JP2015194389A - Magnetic field detection device and multi piece substrate - Google Patents

Magnetic field detection device and multi piece substrate Download PDF

Info

Publication number
JP2015194389A
JP2015194389A JP2014072244A JP2014072244A JP2015194389A JP 2015194389 A JP2015194389 A JP 2015194389A JP 2014072244 A JP2014072244 A JP 2014072244A JP 2014072244 A JP2014072244 A JP 2014072244A JP 2015194389 A JP2015194389 A JP 2015194389A
Authority
JP
Japan
Prior art keywords
magnetic field
substrate
main surface
field detection
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014072244A
Other languages
Japanese (ja)
Inventor
進 原谷
Susumu Haratani
進 原谷
山口 仁
Hitoshi Yamaguchi
仁 山口
茂 志村
Shigeru Shimura
茂 志村
宮崎 雅弘
Masahiro Miyazaki
雅弘 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2014072244A priority Critical patent/JP2015194389A/en
Publication of JP2015194389A publication Critical patent/JP2015194389A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small magnetic field detection device.SOLUTION: The magnetic field detection device comprises: a substrate; a magnetic field detector having the normal of the principal surface of the substrate as a normal and arranged on a first plane above the principal surface of the substrate; a permanent magnet having the normal of the principal surface of the substrate different from the first plane as a normal and arranged in the magnetization direction on a second plane separated from the substrate above the principal surface of the substrate; an electrode terminal arranged on a third plane different from the first and second planes, separated from the first and second flat planes and the principal surface of the substrate, having the normal of the principal surface of the substrate as a normal, separated from the substrate above the principal surface of the substrate and connected with the magnetic field detector; and an internal wiring connected with the electrode terminal and the magnetic field detector. The magnetic field detector, the permanent magnet, the electrode terminal and the internal wiring are integrally formed above the principal surface of the substrate.

Description

本発明は、磁界を検出する磁界検出装置および多面取り基板に関するものである。   The present invention relates to a magnetic field detection device for detecting a magnetic field and a multi-sided substrate.

磁気抵抗効果素子(以下、GMR/TMR素子とも称する)が用いられた磁気センサが提案され、実用に供されている。GMR/TMR素子は、磁化の向きが所定の方向にピン止めされたピンド層と、磁化の向きが外部磁場に対応して変化するフリー層とを備えた磁気抵抗効果膜から構成され、外部磁界が加わった際、ピンド層の磁化の向きとフリー層の磁化の向きとの相対関係に応じて抵抗値が変化する。磁気センサでは、GMR/TMR素子の抵抗値を測定することで外部磁場の強さを測定できるようになっている。   Magnetic sensors using magnetoresistive elements (hereinafter also referred to as GMR / TMR elements) have been proposed and put into practical use. The GMR / TMR element includes a magnetoresistive film including a pinned layer whose magnetization direction is pinned in a predetermined direction, and a free layer whose magnetization direction changes corresponding to an external magnetic field. Is added, the resistance value changes according to the relative relationship between the magnetization direction of the pinned layer and the magnetization direction of the free layer. In the magnetic sensor, the strength of the external magnetic field can be measured by measuring the resistance value of the GMR / TMR element.

例えば特許文献1では、フリー層の一軸異方性を維持するために、GMR素子の屈曲部近傍、すなわち磁気抵抗効果膜の両端側に、強磁性体などから構成された永久磁石(バイアス磁石)を備えた電流センサが提案されている。   For example, in Patent Document 1, in order to maintain the uniaxial anisotropy of the free layer, a permanent magnet (bias magnet) composed of a ferromagnetic material or the like in the vicinity of the bent portion of the GMR element, that is, on both ends of the magnetoresistive film. Has been proposed.

また、特許文献2では、磁気抵抗効果素子を4つ用いたホイートストンブリッジと補償電流線を設け、外部磁界中に配置して、その勾配を検出する方法が開示されている。この組み合わせにより、外部からの妨害磁界や環境温度による影響を低減するようにしている。   Further, Patent Document 2 discloses a method of detecting a gradient by providing a Wheatstone bridge using four magnetoresistive elements and a compensation current line and arranging them in an external magnetic field. This combination reduces the influence of external disturbing magnetic fields and environmental temperature.

特開2011−196798号公報JP 2011-196798 A 特表平10−506193号公報Japanese National Patent Publication No. 10-506193

しかし、磁界検出装置に関し、全体構成の高精度化に加え、更なる小型化が求められている。本発明はかかる問題に鑑みてなされたもので、小型な磁界検出装置を提供することを目的とする。   However, regarding the magnetic field detection device, in addition to increasing the accuracy of the overall configuration, further miniaturization is required. The present invention has been made in view of such a problem, and an object thereof is to provide a small magnetic field detection device.

本発明は、基板と、基板の主面の法線を法線とする基板の主面上の基板と離間した第1の平面に配置された磁界検出部と、第1の平面とは異なる基板の主面の法線を法線とする基板の主面上の基板と離間した第2の平面に配置された着磁方向を有する永久磁石と、第1および第2の平面とは異なり、第1および第2の平面より基板の主面から離れた基板の主面の法線を法線とする基板の主面上の基板と離間した第3の平面に配置されるとともに、磁界検出部と接続される電極端子と、電極端子および磁界検出部と接続された内部配線とを有し、基板の主面上に磁界検出部と永久磁石と電極端子と内部配線とが一体となって形成されている磁界検出装置である。この様な構成とする事によって、従来の磁界検出装置と比べて、小型化が実現できる。   The present invention relates to a substrate, a magnetic field detector disposed on a first plane separated from the substrate on the main surface of the substrate having a normal to the main surface of the substrate as a normal, and a substrate different from the first plane Unlike the first and second planes, a permanent magnet having a magnetization direction arranged in a second plane spaced from the substrate on the main surface of the substrate having a normal to the main surface of The first and second planes are arranged on a third plane separated from the substrate on the main surface of the substrate having a normal to the main surface of the substrate farther from the main surface of the substrate than the first and second planes; It has an electrode terminal to be connected and an internal wiring connected to the electrode terminal and the magnetic field detection unit, and the magnetic field detection unit, the permanent magnet, the electrode terminal, and the internal wiring are integrally formed on the main surface of the substrate. It is a magnetic field detection device. By adopting such a configuration, the size can be reduced as compared with the conventional magnetic field detection device.

