WO2012053296A1 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
WO2012053296A1
WO2012053296A1 PCT/JP2011/070886 JP2011070886W WO2012053296A1 WO 2012053296 A1 WO2012053296 A1 WO 2012053296A1 JP 2011070886 W JP2011070886 W JP 2011070886W WO 2012053296 A1 WO2012053296 A1 WO 2012053296A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
current sensor
sensor
magnetic
resolution
Prior art date
Application number
PCT/JP2011/070886
Other languages
French (fr)
Japanese (ja)
Inventor
斎藤 正路
高橋 彰
俊彦 西田
雅博 飯塚
Original Assignee
アルプス・グリーンデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス・グリーンデバイス株式会社 filed Critical アルプス・グリーンデバイス株式会社
Priority to JP2012539640A priority Critical patent/JPWO2012053296A1/en
Publication of WO2012053296A1 publication Critical patent/WO2012053296A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core
    • G01R15/185Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core with compensation or feedback windings or interacting coils, e.g. 0-flux sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/08Circuits for altering the measuring range
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates

Definitions

  • the present invention relates to a current sensor that measures current without contact.
  • the present invention relates to a current sensor having a wide measurement range and high resolution.
  • Patent Document 1 discloses a current sensor using a magnetoresistive element as an element for the magnetic sensor.
  • the current sensor for measuring the high current described above has a wide measurement range, the resolution (also referred to as sensitivity) is low.
  • the resolution also referred to as sensitivity
  • current sensors for high current measurement are not suitable for applications that measure minute current such as dark current. Therefore, if such a current sensor for measuring a large current is used to measure the dark current, it is difficult to properly manage the remaining battery capacity, and it is necessary to operate the battery with a sufficient remaining capacity. Absent.
  • the present invention has been made in view of the foregoing, and it is an object of the present invention to provide a current sensor having a wide measurement range and high resolution.
  • the current sensor of the present invention comprises a first magnetic sensor, and comprises a first current sensor having a first measurable range and a second magnetic sensor, wherein the upper limit value is higher than the first measurable range. And the output of the first current sensor or the output of the second current sensor, depending on the magnitude of the measured current flowing through the current line. And sensor selection means for selecting In the above, the “measurable range” is a range defined by the lower limit value and the upper limit value of the current, and is a range in which the current value can be measured with appropriate accuracy.
  • the first current sensor may have a first resolution
  • the second current sensor may have a second resolution lower than the first resolution.
  • “resolution” is an index that represents sensitivity, and refers to an index that is represented by the smallest measurable current value.
  • the upper limit value of the second measurable range may be ten times or more of the upper limit value of the first measurable range.
  • the first resolution may be ten times or more of the second resolution. Note that resolution of "a-fold or more" (a is an arbitrary number) is synonymous with sensitivity of "a-fold or more", and the minimum measurable current value is "1 / a or less”. It says that there is.
  • the second magnetic sensor may include an element shield that covers the magnetic sensor element.
  • the upper limit value of the measurable range of the second current sensor provided with the second magnetic sensor can be sufficiently increased. it can.
  • the first current sensor and the second current sensor may be provided in the same chip.
  • the first current sensor and the second current sensor in the same chip, compared to the case where the first current sensor and the second current sensor are separate chips, It is possible to improve the alignment accuracy of the position and angle. This improves the current measurement accuracy.
  • the number of chips can be increased and the package cost can be reduced, as compared to the case where the first current sensor and the second current sensor are separate chips. Thereby, the cost of the current sensor can be reduced.
  • each of the first magnetic sensor and the second magnetic sensor may be a magnetic balance type sensor using a feedback coil.
  • a highly sensitive current sensor can be easily realized. Further, the characteristics of the magnetic sensor can be easily changed by adjusting the number of turns of the feedback coil.
  • the first current sensor includes a pair of the first magnetic sensors, is connected to the pair of first magnetic sensors, and calculates an output signal of the first magnetic sensor differentially; May be provided.
  • the second current sensor may include a pair of the second magnetic sensors, may be connected to the pair of the second magnetic sensors, and may include an arithmetic device that differentially calculates output signals thereof. .
  • the current sensor of the present invention can measure a minute current with high accuracy while measuring a large current by selecting and using the outputs of two current sensors having different measurable ranges and different resolutions.
  • the gist of the present invention is measured by including at least two or more current sensors having different measurable ranges and resolutions, and a sensor selection unit which selects these outputs according to the magnitude of the measured current.
  • the measurement range is changed according to the magnitude of the current to realize appropriate current measurement.
  • FIG. 1 is a block diagram showing an example of a circuit configuration of a current sensor 1 according to the present embodiment.
  • FIG. 1 is a view for explaining the features of the present invention in an easy-to-understand manner, and does not strictly represent the configuration of the current sensor 1. That is, in FIG. 1, a part of the configuration of the current sensor 1 may be omitted. In addition, another configuration may be added to the configuration shown in FIG.
  • the current sensor 1 is a sensor selection circuit to which the outputs of the first current sensor 11A and the second current sensor 11B, and the first current sensor 11A and the second current sensor 11B are input. And 12).
  • the first current sensor 11A and the second current sensor 11B have different measurable ranges and resolutions, and each output a voltage corresponding to the current to be measured.
  • the sensor selection circuit 12 determines which of the output of the first current sensor 11A and the output of the second current sensor 11B is to be adopted according to the output voltage of the first current sensor 11A or the second current sensor 11B.
  • the output of the adopted sensor is output as the output of the current sensor 1. That is, the sensor selection circuit 12 selects the output of the first current sensor 11A and the output of the second current sensor 11B according to the current to be measured.
  • the first current sensor 11A and the second current sensor 11B have different measurable ranges and resolutions, but one has high resolution and the other has wide measurable range (or the upper limit of the measurable range is high) It is desirable to be configured to be
  • the first current sensor 11A has a narrow measurable range (hereinafter referred to as the first measurable range) so as to be able to measure a minute current, but sufficient resolution (hereinafter referred to as the first resolution) It is configured to be high.
  • the resolution hereinafter referred to as the second resolution
  • the second resolution is low so that the second current sensor 11B can measure a large current, but the measurable range (hereinafter referred to as the second measurable range) is sufficiently It is configured to be broad.
  • the first resolution is 10 times or more of the second resolution
  • the upper limit value of the second measurable range is 10 times or more of the upper limit value of the first measurable range.
  • the first resolution is about 0.001 to 0.1 A, typically about 0.01 A
  • the second resolution is about 0.1 A to 1 A, typically about 0.1 A.
  • the upper limit of the first measurable range is about 1 A to 100 A, typically about 10 A
  • the upper limit of the second measurable range is about 10 A to 1000 A, typically about 100 A.
  • a magnetic balance type magnetic sensor is used for the first current sensor 11A and the second current sensor 11B.
  • a magnetic balance type magnetic sensor is arranged so as to be able to generate a magnetic field in the direction to cancel the magnetic field generated by the current to be measured, and a bridge circuit consisting of two magnetoresistive elements and two fixed resistance elements as magnetic sensor elements. It comprises a feedback coil.
