predetermined direction to a detection element (7) having a constant detection sensitivity to a magnetic field applied from a constant direction, A magnetic sensor characterized in that the relative angle of the element (7) is made variable with respect to the predetermined direction to which a magnetic field is applied so as to adjust the detection sensitivity of the strength of the magnetic field. .
【請求項2】 前記素子(7)の角度を変化させること
により、前記磁界が印加される方向に対する前記素子
(7)の相対的角度を可変にすることを特徴とする請求
項1記載の磁気センサ。
2. Magnetic according to claim 1, characterized in that the angle of the element (7) is varied to make the relative angle of the element (7) variable with respect to the direction in which the magnetic field is applied. Sensor.
【請求項3】 前記素子(7)に対する前記磁界の印加
方向を折曲させることにより、前記磁界が印加される方
向に対する前記素子(7)の相対的角度を可変にするこ
とを特徴とする請求項1記載の磁気センサ。
3. The relative angle of the element (7) with respect to the direction in which the magnetic field is applied is variable by bending the direction in which the magnetic field is applied to the element (7). Item 1. The magnetic sensor according to Item 1.
【請求項4】 前記素子(7)を前記磁界の印加方向に
対して回転自在に保持する調整手段(31)を有し、前
記調整手段(31)により前記素子(7)の前記磁界の
印加方向に対する傾斜角度(θ)を調整することにより
前記検出感度を可変できる構成としたことを特徴とする
請求項1記載の磁気センサ。
4. An adjusting means (31) for holding the element (7) rotatably with respect to the application direction of the magnetic field, and applying the magnetic field of the element (7) by the adjusting means (31). The magnetic sensor according to claim 1, wherein the detection sensitivity is variable by adjusting an inclination angle (θ) with respect to the direction.
JP5143872A 1993-06-15 1993-06-15 Magnetic sensor Withdrawn JPH0720218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5143872A JPH0720218A (en) 1993-06-15 1993-06-15 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5143872A JPH0720218A (en) 1993-06-15 1993-06-15 Magnetic sensor

Publications (1)

Publication Number Publication Date
JPH0720218A true JPH0720218A (en) 1995-01-24

Family

ID=15348969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5143872A Withdrawn JPH0720218A (en) 1993-06-15 1993-06-15 Magnetic sensor

Country Status (1)

Country Link
JP (1) JPH0720218A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304805A (en) * 2000-04-25 2001-10-31 Tokai Rika Co Ltd Detecting device for rotational angle
JP2007225421A (en) * 2006-02-23 2007-09-06 Yamanashi Nippon Denki Kk Magnetometric sensor, its manufacturing method, rotation detection device and position detection device
JP2008309571A (en) * 2007-06-13 2008-12-25 Ricoh Co Ltd Magnetic sensing apparatus
JP2009002699A (en) * 2007-06-19 2009-01-08 Fdk Corp Magnetic field intensity measuring method, magnetic field intensity sensor, and direct current sensor
JP2012078362A (en) * 2011-11-22 2012-04-19 Fdk Corp Magnetic field strength sensor, dc current sensor, and method for measuring magnetic field strength
WO2014181382A1 (en) * 2013-05-10 2014-11-13 株式会社村田製作所 Magnetic current sensor and current measurement method
JP2015194389A (en) * 2014-03-31 2015-11-05 Tdk株式会社 Magnetic field detection device and multi piece substrate
JP2016537629A (en) * 2013-11-15 2016-12-01 エプコス アクチエンゲゼルシャフトEpcos Ag Apparatus, arrangement and method for measuring current intensity in a primary conductor through which current flows
WO2019043602A1 (en) * 2017-09-01 2019-03-07 Te Connectivity Corporation Hall effect current sensor
JP2020042038A (en) * 2019-11-26 2020-03-19 株式会社東芝 Magnetic sensor, living cell detector, and diagnostic device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304805A (en) * 2000-04-25 2001-10-31 Tokai Rika Co Ltd Detecting device for rotational angle
JP2007225421A (en) * 2006-02-23 2007-09-06 Yamanashi Nippon Denki Kk Magnetometric sensor, its manufacturing method, rotation detection device and position detection device
JP2008309571A (en) * 2007-06-13 2008-12-25 Ricoh Co Ltd Magnetic sensing apparatus
JP2009002699A (en) * 2007-06-19 2009-01-08 Fdk Corp Magnetic field intensity measuring method, magnetic field intensity sensor, and direct current sensor
JP2012078362A (en) * 2011-11-22 2012-04-19 Fdk Corp Magnetic field strength sensor, dc current sensor, and method for measuring magnetic field strength
JPWO2014181382A1 (en) * 2013-05-10 2017-02-23 株式会社村田製作所 Magnetic current sensor and current measuring method
WO2014181382A1 (en) * 2013-05-10 2014-11-13 株式会社村田製作所 Magnetic current sensor and current measurement method
US10184959B2 (en) 2013-05-10 2019-01-22 Murata Manufacturing Co., Ltd. Magnetic current sensor and current measurement method
US10018656B2 (en) 2013-11-15 2018-07-10 Epcos Ag Device, arrangement, and method for measuring a current intensity in a primary conductor through which current flows
JP2016537629A (en) * 2013-11-15 2016-12-01 エプコス アクチエンゲゼルシャフトEpcos Ag Apparatus, arrangement and method for measuring current intensity in a primary conductor through which current flows
JP2015194389A (en) * 2014-03-31 2015-11-05 Tdk株式会社 Magnetic field detection device and multi piece substrate
WO2019043602A1 (en) * 2017-09-01 2019-03-07 Te Connectivity Corporation Hall effect current sensor
CN111033277A (en) * 2017-09-01 2020-04-17 泰连公司 Hall effect current sensor
US10823764B2 (en) 2017-09-01 2020-11-03 Te Connectivity Corporation Hall effect current sensor
JP2020042038A (en) * 2019-11-26 2020-03-19 株式会社東芝 Magnetic sensor, living cell detector, and diagnostic device

Similar Documents

Publication Publication Date Title
JP3529784B2 (en) Sensor using magnetoresistive element
JP4234004B2 (en) Device for measuring the angular position of an object
US20120038348A1 (en) Angle detection apparatus and position detection apparatus
JPH11304414A (en) Magnetism detecting device
JPH0720218A (en) Magnetic sensor
US4875008A (en) Device for sensing the angular position of a shaft
JPH11304413A (en) Magnetism detecting device
ES2024419B3 (en) ANGLE DETECTOR TRANSDUCER.
JPH06147816A (en) Angle sensor
JPH069306Y2 (en) Position detector
JPH07107486B2 (en) Rotary positioner
JP2503481B2 (en) Rotation detector
JPH0473087B2 (en)
JPH03226625A (en) Rotation positioner
JP2000055930A (en) Acceleration sensor
JPS62148813A (en) Magnetic sensor
JP2576136B2 (en) Magnetic direction measurement device
JP3047567B2 (en) Orientation sensor
JPS59142417A (en) Magnetism detecting device
JPH06174752A (en) Current sensor
JPH09287909A (en) Magnetic type position sensor
JPH04282480A (en) Magnetic sensor
JP2022114102A5 (en)
JPH0384417A (en) Rotating position detecting device
JPH0989567A (en) Magnetic azimuth sensor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905