さらに本発明では、磁界検出部と永久磁石と電極端子とはそれぞれ絶縁層で分離されており、各部相互の短絡(電気的)を防止できる。   Furthermore, in the present invention, the magnetic field detection unit, the permanent magnet, and the electrode terminal are separated from each other by an insulating layer, and short-circuiting (electrical) between the respective units can be prevented.

さらに本発明では、基板が例えば導電性材料の場合、基板の主面には絶縁層が形成されており、基板を経由した短絡(電気的)を防止できる。   Furthermore, in the present invention, when the substrate is made of, for example, a conductive material, an insulating layer is formed on the main surface of the substrate, so that a short circuit (electrical) via the substrate can be prevented.

さらに本発明では、永久磁石は、概ね直方体であって、その長手方向が磁極の着磁方向であることにより、永久磁石の減磁を防止できる。   Furthermore, in the present invention, the permanent magnet is generally a rectangular parallelepiped, and the longitudinal direction thereof is the magnetization direction of the magnetic pole, so that demagnetization of the permanent magnet can be prevented.

さらに本発明では、永久磁石の基板の主面の法線方向への投影面は、磁界検出部の基板の主面の法線方向への投影面を全て含むことにより、永久磁石を磁界検出部の側部に置く場合と比べて、素子面積を削減できる。   Furthermore, in the present invention, the projection surface in the normal direction of the main surface of the permanent magnet substrate includes all the projection surfaces in the normal direction of the main surface of the substrate of the magnetic field detection unit. Compared with the case where it is placed on the side, the element area can be reduced.

さらに本発明では、基板の主面の法線を法線とし、第1から第3の平面とは異なり、基板の主面と第3の平面との間に存在する第4の平面に配置されるとともに、磁界検出部が検出する外部磁界を打ち消す方向の補償磁界を磁界検出部に付与するための補償電流を流す補償電流線を有する。この様な構成とする事により、環境温度や外部からのノイズに起因する出力電圧の変化をさらに低減できるため、磁界検出精度が向上する。また、永久磁石と永久磁石の長手方向に延在する電極端子とが重なりを有していてもよい。   Furthermore, in the present invention, the normal line of the main surface of the substrate is the normal line, and the first surface is different from the first to third planes, and is disposed on the fourth plane existing between the main surface of the substrate and the third plane. And a compensation current line for supplying a compensation current for applying a compensation magnetic field in a direction to cancel the external magnetic field detected by the magnetic field detection unit to the magnetic field detection unit. By adopting such a configuration, the change in the output voltage caused by the environmental temperature and external noise can be further reduced, so that the magnetic field detection accuracy is improved. Further, the permanent magnet and the electrode terminal extending in the longitudinal direction of the permanent magnet may have an overlap.

さらに本発明では、基板の主面の法線から見て、永久磁石と永久磁石の長手方向に延在する補償電流線に接続された電極端子とが重なりを有してもよく、磁界検出装置が基板の主面上に複数存在する多面取り基板としてもよい。   Further, in the present invention, the permanent magnet and the electrode terminal connected to the compensation current line extending in the longitudinal direction of the permanent magnet as viewed from the normal line of the main surface of the substrate may have an overlap. May be a multi-sided substrate in which a plurality of are present on the main surface of the substrate.

さらに本発明では、多面取り基板に着磁用磁界を印加することにより着磁方向が決定された磁界検出装置としてもよく、多面取り基板に着磁用磁界を印加することにより着磁方向が決定されるため、多面取り基板の切り離し後に着磁する場合と比べて個々の着磁方向のバラツキが生じない。   Furthermore, in the present invention, a magnetic field detection device in which the magnetization direction is determined by applying a magnetizing magnetic field to a multi-sided substrate, or the magnetization direction is determined by applying a magnetizing magnetic field to a multi-sided substrate. Therefore, there is no variation in the individual magnetization directions as compared with the case where magnetization is performed after the multi-sided substrate is separated.

本発明によれば、小型な磁界検出装置を提供することが可能となる。   According to the present invention, it is possible to provide a small magnetic field detection device.

図1は磁界検出装置の上面図(永久磁石9を含む面)である。FIG. 1 is a top view of the magnetic field detection device (a surface including the permanent magnet 9). 図2は磁界検出装置の断面図(図1A−B線)である。FIG. 2 is a cross-sectional view (line A-B in FIG. 1) of the magnetic field detection device. 図3は磁気抵抗効果素子20と内部配線2の上面図である。FIG. 3 is a top view of the magnetoresistive effect element 20 and the internal wiring 2. 図4は磁気抵抗効果素子20と補償電流線4の上面図である。FIG. 4 is a top view of the magnetoresistive effect element 20 and the compensation current line 4.