  • the feedback coil is disposed in the vicinity of the magnetoresistive element of the bridge circuit, and generates a cancellation magnetic field that cancels out the induced magnetic field generated by the current to be measured.
  • a GMR (Giant Magneto Resistance) element, a TMR (Tunnel Magneto Resistance) element, or the like can be used as the magnetoresistive effect element of the bridge circuit.
  • the magnetoresistance effect element has a characteristic that the resistance value is changed by the induced magnetic field from the current to be measured.
  • a high sensitivity current sensor can be realized by configuring a bridge circuit using a magnetoresistance effect element having such characteristics. Further, by using the magnetoresistive effect element, the sensitivity axis can be easily arranged in the direction parallel to the substrate surface on which the current sensor is installed, and it becomes possible to use a planar coil.
  • the magnetic sensors that can be used for the first current sensor 11A and the second current sensor 11B are not limited to the magnetic balance type. It is also possible to use a magnetic proportional sensor or the like which does not have a feedback coil.
  • the first current sensor 11A or the second current sensor 11B may have a pair of magnetic sensors and a computing device, and may be a current sensor of a type that differentially calculates output signals of the pair of magnetic sensors. By adopting such a configuration, it is possible to cancel the influence of the external magnetic field by differential operation, so it is possible to sufficiently improve the measurement accuracy of the current. In particular, in the first current sensor 11A for fine current measurement which is greatly affected by the external magnetic field, the effect is large.
  • the first current sensor 11A and the second current sensor 11B may be provided in the same chip.
  • the mounting positions of the first current sensor 11A and the second current sensor 11B, and the mounting angles of the first current sensor 11A and the second current sensor 11B can be accurately adjusted. This can enhance the accuracy of current measurement.
  • the number of chips can be increased and the package cost can be reduced. Thereby, cost reduction of the current sensor 1 can be achieved.
  • the current sensor included in the current sensor 1 Is not limited to two.
  • the current sensor first current sensor 11A
  • the current sensor second current sensor 11B
  • a current sensor third current sensor, not shown
  • the current sensor 1 may include four or more current sensors having different measurable ranges and resolutions.
  • FIG. 2 shows the layer configuration (left in FIG. 2) of the magnetic sensor (hereinafter referred to as the first magnetic sensor 201A) used for the first current sensor 11A, and the magnetic sensor (hereinafter referred to as the second sensor) used for the second current sensor 11B. It is a cross-sectional schematic diagram which shows the layer structure (FIG.
  • FIG. 2 mainly shows the layer configuration of the bridge circuit and the feedback coil in the first magnetic sensor 201A and the second magnetic sensor 201B. Further, FIG. 2 also shows a current line 13 through which the current to be measured flows in the back direction of the drawing.
  • the insulating layer 212 is formed on the substrate 211.
  • a silicon substrate or the like is used, and as the insulating layer 212, a silicon oxide film, an aluminum oxide film, or the like is used.
  • the silicon oxide film can be formed by a method such as thermal oxidation of a silicon substrate, sputtering, plasma CVD or the like.
  • the aluminum oxide film can be formed using a method such as sputtering or plasma CVD.
  • magnetoresistive effect elements 213A and 213B which are magnetic sensor elements are formed.
  • the magnetoresistive effect elements 213A and 213B may form a bridge circuit.
  • a GMR element When, for example, a GMR element is used as the magnetoresistive effect elements 213A and 213B, a GMR element having a layer configuration including an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic layer, and a free magnetic layer can be employed.
  • an electrode may be formed on the insulating layer 212.
  • the electrodes are formed, for example, by forming an electrode material layer and then patterning the electrode material layer by photolithography and etching.
  • An insulating layer 214 is formed on the magnetoresistive effect elements 213A and 213B, the fixed resistance element, the electrodes, and the like so as to cover them.
  • a polyimide film, a silicon oxide film, or the like is used as the insulating layer 214.
  • the polyimide film can be formed by applying and curing a polyimide material.
  • the silicon oxide film can be formed using a method such as sputtering or plasma CVD.
  • Feedback coils 215A and 215B are formed on the insulating layer 214.
  • the feedback coils 215A and 215B can be formed by forming a coil material layer and then patterning the coil material layer by photolithography and etching. Alternatively, the feedback coils 215A and 215B can be formed by photolithography and plating after forming the base material layer.
  • coil electrodes are formed in the vicinity of the feedback coils 215A and 215B.
  • the coil electrode can be formed by forming an electrode material layer and then patterning the electrode material layer by photolithography and etching.
  • An insulating layer 216 is formed on the feedback coils 215A and 215B, the coil electrode, and the like so as to cover them.
  • a polyimide film, a silicon oxide film, or the like is used as the insulating layer 216.
  • the polyimide film can be formed by applying and curing a polyimide material.
  • the silicon oxide film can be formed using a method such as sputtering or plasma CVD.
  • a magnetic shield 217 is formed on the insulating layer 216 and in a region overlapping the magnetoresistive effect element 213B.
  • a high magnetic permeability material such as an amorphous magnetic material, a permalloy magnetic material, or an iron-based microcrystalline material can be used. Note that the magnetic shield 217 is not formed on the insulating layer 216 and in a region overlapping the magnetoresistive effect element 213A.
  • An insulating layer 218 is formed on the insulating layer 216, the magnetic shield 217, and the like.
  • a polyimide film, a silicon oxide film, or the like is used as the insulating layer 218, a polyimide film, a silicon oxide film, or the like is used.
  • the polyimide film can be formed by applying and curing a polyimide material.
  • the silicon oxide film can be formed using a method such as sputtering or plasma CVD.
  • a contact hole is formed in a predetermined region such as the insulating layer 216 or the insulating layer 218, and an electrode connected to a coil electrode or the like is formed (not shown).
  • the electrodes can be formed by forming an electrode material layer and then patterning the electrode material layer by photolithography and etching.
  • the first magnetic sensor 201A used for the first current sensor 11A and the second magnet used for the second current sensor 11B can be built into one chip.
  • the mounting positions of the first current sensor 11A and the second current sensor 11B and the mounting angles of the first current sensor 11A and the second current sensor 11B can be improved in accuracy.
  • the current measurement accuracy is enhanced.
  • the current sensor 11A and the second current sensor 11B in the same chip, the number of chips can be increased and the package cost can be reduced. Thereby, cost reduction of the current sensor 1 can be achieved. Further, the current sensor can be miniaturized as compared to the case where the first current sensor 11A and the second current sensor 11B are separate chips. In addition, since the first current sensor 11A and the second current sensor 11B can be disposed equidistantly from the current line, the measurement accuracy of the current can be enhanced.
  • the first magnetic sensor 201A used for the first current sensor 11A and the second magnetic sensor 201B used for the second current sensor 11B are built on the same substrate 211 to form a single chip. However, the present invention is not limited to this, and the first current sensor 11A and the second current sensor 11B may be separate chips.
  • the feedback coils 215A and 215B generate the induced magnetic fields A and B.
  • a canceling magnetic field that cancels out is generated, and adjustment is made so that the magnetic fields received by the magnetoresistive elements 213A and 213B become zero.
  • the second magnetic sensor 201B in the second current sensor 11B has a magnetic shield 217 in a region overlapping with the magnetoresistive effect element 213B. Since the magnetic shield 217 attenuates the induction magnetic field generated from the current to be measured, the induction magnetic field A received by the magnetoresistive effect element 213A not overlapping the magnetic shield 217 is received by the magnetoresistive effect element 213B overlapping the magnetic shield 217 It becomes larger than B. Further, since the cancellation magnetic field from the feedback coil 215B is enhanced by the magnetic shield 217, the effect of the cancellation magnetic field by the feedback coil 215B is greater than the effect of the cancellation magnetic field by the feedback coil 215A.
  • the number of turns (or number of turns) of feedback coil 215A may be smaller than the number of turns (or number of turns) of feedback coil 215B in order to further increase the resolution of first current sensor 11A.
  • FIG. 3 is a flowchart illustrating the current measurement algorithm.
  • the first current sensor 11A and the second current sensor 11B measure the current to be measured (step 301). Thus, from the first current sensor 11A, it is output the output voltages V 1 corresponding to the current to be measured, from the second current sensor 11A, the output voltage V 2 corresponding to the current to be measured is output.
  • step 302 it is determined which output of the first current sensor 11A or the second current sensor 11B is to be adopted.
  • the relationship between the output voltage V1 of the first current sensor 11A and the current to be measured (line A), and the relationship between the output voltage V2 of the second current sensor 11B and the current to be measured (Line B) is schematically shown.
  • the first current sensor 11A has a steep output characteristic, which makes it possible to measure a small amount of current accurately. That is, the resolution of the measurement is enhanced.
  • the second current sensor 11B has a moderate output characteristic, which makes it possible to measure a wide range of measured current. That is, the upper limit of the measurable range is raised.
  • the determination as to which output of the first current sensor 11A or the second current sensor 11B is adopted depends on the output voltage V1 of the first current sensor 11A and the threshold value V th1 determined in advance. This may be done by comparing the sizes (step 302). For the threshold value V th1 , for example, a voltage corresponding to the upper limit of the measurable range of the first current sensor 11A can be adopted (see FIG. 4). If V 1 is greater than V th1, that is, the measured current, if it exceeds the upper limit of the measurement range of the first current sensor 11A executes step 303. Otherwise, step 304 is performed.
  • step 303 the current value of the current to be measured is calculated from the output voltage V2 of the second current sensor 11B. If V 1 is greater than V th1, that is, the measured current, if it exceeds the upper limit of the measurement range of the first current sensor 11A, the upper limit of the measurable range of the high second current sensor 11B This is because it is appropriate to adopt the output and calculate the current value of the current to be measured.
  • step 304 the current value of the current to be measured is calculated from the output voltage V1 of the first current sensor 11A.
  • V 1 is equal to or less than V th1 , that is, when the measured current does not exceed the upper limit of the measurable range of the first current sensor 11A, the output of the first current sensor 11A with high resolution is adopted. It is appropriate to calculate the current value of the current to be measured.
  • step 303 when the current value of the current to be measured is calculated in step 303 or step 304, the measurement ends.
  • the magnitude of the output voltage V1 of the first current sensor 11A and the threshold V th1 are compared, the magnitude of the output voltage V2 of the second current sensor 11B and the threshold V th2 You may compare In this case, for example, the output voltage of the second current sensor 11A corresponding to the upper limit of the measurable range of the first current sensor 11A can be adopted as the threshold value V th2 (see FIG. 4). Then, V 2 is greater than V th2, the output of the second current sensor 11A employed, in other cases employing the output of the first current sensor 11B. That is, if V 2 is greater than V th2 in the (current to be measured is, if it exceeds the lower limit of the measurable range of the second current sensor 11B), and executes step 303, otherwise, Step 304 is performed.
  • the present invention is not limited to the above embodiment, and can be implemented with various modifications.
  • the connection relation, size, and the like of each element in the above-described embodiment can be appropriately changed and implemented.
  • the structures described in the above embodiments can be implemented in combination as appropriate.
  • the present invention can be implemented with appropriate modifications without departing from the scope of the present invention.
  • the current sensor of the present invention can be used, for example, to detect the magnitude of the current for driving a motor of an electric car or a hybrid car. Moreover, it is possible to use for measuring the dark current of the battery mounted in an electric vehicle etc.

Abstract

The objective of the present invention is to provide a current sensor that has both a wide range of measurement and a high resolution. This current sensor (1) is characterized by being provided with: a first current sensor (11A) that is equipped with a first magnetic sensor and that has a first measurable range; a second current sensor (11B) that is equipped with a second magnetic sensor and that has a second measurable range that has a higher upper limit value than the first measurable range; and a sensor selection means (12) that, in accordance with the magnitude of the current to be measured that is conducting through a current line, selects the output of the first current sensor or the output of the second current sensor.

Description

電流センサCurrent sensor
 本発明は、非接触で電流を測定する電流センサに関する。特に、広い測定範囲と、高い分解能とを併せ持つ電流センサに関する。 The present invention relates to a current sensor that measures current without contact. In particular, the present invention relates to a current sensor having a wide measurement range and high resolution.
 電気自動車やハイブリッドカーにおけるモータ駆動技術などの分野では、比較的大きな電流が取り扱われるため、このような用途向けに、大電流を非接触で測定することが可能な電流センサが求められている。そして、このような電流センサとして、被測定電流によって生じる磁界の変化を磁気センサによって検出する方式のものが実用化されている。このような磁気センサには様々なものがあるが、例えば、特許文献1には、磁気センサ用の素子として磁気抵抗素子を用いた電流センサが開示されている。 In the field of motor drive technology in electric vehicles and hybrid cars, a relatively large current is handled, and a current sensor capable of measuring a large current without contact is required for such an application. And, as such a current sensor, one of a method of detecting a change of a magnetic field generated by a current to be measured by a magnetic sensor has been put to practical use. There are various such magnetic sensors. For example, Patent Document 1 discloses a current sensor using a magnetoresistive element as an element for the magnetic sensor.
特開2002-156390号公報Japanese Patent Laid-Open No. 2002-156390
 ところで、上述の電気自動車などに搭載される各種の電気回路や電子機器などは、オフ状態であっても微細な電流(暗電流などと呼ばれる)を流し、電力を消費することが知られている。暗電流による消費電力に応じて、バッテリーが供給可能なエネルギーは大きく変動することになるが、暗電流の測定を正確に行うことで、バッテリー残量を適切に管理することが可能になるため、バッテリーを効率的に運用することが可能である。 By the way, it is known that various electric circuits, electronic devices and the like mounted on the above-mentioned electric car and the like consume a power by supplying a minute current (called a dark current) even in the off state. . Although the energy that can be supplied by the battery fluctuates greatly depending on the power consumption due to dark current, accurate measurement of dark current enables appropriate management of the remaining battery capacity. It is possible to operate the battery efficiently.