図1は本実施形態の磁界検出装置1の上面図であり、点線で囲まれた部分が磁界検出装置1を示す。図2は図1のA−B面の断面図であり、点線で囲まれた部分が磁界検出装置1を示す。図2に示すとおり、基板5の主面の法線を法線とする基板5の主面上の基板5と離間した第1の平面には、磁気抵抗効果素子20である磁界検出部が配置される。また、第1の平面とは異なり、基板5の主面の法線を法線とする基板5の主面上の基板と離間した第2の平面には、後述するバイアス磁界印加のための着磁方向を有する永久磁石9を配置する。さらに、第1および第2の平面とは異なり、第1および第2の平面より基板5の主面から離れた基板5の主面の法線を法線とする基板5の主面上の基板と離間した第3の平面には、電極端子3が配置される。図3は、第1の平面の平面図であり、磁気抵抗効果素子20及び、内部配線2の一部を示す。図3に示す内部配線2の端部は、基板5の主面の法線方向に立ち上がるビア(内部配線2の一部)によって図1の電極端子3と接続される。以下に各構成について説明する。   FIG. 1 is a top view of a magnetic field detection device 1 according to the present embodiment, and a portion surrounded by a dotted line indicates the magnetic field detection device 1. FIG. 2 is a cross-sectional view taken along the line A-B in FIG. 1, and a portion surrounded by a dotted line indicates the magnetic field detection device 1. As shown in FIG. 2, a magnetic field detection unit 20, which is a magnetoresistive element 20, is arranged on a first plane separated from the substrate 5 on the main surface of the substrate 5 with the normal line of the main surface of the substrate 5 as a normal line. Is done. Further, unlike the first plane, a second plane spaced from the substrate on the main surface of the substrate 5 having the normal line of the main surface of the substrate 5 as a normal line is attached to a bias magnetic field application described later. A permanent magnet 9 having a magnetic direction is arranged. Further, unlike the first and second planes, the substrate on the main surface of the substrate 5 having the normal line of the main surface of the substrate 5 away from the main surface of the substrate 5 as compared with the first and second planes. The electrode terminal 3 is disposed on a third plane spaced apart from each other. FIG. 3 is a plan view of the first plane, showing the magnetoresistive effect element 20 and a part of the internal wiring 2. The end portion of the internal wiring 2 shown in FIG. 3 is connected to the electrode terminal 3 of FIG. 1 by a via (a part of the internal wiring 2) rising in the normal direction of the main surface of the substrate 5. Each configuration will be described below.

基板5は、シリコンやAlTiC(アルティック)などの半導体や導電体又はアルミナやガラス等の絶縁体から構成されるものであり、その形態は特に問われるものではない。   The substrate 5 is made of a semiconductor such as silicon or AlTiC (Altic), a conductor, or an insulator such as alumina or glass, and the form thereof is not particularly limited.

第1の平面に配置された磁界検出装置1が有する磁気抵抗効果素子20は、一般に、一定方向に固着された磁化方向を有する固着層と、非磁性体の導体、または、絶縁体からなる中間層と、外部磁界に応じて磁化方向が変化する自由層とを含み、固着層と自由層で中間層を挟む積層体を有している。なお、中間層が導体の場合は、一般にGMR(巨大磁気抵抗効果素子)と呼ばれ、絶縁体の場合は、TMR(トンネル型磁気抵抗効果素子)と呼ばれる。磁気抵抗効果素子20の抵抗は、固着層の磁化方向と自由層の平均の磁化方向の角度に応じて変化する。自由層は、例えば、NiFe等の軟磁性膜から構成される。中間層は、例えば、Cuなどの導電体膜、または、アルミナ・酸化マグネシウム等の絶縁体膜から構成される。固定層は、反強磁性膜と磁化固定膜からなり、磁化固定膜が中間層と接する。反強磁性膜は例えばIrMnやPtMnなどの反強磁性Mn合金などから構成される。磁化固定層は、例えば、CoFeやNiFeなどの強磁性体から構成されるか、あるいは、Ruの薄膜層をCoFe等で挟む構成をとっても良い。   The magnetoresistive effect element 20 included in the magnetic field detection device 1 arranged in the first plane is generally an intermediate layer composed of a pinned layer having a magnetization direction fixed in a fixed direction and a nonmagnetic conductor or insulator. A layered body including a layer and a free layer whose magnetization direction changes according to an external magnetic field, and an intermediate layer sandwiched between the fixed layer and the free layer. When the intermediate layer is a conductor, it is generally called a GMR (giant magnetoresistive element), and when it is an insulator, it is called a TMR (tunnel type magnetoresistive element). The resistance of the magnetoresistive element 20 changes according to the angle between the magnetization direction of the pinned layer and the average magnetization direction of the free layer. The free layer is made of a soft magnetic film such as NiFe, for example. The intermediate layer is made of, for example, a conductor film such as Cu or an insulator film such as alumina / magnesium oxide. The fixed layer includes an antiferromagnetic film and a magnetization fixed film, and the magnetization fixed film is in contact with the intermediate layer. The antiferromagnetic film is made of, for example, an antiferromagnetic Mn alloy such as IrMn or PtMn. For example, the magnetization fixed layer may be made of a ferromagnetic material such as CoFe or NiFe, or may be configured such that a Ru thin film layer is sandwiched between CoFe and the like.