 しかしながら、上述の大電流を測定するための電流センサは、広い測定範囲を有する半面、分解能(感度ともいう)は低くなっている。つまり、大電流測定用の電流センサは、暗電流のような微細な電流を測定する用途には向いていない。したがって、このような大電流測定用の電流センサを暗電流の測定に用いるとすれば、バッテリー残量を適切に管理することは難しく、残量に余裕がある状態でバッテリーを運用せざるを得ない。 However, while the current sensor for measuring the high current described above has a wide measurement range, the resolution (also referred to as sensitivity) is low. In other words, current sensors for high current measurement are not suitable for applications that measure minute current such as dark current. Therefore, if such a current sensor for measuring a large current is used to measure the dark current, it is difficult to properly manage the remaining battery capacity, and it is necessary to operate the battery with a sufficient remaining capacity. Absent.
 本発明はかかる点に鑑みてなされたものであり、広い測定範囲と、高い分解能とを併せ持つ電流センサを提供することを目的とする。 The present invention has been made in view of the foregoing, and it is an object of the present invention to provide a current sensor having a wide measurement range and high resolution.
 本発明の電流センサは、第一の磁気センサを具備し、第一の測定可能範囲を有する第一の電流センサと、第二の磁気センサを具備し、前記第一の測定可能範囲より上限値が高い第二の測定可能範囲を有する第二の電流センサと、電流線を通流する被測定電流の大きさに応じて、前記第一の電流センサの出力または前記第二の電流センサの出力を選択するセンサ選択手段と、を備えたことを特徴とする。なお、上記において「測定可能範囲」とは、電流の下限値と上限値で規定される範囲であって、電流値を適当な精度で測定することができる範囲をいう。 The current sensor of the present invention comprises a first magnetic sensor, and comprises a first current sensor having a first measurable range and a second magnetic sensor, wherein the upper limit value is higher than the first measurable range. And the output of the first current sensor or the output of the second current sensor, depending on the magnitude of the measured current flowing through the current line. And sensor selection means for selecting In the above, the “measurable range” is a range defined by the lower limit value and the upper limit value of the current, and is a range in which the current value can be measured with appropriate accuracy.
 この構成によれば、異なる測定可能範囲を有する二つの電流センサの出力の一方を選択して用いることにより、大電流を測定しつつ、微細な電流を高精度に測定することが可能になる。 According to this configuration, by selecting and using one of the outputs of the two current sensors having different measurable ranges, it is possible to measure a minute current with high accuracy while measuring a large current.
 本発明の電流センサにおいて、前記第一の電流センサは第一の分解能を有し、前記第二の電流センサは前記第一の分解能より低い第二の分解能を有することがある。なお、上記において「分解能」とは、感度を表す指標であって、測定可能な最小の電流値で表される指標をいう。 In the current sensor of the present invention, the first current sensor may have a first resolution, and the second current sensor may have a second resolution lower than the first resolution. In the above, “resolution” is an index that represents sensitivity, and refers to an index that is represented by the smallest measurable current value.
 この構成によれば、異なる測定可能範囲および異なる分解能を有する二つの電流センサの出力の一方を選択して用いることにより、大電流を測定しつつ、微細な電流を高精度に測定することが可能になる。 According to this configuration, it is possible to measure a minute current with high accuracy while measuring a large current by selecting and using one of the outputs of two current sensors having different measurable ranges and different resolutions. become.
 本発明の電流センサにおいて、前記第二の測定可能範囲の上限値は、前記第一の測定可能範囲の上限値の10倍以上であることがある。また、前記第一の分解能は、前記第二の分解能の10倍以上であることがある。なお、分解能が「a倍以上」(aは任意の数)とは、感度が「a倍以上」であることと同義であって、測定可能な最小の電流値が「1/a以下」であることをいう。 In the current sensor of the present invention, the upper limit value of the second measurable range may be ten times or more of the upper limit value of the first measurable range. The first resolution may be ten times or more of the second resolution. Note that resolution of "a-fold or more" (a is an arbitrary number) is synonymous with sensitivity of "a-fold or more", and the minimum measurable current value is "1 / a or less". It says that there is.
 この構成によれば、測定可能範囲の上限値が十分に高い電流センサの出力と、分解能が十分に高い電流センサの出力とを選択して用いることにより、大電流を測定しつつ、微細な電流を高精度に測定することが可能になる。 According to this configuration, by selecting and using the output of the current sensor whose upper limit value of the measurable range is sufficiently high and the output of the current sensor whose resolution is sufficiently high, a minute current can be measured while measuring a large current. It becomes possible to measure with high accuracy.
 本発明の電流センサにおいて、前記第二の磁気センサは、磁気センサ素子を覆う素子シールドを備えていることがある。 In the current sensor of the present invention, the second magnetic sensor may include an element shield that covers the magnetic sensor element.
 この構成によれば、素子シールドによって、被測定電流による誘導磁界の影響を緩和しているため、第二の磁気センサを備える第二の電流センサの測定可能範囲の上限値を十分に高めることができる。 According to this configuration, since the influence of the induced magnetic field due to the current to be measured is mitigated by the element shield, the upper limit value of the measurable range of the second current sensor provided with the second magnetic sensor can be sufficiently increased. it can.
 本発明の電流センサにおいて、前記第一の電流センサと、前記第二の電流センサとは、同一チップ内に設けられることがある。 In the current sensor of the present invention, the first current sensor and the second current sensor may be provided in the same chip.
 この構成によれば、第一の電流センサと第二の電流センサとを同一チップ内に設けることにより、第一の電流センサと第二の電流センサとを別チップにする場合と比較して、位置や角度の合わせ精度を高めることができる。これにより、電流測定精度が高められる。また、第一の電流センサと第二の電流センサとを別チップにする場合と比較して、チップの取り数を増加させ、パッケージコストを低下させることができる。これにより、電流センサの低コスト化を図ることができる。 According to this configuration, by providing the first current sensor and the second current sensor in the same chip, compared to the case where the first current sensor and the second current sensor are separate chips, It is possible to improve the alignment accuracy of the position and angle. This improves the current measurement accuracy. In addition, the number of chips can be increased and the package cost can be reduced, as compared to the case where the first current sensor and the second current sensor are separate chips. Thereby, the cost of the current sensor can be reduced.
 本発明の電流センサにおいて、前記第一の磁気センサおよび前記第二の磁気センサは、いずれも、フィードバックコイルを用いた磁気平衡式のセンサであることがある。 In the current sensor of the present invention, each of the first magnetic sensor and the second magnetic sensor may be a magnetic balance type sensor using a feedback coil.
 この構成によれば、高感度な電流センサを容易に実現できる。また、フィードバックコイルの巻き数を調節することにより、磁気センサの特性を容易に変更することができる。 According to this configuration, a highly sensitive current sensor can be easily realized. Further, the characteristics of the magnetic sensor can be easily changed by adjusting the number of turns of the feedback coil.
 本発明の電流センサにおいて、前記第一の電流センサは一対の前記第一の磁気センサを具備し、前記一対の第一の磁気センサに接続され、その出力信号を差動演算する演算装置と、を備えることがある。また、前記第二の電流センサは一対の前記第二の磁気センサを具備し、前記一対の第二の磁気センサに接続され、その出力信号を差動演算する演算装置と、を備えることがある。 In the current sensor according to the present invention, the first current sensor includes a pair of the first magnetic sensors, is connected to the pair of first magnetic sensors, and calculates an output signal of the first magnetic sensor differentially; May be provided. The second current sensor may include a pair of the second magnetic sensors, may be connected to the pair of the second magnetic sensors, and may include an arithmetic device that differentially calculates output signals thereof. .
 この構成によれば、差動演算によって外部磁界の影響をキャンセルすることができるため、電流の測定精度を十分に高めることができる。特に、外部磁界によって大きな影響を受ける微細電流測定用の電流センサでは、その効果は大きい。 According to this configuration, since the influence of the external magnetic field can be canceled by the differential operation, the measurement accuracy of the current can be sufficiently improved. In particular, in a current sensor for fine current measurement which is greatly affected by an external magnetic field, the effect is large.
 本発明の電流センサは、異なる測定可能範囲および異なる分解能を有する二つの電流センサの出力を選択して用いることにより、大電流を測定しつつ、微細な電流を高精度に測定することができる。 The current sensor of the present invention can measure a minute current with high accuracy while measuring a large current by selecting and using the outputs of two current sensors having different measurable ranges and different resolutions.
電流センサの回路構成を示す模式図である。It is a schematic diagram which shows the circuit structure of a current sensor. 電流センサに用いられる磁気センサの層構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the laminated constitution of the magnetic sensor used for an electric current sensor. 電流測定アルゴリズムを説明するフローチャートである。It is a flowchart explaining a current measurement algorithm. 各電流センサの出力電圧と被測定電流との関係を示す図である。It is a figure which shows the relationship between the output voltage of each current sensor, and a to-be-measured electric current.
 大電流測定用の電流センサは、暗電流のような微細な電流を測定する用途には向いておらず、これを用いて暗電流の管理を行うとすれば、残量に余裕をもってバッテリーを運用せざるを得ない。大電流測定用の電流センサが微細な電流測定に向かないのは、測定範囲を広くとるために、測定範囲とトレードオフの関係にある分解能が低く抑えられているためである。 Current sensors for large current measurement are not suitable for applications to measure minute current such as dark current. If dark current is managed using this, the battery can be operated with enough remaining capacity. I can not but do. The reason that the current sensor for high current measurement is not suitable for fine current measurement is that the resolution, which is in a trade-off relationship with the measurement range, is low in order to widen the measurement range.
 本発明者らは、この点に着目し、異なる測定可能範囲および異なる分解能を有する二つの電流センサの出力を選択して用いることにより、大電流測定と微細電流測定に対応可能であることを見出した。 Focusing on this point, the inventors have found that it is possible to cope with high current measurement and fine current measurement by selecting and using the outputs of two current sensors having different measurable ranges and different resolutions. The
 すなわち、本発明の骨子は、測定可能範囲および分解能が異なる少なくとも二以上の電流センサと、被測定電流の大きさに応じてこれらの出力を選択するセンサ選択部と、を備えることにより、被測定電流の大きさに応じて測定レンジを変更し、適切な電流測定を実現するものである。以下、実施の形態について、図面を参照して詳細に説明する。 That is, the gist of the present invention is measured by including at least two or more current sensors having different measurable ranges and resolutions, and a sensor selection unit which selects these outputs according to the magnitude of the measured current. The measurement range is changed according to the magnitude of the current to realize appropriate current measurement. Hereinafter, the embodiments will be described in detail with reference to the drawings.
 図1は、本実施の形態に係る電流センサ1の回路構成例を示すブロック図である。なお、図1は発明の特徴を分かりやすく説明するための図であって、電流センサ1の構成を厳密に表現したものではない。つまり、図1では、電流センサ1の構成の一部が省略されていることがある。また、図1に示される構成に、さらに別の構成が付加される場合もある。 FIG. 1 is a block diagram showing an example of a circuit configuration of a current sensor 1 according to the present embodiment. FIG. 1 is a view for explaining the features of the present invention in an easy-to-understand manner, and does not strictly represent the configuration of the current sensor 1. That is, in FIG. 1, a part of the configuration of the current sensor 1 may be omitted. In addition, another configuration may be added to the configuration shown in FIG.
 図1に示されるように、電流センサ1は、第一の電流センサ11Aおよび第二の電流センサ11Bと、第一の電流センサ11Aおよび第二の電流センサ11Bの出力が入力されるセンサ選択回路12と、を有している。ここで、第一の電流センサ11Aおよび第二の電流センサ11Bは、互いに測定可能範囲および分解能が異なっており、それぞれ、被測定電流に対応する電圧を出力する。センサ選択回路12は、第一の電流センサ11Aまたは第二の電流センサ11Bの出力電圧に応じて、第一の電流センサ11Aの出力と第二の電流センサ11Bの出力のいずれを採用するか判定し、採用されたセンサの出力を電流センサ1の出力として出力する。すなわち、センサ選択回路12は、被測定電流に応じて、第一の電流センサ11Aの出力と第二の電流センサ11Bの出力とを選択する。 As shown in FIG. 1, the current sensor 1 is a sensor selection circuit to which the outputs of the first current sensor 11A and the second current sensor 11B, and the first current sensor 11A and the second current sensor 11B are input. And 12). Here, the first current sensor 11A and the second current sensor 11B have different measurable ranges and resolutions, and each output a voltage corresponding to the current to be measured. The sensor selection circuit 12 determines which of the output of the first current sensor 11A and the output of the second current sensor 11B is to be adopted according to the output voltage of the first current sensor 11A or the second current sensor 11B. The output of the adopted sensor is output as the output of the current sensor 1. That is, the sensor selection circuit 12 selects the output of the first current sensor 11A and the output of the second current sensor 11B according to the current to be measured.
 第一の電流センサ11Aおよび第二の電流センサ11Bは、互いに測定可能範囲および分解能が異なっているが、一方は分解能が高く、他方は測定可能範囲が広く(または、測定可能範囲の上限が高く)なるように構成することが望ましい。例えば、第一の電流センサ11Aは微細な電流を測定可能とすべく、測定可能範囲(以下、第一の測定可能範囲という)は狭いが、分解能(以下、第一の分解能という)は十分に高くなるように構成されている。また、例えば、第二の電流センサ11Bは大電流を測定可能とすべく、分解能(以下、第二の分解能という)は低いが、測定可能範囲(以下、第二の測定可能範囲という)は十分に広くなるように構成されている。 The first current sensor 11A and the second current sensor 11B have different measurable ranges and resolutions, but one has high resolution and the other has wide measurable range (or the upper limit of the measurable range is high) It is desirable to be configured to be For example, the first current sensor 11A has a narrow measurable range (hereinafter referred to as the first measurable range) so as to be able to measure a minute current, but sufficient resolution (hereinafter referred to as the first resolution) It is configured to be high. Also, for example, the resolution (hereinafter referred to as the second resolution) is low so that the second current sensor 11B can measure a large current, but the measurable range (hereinafter referred to as the second measurable range) is sufficiently It is configured to be broad.