次に、永久磁石9の機能について説明する。自由層を構成する軟磁性膜は、外部磁界がない場合、膜面内で異なる磁化方向を持つ複数の磁区を構成している。それぞれの磁区の磁化方向は、軟磁性膜に印加された外部磁界の履歴に応じて変化する(磁気ヒステリシス)ため、無磁界状態では各磁区の磁化方向の平均値である自由層の磁化方向は一定方向を取らず、ばらつきを持ってしまう。従って、自由層の磁化方向が一定方向を取らない場合、無磁界状態での磁気抵抗効果素子20の抵抗が一定値を取らない事になるため好ましくない。また、外部磁界印加によって自由層の磁化方向は変化するが、磁区毎に変化の様相が異なるため、磁化方向変化が滑らかでなくなる現象、すなわちバルクハウゼンノイズが生じる。これらの事象を避けるために、自由層の磁化方向を安定させる必要がある。ここで、磁化方向の安定化のために、第2の平面に着磁方向を有する永久磁石9を配置する。なお、無磁界状態での自由層の長手方向に磁化方向を揃えるように永久磁石9を配置することが好ましい。ここで、図3に示されるように、基板5の法線方向から見た場合、磁気抵抗素子20と永久磁石9は長方形となっており、それぞれの長手方向は平行となっている。従って、永久磁石9を長手方向に着磁することで、磁気抵抗素子20の自由層の長手方向に磁化を揃えることが可能となる。永久磁石9からの磁界すなわちバイアス磁界によって、自由層の磁区は単磁区状態となるため、特に外部磁界が自由層の長手方向と直交する場合、磁気ヒステリシスやバルクハウゼンノイズの発生を抑制できる。永久磁石9は例えば、Coを主体とした合金や、希土類磁石、またはフェライト磁石などが好ましい。   Next, the function of the permanent magnet 9 will be described. The soft magnetic film constituting the free layer constitutes a plurality of magnetic domains having different magnetization directions in the film surface when there is no external magnetic field. Since the magnetization direction of each magnetic domain changes according to the history of the external magnetic field applied to the soft magnetic film (magnetic hysteresis), the magnetization direction of the free layer, which is the average value of the magnetization directions of each magnetic domain in the absence of a magnetic field, is It does not take a certain direction and has variations. Therefore, when the magnetization direction of the free layer does not take a constant direction, the resistance of the magnetoresistive effect element 20 in a non-magnetic field state does not take a constant value, which is not preferable. In addition, although the magnetization direction of the free layer changes due to the application of an external magnetic field, the phenomenon of change in magnetization direction varies depending on the magnetic domain, that is, Barkhausen noise occurs. In order to avoid these events, it is necessary to stabilize the magnetization direction of the free layer. Here, in order to stabilize the magnetization direction, a permanent magnet 9 having a magnetization direction is arranged on the second plane. In addition, it is preferable to arrange the permanent magnet 9 so that the magnetization direction is aligned with the longitudinal direction of the free layer in the non-magnetic field state. Here, as shown in FIG. 3, when viewed from the normal direction of the substrate 5, the magnetoresistive element 20 and the permanent magnet 9 are rectangular, and their longitudinal directions are parallel to each other. Therefore, by magnetizing the permanent magnet 9 in the longitudinal direction, it becomes possible to align the magnetization in the longitudinal direction of the free layer of the magnetoresistive element 20. Since the magnetic domain from the permanent magnet 9, that is, the bias magnetic field, causes the magnetic domain of the free layer to be in a single domain state, particularly when the external magnetic field is orthogonal to the longitudinal direction of the free layer, generation of magnetic hysteresis and Barkhausen noise can be suppressed. For example, the permanent magnet 9 is preferably an alloy mainly composed of Co, a rare earth magnet, or a ferrite magnet.

電極端子3は、第3の平面に配置され、内部配線2の一端と接続する。内部配線2の他端は磁気抵抗効果素子20と接続されており、磁気抵抗効果素子20の抵抗変化を出力として外部に取り出せる。電極端子3及び内部配線2は例えばAuやAl、Ag、Cu等の導体金属やこれらの合金などが好ましい。   The electrode terminal 3 is disposed on the third plane and is connected to one end of the internal wiring 2. The other end of the internal wiring 2 is connected to the magnetoresistive effect element 20, and the resistance change of the magnetoresistive effect element 20 can be taken out as an output. The electrode terminal 3 and the internal wiring 2 are preferably made of a conductive metal such as Au, Al, Ag, or Cu, or an alloy thereof.

基板5上には、磁気抵抗効果素子20である磁界検出部、永久磁石9、内部配線2を配置し、基板の法線方向から見た場合に、磁気抵抗効果素子20である磁界検出部、永久磁石9、内部配線2の外側に電極端子3を配置する。それぞれの各部は、フォトリソグラフィによる加工を用いる薄膜プロセスにて一体形成することにより、ミクロンオーダーの微細な寸法にて形成できる。さらに、一体形成することにより、永久磁石9と磁界検出部の間隔が決まる。よって、永久磁石9を一体形成せず、電極端子3が配置された第3の平面より上の平面上に永久磁石9を配置する場合に比べて、磁気抵抗効果素子20である磁界検出部に及ぼす永久磁石9の磁界が強くなるため、基板5の主面と平行な面内で永久磁石9を小型化できる。これらの理由により、磁界検出装置1の小型化が実現できる。また、永久磁石9の組み付け誤差が殆ど生じないため、バイアス磁界方向の個体差が抑制できる。   On the substrate 5, the magnetic field detection unit that is the magnetoresistive effect element 20, the permanent magnet 9, and the internal wiring 2 are arranged, and when viewed from the normal direction of the substrate, the magnetic field detection unit that is the magnetoresistive effect element 20, The electrode terminals 3 are arranged outside the permanent magnet 9 and the internal wiring 2. Each part can be formed with fine dimensions on the order of microns by being integrally formed by a thin film process using processing by photolithography. Furthermore, the distance between the permanent magnet 9 and the magnetic field detection unit is determined by forming them integrally. Therefore, compared with the case where the permanent magnet 9 is not integrally formed and the permanent magnet 9 is arranged on a plane above the third plane on which the electrode terminals 3 are arranged, the magnetic field detection unit 20 which is the magnetoresistive effect element 20 is used. Since the magnetic field of the permanent magnet 9 exerted becomes stronger, the permanent magnet 9 can be reduced in size in a plane parallel to the main surface of the substrate 5. For these reasons, the magnetic field detection device 1 can be downsized. Further, since the assembly error of the permanent magnet 9 hardly occurs, individual differences in the bias magnetic field direction can be suppressed.