 より具体的には、第一の分解能は、第二の分解能の10倍以上であり、第二の測定可能範囲の上限値は、第一の測定可能範囲の上限値の10倍以上である。例えば、第一の分解能は0.001~0.1A程度、代表的には0.01A程度とし、第二の分解能は0.1A~1A程度、代表的には0.1A程度とする。また、第一の測定可能範囲の上限は1A~100A程度、代表的には10A程度とし、第二の測定可能範囲の上限は10A~1000A程度、代表的には100A程度とする。 More specifically, the first resolution is 10 times or more of the second resolution, and the upper limit value of the second measurable range is 10 times or more of the upper limit value of the first measurable range. For example, the first resolution is about 0.001 to 0.1 A, typically about 0.01 A, and the second resolution is about 0.1 A to 1 A, typically about 0.1 A. The upper limit of the first measurable range is about 1 A to 100 A, typically about 10 A, and the upper limit of the second measurable range is about 10 A to 1000 A, typically about 100 A.
 上述のような構成を採用することで、大電流を測定しつつ、微細な電流を高精度に測定することができる。 By adopting the configuration as described above, a minute current can be measured with high accuracy while measuring a large current.
 第一の電流センサ11Aおよび第二の電流センサ11Bには、例えば、磁気平衡式の磁気センサが用いられる。磁気平衡式の磁気センサは、磁気センサ素子である二つの磁気抵抗効果素子および二つの固定抵抗素子からなるブリッジ回路と、被測定電流によって発生する磁界を打ち消す方向の磁界を発生可能に配置されたフィードバックコイルによって構成される。 For example, a magnetic balance type magnetic sensor is used for the first current sensor 11A and the second current sensor 11B. A magnetic balance type magnetic sensor is arranged so as to be able to generate a magnetic field in the direction to cancel the magnetic field generated by the current to be measured, and a bridge circuit consisting of two magnetoresistive elements and two fixed resistance elements as magnetic sensor elements. It comprises a feedback coil.
 フィードバックコイルは、ブリッジ回路の磁気抵抗効果素子の近傍に配置されており、被測定電流により発生する誘導磁界を相殺するキャンセル磁界を発生する。ブリッジ回路の磁気抵抗効果素子としては、GMR(Giant Magneto Resistance)素子やTMR(Tunnel Magneto Resistance)素子などを用いることができる。磁気抵抗効果素子は、被測定電流からの誘導磁界により抵抗値が変化するという特性を有する。このような特性を有する磁気抵抗効果素子を用いてブリッジ回路を構成することにより、高感度の電流センサを実現することができる。また、磁気抵抗効果素子を用いることにより、電流センサを設置する基板面と平行な方向に感度軸を配置し易くなり、平面コイルを使用することが可能となる。 The feedback coil is disposed in the vicinity of the magnetoresistive element of the bridge circuit, and generates a cancellation magnetic field that cancels out the induced magnetic field generated by the current to be measured. A GMR (Giant Magneto Resistance) element, a TMR (Tunnel Magneto Resistance) element, or the like can be used as the magnetoresistive effect element of the bridge circuit. The magnetoresistance effect element has a characteristic that the resistance value is changed by the induced magnetic field from the current to be measured. A high sensitivity current sensor can be realized by configuring a bridge circuit using a magnetoresistance effect element having such characteristics. Further, by using the magnetoresistive effect element, the sensitivity axis can be easily arranged in the direction parallel to the substrate surface on which the current sensor is installed, and it becomes possible to use a planar coil.
 なお、第一の電流センサ11Aおよび第二の電流センサ11Bに用いることができる磁気センサは、磁気平衡式のものに限られない。フィードバックコイルを有さない磁気比例式のセンサなどを用いることもできる。また、第一の電流センサ11Aまたは第二の電流センサ11Bは、一対の磁気センサおよび演算装置を有し、一対の磁気センサの出力信号を差動演算する方式の電流センサであっても良い。このような構成を採用することにより、差動演算によって外部磁界の影響をキャンセルすることができるため、電流の測定精度を十分に高めることができる。特に、外部磁界によって大きな影響を受ける微細電流測定用の第一の電流センサ11Aでは、その効果は大きい。 The magnetic sensors that can be used for the first current sensor 11A and the second current sensor 11B are not limited to the magnetic balance type. It is also possible to use a magnetic proportional sensor or the like which does not have a feedback coil. The first current sensor 11A or the second current sensor 11B may have a pair of magnetic sensors and a computing device, and may be a current sensor of a type that differentially calculates output signals of the pair of magnetic sensors. By adopting such a configuration, it is possible to cancel the influence of the external magnetic field by differential operation, so it is possible to sufficiently improve the measurement accuracy of the current. In particular, in the first current sensor 11A for fine current measurement which is greatly affected by the external magnetic field, the effect is large.
 なお、電流センサ1において、第一の電流センサ11Aおよび第二の電流センサ11Bは、同一チップ内に設けられることがある。この場合、第一の電流センサ11Aおよび第二の電流センサ11Bの取り付け位置や、第一の電流センサ11Aおよび第二の電流センサ11Bの取り付け角度を精度よく合わせることができる。これにより、電流測定の精度を高めることができる。また、第一の電流センサ11Aおよび第二の電流センサ11Bを同一チップ内に設けることにより、チップの取り数を増加させ、パッケージコストを低下させることができる。これにより、電流センサ1の低コスト化を図ることができる。 In the current sensor 1, the first current sensor 11A and the second current sensor 11B may be provided in the same chip. In this case, the mounting positions of the first current sensor 11A and the second current sensor 11B, and the mounting angles of the first current sensor 11A and the second current sensor 11B can be accurately adjusted. This can enhance the accuracy of current measurement. Further, by providing the first current sensor 11A and the second current sensor 11B in the same chip, the number of chips can be increased and the package cost can be reduced. Thereby, cost reduction of the current sensor 1 can be achieved.
 なお、ここでは、電流センサ1が測定可能範囲および分解能が異なる二つの電流センサ(第一の電流センサ11A、第二の電流センサ11B)を備える構成について説明したが、電流センサ1が備える電流センサは二つに限られない。例えば、微細電流測定用の電流センサ(第一の電流センサ11A)および大電流測定用の電流センサ(第二の電流センサ11B)に加え、頻度の高い電流値の近傍を精度よく測定するための電流センサ(第三の電流センサ、図示せず)を備え、これらの出力がセンサ選択回路に入力される構成としても良い。この場合、大電流および微細電流を測定しつつ、頻度の高い電流値を高精度に測定することができる。なお、電流センサ1が、異なる測定可能範囲および分解能を有する四つ以上の電流センサを備えていても良い。 Although the configuration in which the current sensor 1 includes two current sensors (the first current sensor 11A and the second current sensor 11B) having different measurable ranges and resolutions has been described here, the current sensor included in the current sensor 1 Is not limited to two. For example, in addition to the current sensor (first current sensor 11A) for fine current measurement and the current sensor (second current sensor 11B) for large current measurement, for accurately measuring the vicinity of a high frequency current value A current sensor (third current sensor, not shown) may be provided, and these outputs may be input to the sensor selection circuit. In this case, while measuring a large current and a minute current, it is possible to measure a high frequency current value with high accuracy. The current sensor 1 may include four or more current sensors having different measurable ranges and resolutions.