ここで、第1の平面と第2の平面とは第1の平面が第2の平面より基板側に存在することとして説明したが、第2の平面が第1の平面より基板5側に存在していてもよい。つまり、基板5の主面から永久磁石9、磁気抵抗効果素子20である磁界検出部の順に基板の主面の上部に存在することとしても良い。この場合であっても、永久磁石9と磁気抵抗効果素子20である磁界検出部の距離を電極端子3が配置された第3の平面より上の平面上に永久磁石9を配置する場合に比べて、電極端子3の厚みは十分厚いので、永久磁石9と磁界検出部との距離を小さい値に設定することが可能となり、永久磁石9の小型化が可能となる。   Here, the first plane and the second plane have been described on the assumption that the first plane exists on the substrate side with respect to the second plane, but the second plane exists on the substrate 5 side with respect to the first plane. You may do it. In other words, the permanent magnet 9 and the magnetic field detection unit 20 that is the magnetoresistive effect element 20 may be present on the upper surface of the main surface of the substrate in order from the main surface of the substrate 5. Even in this case, the distance between the permanent magnet 9 and the magnetic field detection unit 20 that is the magnetoresistive effect element 20 is set as compared with the case where the permanent magnet 9 is arranged on a plane above the third plane on which the electrode terminals 3 are arranged. Since the electrode terminal 3 is sufficiently thick, the distance between the permanent magnet 9 and the magnetic field detector can be set to a small value, and the permanent magnet 9 can be downsized.

なお、実際の製造上の制約からは、基板5の主面から磁気抵抗効果素子20である磁界検出部、永久磁石9の順に基板の主面の上部に存在することが好ましい。これは、製造時に永久磁石9の磁界の影響を磁気抵抗効果素子20である磁界検出部が受ける場合があるので、磁気抵抗効果素子20である磁界検出部を形成した後に、永久磁石9を形成する方が望ましいためである。   In terms of actual manufacturing restrictions, it is preferable that the magnetic field detection unit 20 that is the magnetoresistive effect element 20 and the permanent magnet 9 exist in the order from the main surface of the substrate 5 to the upper portion of the main surface of the substrate. This is because the magnetic field detection unit that is the magnetoresistive effect element 20 may be affected by the magnetic field of the permanent magnet 9 at the time of manufacture. Therefore, after the magnetic field detection unit that is the magnetoresistive effect element 20 is formed, the permanent magnet 9 is formed. This is because it is preferable to do this.

図2には示していないが、磁界検出部と永久磁石9と電極端子3とはそれぞれ絶縁層で分離されており、各部相互の電気的な短絡を防止できる。又、基板が導電性材料の場合、基板5の主面には絶縁層が形成されており、基板を経由した電気的短絡を防止できる。絶縁層としては、例えばアルミナ、窒化アルミ、酸化シリコン、窒化シリコン等の無機物や、ポリイミド等の有機物が好ましい。   Although not shown in FIG. 2, the magnetic field detection part, the permanent magnet 9 and the electrode terminal 3 are separated by an insulating layer, respectively, and electrical short-circuits between each part can be prevented. When the substrate is made of a conductive material, an insulating layer is formed on the main surface of the substrate 5, and an electrical short circuit through the substrate can be prevented. As the insulating layer, for example, inorganic materials such as alumina, aluminum nitride, silicon oxide, and silicon nitride, and organic materials such as polyimide are preferable.

永久磁石9は、図1、図2に例示されるように、概ね直方体であって、その長手方向が磁極の着磁方向であることが好ましい。これにより、永久磁石9の減磁を防止できる。又、一方の磁極から生じる磁界を打ち消す他方の磁極からの影響を抑制できる。又、自由層の長手方向と磁極の着磁方向とが平行であることが好ましい。これにより、自由層の磁化方向を安定させるこが可能となる。ちなみに、図1、2には、N極、S極を例示しているが、両極はこの逆でも良い。なお、永久磁石9の着磁については、基板5に磁界検出装置1が複数個存在する多面取り基板(図示せず)に対して、同時に一括して行う事が好ましい。この場合、複数の磁界検出装置1に対応する永久磁石9の着磁方向が同時に一括して決定されるため、多面取り基板(図示せず)の切り離し後に着磁する場合と比べてバイアス磁界方向の個体差が低減できる。なお、同時に一括しての着磁は、磁界検出装置1を製造する工程上、永久磁石9がパターニング形成された後の多面取り基板の切り離し前であれば、特に順番が問われるものではない。具体的な着磁方法としては、常温で、多面取り基板全面に着磁用磁界を印加する。着磁用磁界の印加は、多面取り基板全面に均一にかつ同一方向になるように印加する。着磁用磁界の印加方向は自由層の長手方向と平行であることが好ましい。つまり、自由層の長手方向と磁極の着磁方向とが平行であることが好ましい。   As illustrated in FIGS. 1 and 2, the permanent magnet 9 is generally a rectangular parallelepiped, and the longitudinal direction thereof is preferably the magnetization direction of the magnetic poles. Thereby, demagnetization of the permanent magnet 9 can be prevented. Moreover, the influence from the other magnetic pole that cancels out the magnetic field generated from one magnetic pole can be suppressed. Further, it is preferable that the longitudinal direction of the free layer and the magnetization direction of the magnetic pole are parallel. As a result, the magnetization direction of the free layer can be stabilized. Incidentally, although FIGS. 1 and 2 exemplify the N pole and the S pole, both poles may be reversed. The permanent magnet 9 is preferably magnetized simultaneously on a multi-sided substrate (not shown) having a plurality of magnetic field detection devices 1 on the substrate 5. In this case, since the magnetization directions of the permanent magnets 9 corresponding to the plurality of magnetic field detection devices 1 are determined at the same time, the bias magnetic field direction as compared with the case where magnetization is performed after the multi-sided substrate (not shown) is separated. Individual differences can be reduced. Note that the order of the simultaneous magnetization is not particularly limited as long as it is before the separation of the multi-sided substrate after the permanent magnet 9 is patterned in the process of manufacturing the magnetic field detection device 1. As a specific magnetization method, a magnetic field for magnetization is applied to the entire surface of the multi-sided substrate at room temperature. The magnetization magnetic field is applied so as to be uniform and in the same direction over the entire surface of the multi-sided substrate. The application direction of the magnetic field for magnetization is preferably parallel to the longitudinal direction of the free layer. That is, the longitudinal direction of the free layer and the magnetization direction of the magnetic pole are preferably parallel.

図1〜図3に例示されるように、永久磁石9の基板5の主面の法線方向への投影面は、磁界検出部の基板5の主面の法線方向への投影面を全て含むように配置する事が好ましい。これにより、永久磁石9を磁界検出部の側部に置く場合と比べて、磁界検出装置1全体の面積を削減できる。なお、永久磁石9の投影面に含まれないように磁界検出部を配置した場合、磁界検出部に及ぼす永久磁石9の磁界が均一でなくなったり、弱くなったりするため好ましくない。つまり、永久磁石9の基板5の主面の法線方向への投影面は、磁界検出部が有する磁界検出素子である磁気抵抗素子20の基板5の主面の法線方向への投影面を全て含むように配置することにより、永久磁石9が発生する磁界を磁界検出部に対して効率的に利用することが可能となっている。   As illustrated in FIGS. 1 to 3, the projection surface in the normal direction of the main surface of the substrate 5 of the permanent magnet 9 is the same as the projection surface in the normal direction of the main surface of the substrate 5 of the magnetic field detection unit. It is preferable to arrange so as to include. Thereby, the area of the whole magnetic field detection apparatus 1 can be reduced compared with the case where the permanent magnet 9 is placed on the side of the magnetic field detection unit. If the magnetic field detector is arranged so as not to be included in the projection surface of the permanent magnet 9, the magnetic field of the permanent magnet 9 exerted on the magnetic field detector is not uniform or weak, which is not preferable. That is, the projection surface in the normal direction of the main surface of the substrate 5 of the permanent magnet 9 is the projection surface in the normal direction of the main surface of the substrate 5 of the magnetoresistive element 20 that is a magnetic field detection element included in the magnetic field detection unit. By disposing all of them, the magnetic field generated by the permanent magnet 9 can be efficiently used for the magnetic field detector.

さらに本実施形態では、図4に例示する補償電流線4を配置すると良い。補償電流線4は、基板5の主面の法線を法線とし、第1から第3の平面とは異なり、基板5の主面と第3の平面との間に存在する第4の平面に配置されるとともに、磁界検出部が検出する外部磁界を打ち消す方向の補償磁界を磁界検出部に付与するための補償電流を流す。なお、磁界検出部が検出する外部検出磁界の方向と、永久磁石9が発生するバイアス磁界とは概ね直交する。つまり、磁界検出部である磁気抵抗効果素子20の長手方向と概ね直交する外部磁界を磁界検出部が検出する。補償電流線4の一端は、基板5の主面の法線方向に立ち上がる内部配線2(図示せず)の一部であるビアによって、電極端子3Aと接続される。補償電流線4の他端は、図示しない内部配線2によって電極端子3Bと接続される。この様な構成とする事により、環境温度や外部からのノイズに起因する磁気抵抗効果素子の抵抗の予期せぬ変化による悪影響を低減できるため、磁界検出精度が向上する。補償電流線4は、例えば、Cu等の導体から構成され、磁気抵抗効果素子20とは図示されない絶縁層で隔てられる。絶縁層としては、例えばアルミナ、窒化アルミ、酸化シリコン、窒化シリコン等の無機物や、ポリイミド等の有機物が好ましい。   Furthermore, in this embodiment, it is preferable to arrange the compensation current line 4 illustrated in FIG. The compensation current line 4 has a normal line of the main surface of the substrate 5 as a normal line, and differs from the first to third planes, and is a fourth plane existing between the main surface of the substrate 5 and the third plane. And a compensation current for applying a compensation magnetic field in a direction to cancel the external magnetic field detected by the magnetic field detection unit to the magnetic field detection unit. Note that the direction of the external detection magnetic field detected by the magnetic field detection unit and the bias magnetic field generated by the permanent magnet 9 are generally orthogonal. That is, the magnetic field detection unit detects an external magnetic field that is substantially orthogonal to the longitudinal direction of the magnetoresistive effect element 20 that is the magnetic field detection unit. One end of the compensation current line 4 is connected to the electrode terminal 3 </ b> A by a via that is a part of the internal wiring 2 (not shown) rising in the normal direction of the main surface of the substrate 5. The other end of the compensation current line 4 is connected to the electrode terminal 3B by an internal wiring 2 (not shown). By adopting such a configuration, it is possible to reduce an adverse effect caused by an unexpected change in the resistance of the magnetoresistive effect element due to the environmental temperature or external noise, thereby improving the magnetic field detection accuracy. The compensation current line 4 is made of a conductor such as Cu, and is separated from the magnetoresistive element 20 by an insulating layer (not shown). As the insulating layer, for example, inorganic materials such as alumina, aluminum nitride, silicon oxide, and silicon nitride, and organic materials such as polyimide are preferable.