 次に、第一の電流センサ11Aおよび第二の電流センサ11Bに用いられる磁気センサの層構成例について説明する。ここでは、同一の基板上に第一の電流センサ11Aに用いられる磁気センサと、第二の電流センサ11Bに用いられる磁気センサと、を作り込む場合、すなわち、第一の電流センサ11Aと第二の電流センサ11Bとを同一チップに設ける場合について説明する。図2は、第一の電流センサ11Aに用いられる磁気センサ(以下、第一の磁気センサ201Aという)の層構成(図2左)と、第二の電流センサ11Bに用いられる磁気センサ(以下、第二の磁気センサ201Bという)の層構成(図2右)と、を示す断面模式図である。なお、図2では、第一の磁気センサ201Aおよび第二の磁気センサ201Bのうち、主に、ブリッジ回路とフィードバックコイルの層構成について示す。また、図2には、紙面奥方向に被測定電流が通流する電流線13を併せて示している。 Next, an example of the layer configuration of the magnetic sensor used for the first current sensor 11A and the second current sensor 11B will be described. Here, when the magnetic sensor used for the first current sensor 11A and the magnetic sensor used for the second current sensor 11B are built on the same substrate, that is, the first current sensor 11A and the second current sensor 11A The case where the current sensor 11B is provided on the same chip will be described. FIG. 2 shows the layer configuration (left in FIG. 2) of the magnetic sensor (hereinafter referred to as the first magnetic sensor 201A) used for the first current sensor 11A, and the magnetic sensor (hereinafter referred to as the second sensor) used for the second current sensor 11B. It is a cross-sectional schematic diagram which shows the layer structure (FIG. 2 right) of 2nd magnetic sensor 201 B). FIG. 2 mainly shows the layer configuration of the bridge circuit and the feedback coil in the first magnetic sensor 201A and the second magnetic sensor 201B. Further, FIG. 2 also shows a current line 13 through which the current to be measured flows in the back direction of the drawing.
 図2に示す第一の磁気センサ201Aおよび第二の磁気センサ201Bにおいては、基板211上に絶縁層212が形成されている。基板211としては、シリコン基板などが用いられ、絶縁層212としては、シリコン酸化膜やアルミニウム酸化膜などが用いられる。シリコン酸化膜は、シリコン基板の熱酸化や、スパッタリング、プラズマCVDなどの方法を用いて形成することができる。アルミニウム酸化膜は、スパッタリング、プラズマCVDなどの方法を用いて形成することができる。 In the first magnetic sensor 201A and the second magnetic sensor 201B shown in FIG. 2, the insulating layer 212 is formed on the substrate 211. As the substrate 211, a silicon substrate or the like is used, and as the insulating layer 212, a silicon oxide film, an aluminum oxide film, or the like is used. The silicon oxide film can be formed by a method such as thermal oxidation of a silicon substrate, sputtering, plasma CVD or the like. The aluminum oxide film can be formed using a method such as sputtering or plasma CVD.
 絶縁層212上には、磁気センサ素子である磁気抵抗効果素子213A、213Bが形成されている。なお、磁気抵抗効果素子213A、213Bは、ブリッジ回路を構成していても良い。磁気抵抗効果素子213A、213Bとして、例えば、GMR素子を用いる場合には、反強磁性層、固定磁性層、非磁性層、フリー磁性層を有する層構成のGMR素子などを採用することができる。 On the insulating layer 212, magnetoresistive effect elements 213A and 213B which are magnetic sensor elements are formed. The magnetoresistive effect elements 213A and 213B may form a bridge circuit. When, for example, a GMR element is used as the magnetoresistive effect elements 213A and 213B, a GMR element having a layer configuration including an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic layer, and a free magnetic layer can be employed.
 絶縁層212上には、磁気抵抗効果素子213A、213Bや固定抵抗素子などの他に、電極(図示せず)などが形成されていても良い。電極は、例えば、電極材料層を形成した後に、当該電極材料層をフォトリソグラフィおよびエッチングによってパターン加工することで形成される。 In addition to the magnetoresistance effect elements 213A and 213B and the fixed resistance element, an electrode (not shown) may be formed on the insulating layer 212. The electrodes are formed, for example, by forming an electrode material layer and then patterning the electrode material layer by photolithography and etching.
 磁気抵抗効果素子213A、213Bや固定抵抗素子、電極などの上には、これらを覆うように絶縁層214が形成されている。絶縁層214としては、ポリイミド膜やシリコン酸化膜などが用いられる。ポリイミド膜は、ポリイミド材料を塗布し、硬化することにより形成することができる。シリコン酸化膜は、スパッタリング、プラズマCVDなどの方法を用いて形成することができる。 An insulating layer 214 is formed on the magnetoresistive effect elements 213A and 213B, the fixed resistance element, the electrodes, and the like so as to cover them. As the insulating layer 214, a polyimide film, a silicon oxide film, or the like is used. The polyimide film can be formed by applying and curing a polyimide material. The silicon oxide film can be formed using a method such as sputtering or plasma CVD.
 絶縁層214上には、フィードバックコイル215A、215Bが形成されている。フィードバックコイル215A、215Bは、コイル材料層を形成した後に、当該コイル材料層をフォトリソグラフィおよびエッチングによってパターン加工することで形成することができる。または、フィードバックコイル215A、215Bは、下地材料層を形成した後に、フォトリソグラフィおよびめっきにより形成することができる。 Feedback coils 215A and 215B are formed on the insulating layer 214. The feedback coils 215A and 215B can be formed by forming a coil material layer and then patterning the coil material layer by photolithography and etching. Alternatively, the feedback coils 215A and 215B can be formed by photolithography and plating after forming the base material layer.
 絶縁層214上には、フィードバックコイル215A、215Bの近傍にコイル電極(図示せず)が形成されている。コイル電極は、電極材料層を形成した後に、当該電極材料層をフォトリソグラフィおよびエッチングによってパターン加工することで形成することができる。 On the insulating layer 214, coil electrodes (not shown) are formed in the vicinity of the feedback coils 215A and 215B. The coil electrode can be formed by forming an electrode material layer and then patterning the electrode material layer by photolithography and etching.
 フィードバックコイル215A、215Bやコイル電極などの上には、これらを覆うように絶縁層216が形成されている。絶縁層216としては、ポリイミド膜やシリコン酸化膜などが用いられる。ポリイミド膜は、ポリイミド材料を塗布し、硬化することにより形成することができる。シリコン酸化膜は、スパッタリング、プラズマCVDなどの方法を用いて形成することができる。 An insulating layer 216 is formed on the feedback coils 215A and 215B, the coil electrode, and the like so as to cover them. As the insulating layer 216, a polyimide film, a silicon oxide film, or the like is used. The polyimide film can be formed by applying and curing a polyimide material. The silicon oxide film can be formed using a method such as sputtering or plasma CVD.