ここで、図1において、基板5の主面の法線から見て永久磁石9は電極端子3と重なりを有していないが、永久磁石9のX方向に延在させ、電極端子3と重なるように配置してもよい。この場合、永久磁石9のX方向の端部が磁気抵抗素子20より離れることになるので、永久磁石9がX方向に着磁されている場合、磁気抵抗素子20はよりX方向に平行な磁界が永久磁石20から付与されることになるので、磁気抵抗素子20の自由層がより安定となる。また、永久磁石9をX方向に延在させることなく、永久磁石9と電極端子3が重なりを有していてもよく、磁界検出装置1の小型化が可能となる。例えば、補償電流線4の下部(基板5側)に永久磁石9を配置することで、基板5の主面の法線から見て容易に永久磁石9と図4に示される補償電流線4に接続された電極端子(3A、3B)とが重なりを有する構造とすることが可能となる。   Here, in FIG. 1, the permanent magnet 9 does not overlap the electrode terminal 3 when viewed from the normal line of the main surface of the substrate 5, but extends in the X direction of the permanent magnet 9 and overlaps the electrode terminal 3. You may arrange as follows. In this case, since the end of the permanent magnet 9 in the X direction is separated from the magnetoresistive element 20, when the permanent magnet 9 is magnetized in the X direction, the magnetoresistive element 20 is more magnetic field parallel to the X direction. Is provided from the permanent magnet 20, so that the free layer of the magnetoresistive element 20 becomes more stable. Further, the permanent magnet 9 and the electrode terminal 3 may overlap without extending the permanent magnet 9 in the X direction, and the magnetic field detection device 1 can be downsized. For example, by arranging the permanent magnet 9 below the compensation current line 4 (on the substrate 5 side), the permanent magnet 9 and the compensation current line 4 shown in FIG. 4 can be easily seen from the normal line of the main surface of the substrate 5. It becomes possible to have a structure in which the connected electrode terminals (3A, 3B) overlap.

なお、磁界検出部は磁気抵抗素子20であるとして説明したが、磁界検出部は一定方向に固着された磁化方向を有する固着層を有さないAMR素子でもよい。なお、本実施形態における磁界検出部は磁界に感応する素子を指す。   Although the magnetic field detection unit has been described as being the magnetoresistive element 20, the magnetic field detection unit may be an AMR element having no fixed layer having a magnetization direction fixed in a certain direction. In addition, the magnetic field detection part in this embodiment points out the element which is sensitive to a magnetic field.

磁界検出装置、および、磁界検出装置を使用する機器に適用可能である。   The present invention is applicable to a magnetic field detection device and a device that uses the magnetic field detection device.

1 磁界検出装置
2 内部配線
3 電極端子
4 補償電流線
5 基板
9 永久磁石
20 磁気抵抗効果素子
DESCRIPTION OF SYMBOLS 1 Magnetic field detector 2 Internal wiring 3 Electrode terminal 4 Compensation current line 5 Substrate 9 Permanent magnet 20 Magnetoresistive element

Claims (9)

基板と、
前記基板の主面の法線を法線とする前記基板の主面上の前記基板と離間した第1の平面に配置された磁界検出部と、
前記第1の平面とは異なる前記基板の主面の法線を法線とする前記基板の主面上の前記基板と離間した第2の平面に配置された着磁方向を有する永久磁石と、
前記第1および第2の平面とは異なり、前記第1および第2の平面より前記基板の主面から離れた前記基板の主面の法線を法線とする前記基板の主面上の前記基板と離間した第3の平面に配置されるとともに、前記磁界検出部と接続される電極端子と、
前記電極端子および前記磁界検出部と接続された内部配線とを有し、
前記基板の主面上に前記磁界検出部と前記永久磁石と前記電極端子と前記内部配線とが一体となって形成されている磁界検出装置。
A substrate,
A magnetic field detector disposed on a first plane spaced apart from the substrate on the main surface of the substrate having a normal to the main surface of the substrate;
A permanent magnet having a magnetization direction disposed on a second plane spaced from the substrate on the main surface of the substrate, the normal line being different from the first plane and having a normal to the main surface of the substrate as a normal line;
Unlike the first and second planes, the normal on the main surface of the substrate having a normal to the main surface of the substrate that is further away from the main surface of the substrate than the first and second planes. An electrode terminal disposed on a third plane separated from the substrate and connected to the magnetic field detector;
An internal wiring connected to the electrode terminal and the magnetic field detector;
The magnetic field detection apparatus in which the magnetic field detection unit, the permanent magnet, the electrode terminal, and the internal wiring are integrally formed on the main surface of the substrate.
前記磁界検出部と前記永久磁石と前記端子電極とはそれぞれ絶縁層で分離されている請求項1記載の磁界検出装置。   The magnetic field detection device according to claim 1, wherein the magnetic field detection unit, the permanent magnet, and the terminal electrode are separated by an insulating layer. 前記基板の主面には絶縁層が形成されている請求項1または2に記載の磁界検出装置。   The magnetic field detection device according to claim 1, wherein an insulating layer is formed on a main surface of the substrate. 前記永久磁石は、概ね直方体であって、その長手方向が磁極の前記着磁方向である請求項1ないし3のいずれか一項に記載の磁界検出装置。   4. The magnetic field detection device according to claim 1, wherein the permanent magnet is substantially a rectangular parallelepiped, and a longitudinal direction thereof is the magnetization direction of the magnetic pole. 5. 前記永久磁石の前記基板の主面の法線方向への投影面は、磁界検出部の前記法線方向への投影面を全て含む請求項1ないし4のいずれか一項に記載の磁界検出装置。   5. The magnetic field detection device according to claim 1, wherein the projection surface of the permanent magnet in the normal direction of the main surface of the substrate includes all the projection surfaces of the magnetic field detection unit in the normal direction. . 前記基板の主面の法線を法線とし、前記第1から第3の平面とは異なり、前記基板の主面と前記第3の平面との間に存在する第4の平面に配置されるとともに、前記磁界検出部が検出する外部磁界を打ち消す方向の補償磁界を前記磁界検出部に付与するための補償電流を流す補償電流線を有する請求項1ないし5のいずれか一項に記載の磁界検出装置。   Different from the first to third planes, the normal line of the main surface of the substrate is a normal line, and is arranged on a fourth plane existing between the main surface of the substrate and the third plane. The magnetic field according to any one of claims 1 to 5, further comprising a compensation current line through which a compensation current for applying a compensation magnetic field in a direction for canceling an external magnetic field detected by the magnetic field detection unit to the magnetic field detection unit. Detection device. 前記基板の主面の法線から見て、前記永久磁石と前記永久磁石の長手方向に延在する前記補償電流線に接続された電極端子とが重なりを有する請求項6に記載の磁界検出装置。   The magnetic field detection device according to claim 6, wherein the permanent magnet and an electrode terminal connected to the compensation current line extending in a longitudinal direction of the permanent magnet have an overlap as viewed from a normal line of the main surface of the substrate. . 請求項1ないし7のいずれか一項に記載の前記磁界検出装置が前記基板の主面上に複数存在する多面取り基板。   A multi-sided substrate in which a plurality of the magnetic field detection devices according to claim 1 are present on the main surface of the substrate. 請求項8に記載の前記多面取り基板に着磁用磁界を印加することにより前記着磁方向が決定された磁界検出装置。   9. A magnetic field detection apparatus in which the magnetization direction is determined by applying a magnetization magnetic field to the multi-sided substrate according to claim 8.
JP2014072244A 2014-03-31 2014-03-31 Magnetic field detection device and multi piece substrate Pending JP2015194389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014072244A JP2015194389A (en) 2014-03-31 2014-03-31 Magnetic field detection device and multi piece substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014072244A JP2015194389A (en) 2014-03-31 2014-03-31 Magnetic field detection device and multi piece substrate

Publications (1)

Publication Number Publication Date
JP2015194389A true JP2015194389A (en) 2015-11-05

Family

ID=54433555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014072244A Pending JP2015194389A (en) 2014-03-31 2014-03-31 Magnetic field detection device and multi piece substrate

Country Status (1)

Country Link
JP (1) JP2015194389A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018054460A (en) * 2016-09-29 2018-04-05 大同特殊鋼株式会社 Thin film magnetic sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720218A (en) * 1993-06-15 1995-01-24 Fujitsu Ltd Magnetic sensor
US5592082A (en) * 1994-09-29 1997-01-07 Alps Electric Co., Ltd. Magnetic sensor with permanent magnet bias layers
JP2000088941A (en) * 1998-09-11 2000-03-31 Tdk Corp Magnetic field sensor
JP2005003477A (en) * 2003-06-11 2005-01-06 Matsushita Electric Ind Co Ltd Magnetic sensor
JP2006125962A (en) * 2004-10-28 2006-05-18 Tdk Corp Current sensor
JP2008197002A (en) * 2007-02-14 2008-08-28 Fujikura Ltd Magnetic sensor
WO2013129276A1 (en) * 2012-03-02 2013-09-06 Tdk株式会社 Magnetic sensor element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720218A (en) * 1993-06-15 1995-01-24 Fujitsu Ltd Magnetic sensor
US5592082A (en) * 1994-09-29 1997-01-07 Alps Electric Co., Ltd. Magnetic sensor with permanent magnet bias layers
JP2000088941A (en) * 1998-09-11 2000-03-31 Tdk Corp Magnetic field sensor
JP2005003477A (en) * 2003-06-11 2005-01-06 Matsushita Electric Ind Co Ltd Magnetic sensor
JP2006125962A (en) * 2004-10-28 2006-05-18 Tdk Corp Current sensor
JP2008197002A (en) * 2007-02-14 2008-08-28 Fujikura Ltd Magnetic sensor
WO2013129276A1 (en) * 2012-03-02 2013-09-06 Tdk株式会社 Magnetic sensor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018054460A (en) * 2016-09-29 2018-04-05 大同特殊鋼株式会社 Thin film magnetic sensor

Similar Documents

Publication Publication Date Title
JP6193212B2 (en) Single chip 2-axis bridge type magnetic field sensor
US11193989B2 (en) Magnetoresistance assembly having a TMR element disposed over or under a GMR element
JP5250108B2 (en) Magnetic balanced current sensor
KR100800279B1 (en) Azimuth meter having spin-valve giant magneto-resistive elements
JP5888402B2 (en) Magnetic sensor element
JP5210983B2 (en) Geomagnetic sensor
JP2008134181A (en) Magnetic detector and its manufacturing method
JPWO2014181382A1 (en) Magnetic current sensor and current measuring method
JP2011101026A (en) Magneto-resistive laminate structure, and gradiometer including the same
JP2012185044A (en) Magnetic sensor and manufacturing method for the same
WO2012053296A1 (en) Current sensor
JP2020153771A (en) Magnetic sensor
JP2017072375A (en) Magnetic sensor
JP2009162499A (en) Magnetometric sensor
CN112904246B (en) Magnetic sensor
JP2015219227A (en) Magnetic sensor
US20100090692A1 (en) Magnetic sensor module and piston position detector
JP2007024598A (en) Magnetic sensor
JP2015135267A (en) current sensor
JP2014089088A (en) Magnetoresistive effect element
JP6064656B2 (en) Magnetoresistive element for sensor and sensor circuit
JPWO2011155261A1 (en) Magnetic balanced current sensor
JP2012063232A (en) Method for manufacturing magnetic field detection apparatus, and magnetic field detection apparatus
US20150198430A1 (en) Magnetism detection element and rotation detector
JP2015194389A (en) Magnetic field detection device and multi piece substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180828