 絶縁層216上であって磁気抵抗効果素子213Bと重畳する領域には、磁気シールド217が形成されている。磁気シールド217を構成する材料としては、アモルファス磁性材料、パーマロイ系磁性材料、鉄系微結晶材料等の高透磁率材料を用いることができる。なお、絶縁層216上であって磁気抵抗効果素子213Aと重畳する領域には、磁気シールド217は形成されない。 A magnetic shield 217 is formed on the insulating layer 216 and in a region overlapping the magnetoresistive effect element 213B. As a material for forming the magnetic shield 217, a high magnetic permeability material such as an amorphous magnetic material, a permalloy magnetic material, or an iron-based microcrystalline material can be used. Note that the magnetic shield 217 is not formed on the insulating layer 216 and in a region overlapping the magnetoresistive effect element 213A.
 絶縁層216や磁気シールド217などの上には、絶縁層218が形成されている。絶縁層218としては、ポリイミド膜やシリコン酸化膜などが用いられる。ポリイミド膜は、ポリイミド材料を塗布し、硬化することにより形成することができる。シリコン酸化膜は、スパッタリング、プラズマCVDなどの方法を用いて形成することができる。絶縁層216や絶縁層218などの所定の領域にはコンタクトホールが形成され、コイル電極などと接続される電極が形成される(図示せず)。電極は、電極材料層を形成した後に、当該電極材料層をフォトリソグラフィおよびエッチングによってパターン加工することで形成することができる。 An insulating layer 218 is formed on the insulating layer 216, the magnetic shield 217, and the like. As the insulating layer 218, a polyimide film, a silicon oxide film, or the like is used. The polyimide film can be formed by applying and curing a polyimide material. The silicon oxide film can be formed using a method such as sputtering or plasma CVD. A contact hole is formed in a predetermined region such as the insulating layer 216 or the insulating layer 218, and an electrode connected to a coil electrode or the like is formed (not shown). The electrodes can be formed by forming an electrode material layer and then patterning the electrode material layer by photolithography and etching.
 図2に示すような構成を採用することにより、同一の基板211上に、第一の電流センサ11Aに用いられる第一の磁気センサ201Aと、第二の電流センサ11Bに用いられる第二の磁気センサ201Bとを作り込んでワンチップ化することができる。この場合、第一の電流センサ11Aおよび第二の電流センサ11Bの取り付け位置や、第一の電流センサ11Aおよび第二の電流センサ11Bの取り付け角度の精度を高めることができる。これにより、第一の電流センサ11Aと第二の電流センサ11Bの位置ずれ、角度ずれ等に起因する電流測定精度の低下を抑制することができるため、電流の測定精度が高まる。 By adopting the configuration as shown in FIG. 2, on the same substrate 211, the first magnetic sensor 201A used for the first current sensor 11A and the second magnet used for the second current sensor 11B. The sensor 201B can be built into one chip. In this case, the mounting positions of the first current sensor 11A and the second current sensor 11B and the mounting angles of the first current sensor 11A and the second current sensor 11B can be improved in accuracy. As a result, since it is possible to suppress a decrease in current measurement accuracy due to positional deviation, angular deviation or the like of the first current sensor 11A and the second current sensor 11B, the current measurement accuracy is enhanced.
 また、第一の電流センサ11Aおよび第二の電流センサ11Bを同一チップ内に設けることにより、チップの取り数を増加させ、パッケージコストを低下させることができる。これにより、電流センサ1の低コスト化を図ることができる。また、第一の電流センサ11Aと、第二の電流センサ11Bとを別チップとする場合と比較して、電流センサの小型化を図ることができる。また、第一の電流センサ11Aおよび第二の電流センサ11Bを電流線から等距離に配置できるため、電流の測定精度を高めることができる。なお、ここでは、同一の基板211上に第一の電流センサ11Aに用いられる第一の磁気センサ201Aと、第二の電流センサ11Bに用いられる第二の磁気センサ201Bとを作り込んでワンチップ化する例を示しているが、本発明はこれに限定されず、第一の電流センサ11Aと第二の電流センサ11Bとを別チップとしても良い。 Further, by providing the first current sensor 11A and the second current sensor 11B in the same chip, the number of chips can be increased and the package cost can be reduced. Thereby, cost reduction of the current sensor 1 can be achieved. Further, the current sensor can be miniaturized as compared to the case where the first current sensor 11A and the second current sensor 11B are separate chips. In addition, since the first current sensor 11A and the second current sensor 11B can be disposed equidistantly from the current line, the measurement accuracy of the current can be enhanced. Here, the first magnetic sensor 201A used for the first current sensor 11A and the second magnetic sensor 201B used for the second current sensor 11B are built on the same substrate 211 to form a single chip. However, the present invention is not limited to this, and the first current sensor 11A and the second current sensor 11B may be separate chips.
 このような構成を有する磁気センサにおいて、電流線13を通流する被測定電流による誘導磁界A、Bを磁気抵抗効果素子213A、213Bが受けると、フィードバックコイル215A、215Bが誘導磁界A、Bを打ち消すキャンセル磁界を発生し、磁気抵抗効果素子213A、213Bが受ける磁界が零になるように調整する。 In the magnetic sensor having such a configuration, when the magnetoresistance effect elements 213A and 213B receive the induced magnetic fields A and B by the measured current flowing through the current wire 13, the feedback coils 215A and 215B generate the induced magnetic fields A and B. A canceling magnetic field that cancels out is generated, and adjustment is made so that the magnetic fields received by the magnetoresistive elements 213A and 213B become zero.
 ここで、第一の電流センサ11Aにおける第一の磁気センサ201Aは、磁気抵抗効果素子213Aと重畳する領域に磁気シールド217を有していないのに対し、第二の電流センサ11Bにおける第二の磁気センサ201Bは、磁気抵抗効果素子213Bと重畳する領域に磁気シールド217を有している。磁気シールド217は、被測定電流から生じる誘導磁界を減衰させるため、磁気シールド217と重畳しない磁気抵抗効果素子213Aが受ける誘導磁界Aは、磁気シールド217と重畳する磁気抵抗効果素子213Bが受ける誘導磁界Bより大きくなる。また、フィードバックコイル215Bからのキャンセル磁界は、磁気シールド217によりエンハンスされるため、フィードバックコイル215Bによるキャンセル磁界の効果は、フィードバックコイル215Aによるキャンセル磁界の効果より大きなものになる。 Here, while the first magnetic sensor 201A in the first current sensor 11A does not have the magnetic shield 217 in a region overlapping with the magnetoresistive effect element 213A, the second magnetic sensor 201B in the second current sensor 11B The magnetic sensor 201B has a magnetic shield 217 in a region overlapping with the magnetoresistive effect element 213B. Since the magnetic shield 217 attenuates the induction magnetic field generated from the current to be measured, the induction magnetic field A received by the magnetoresistive effect element 213A not overlapping the magnetic shield 217 is received by the magnetoresistive effect element 213B overlapping the magnetic shield 217 It becomes larger than B. Further, since the cancellation magnetic field from the feedback coil 215B is enhanced by the magnetic shield 217, the effect of the cancellation magnetic field by the feedback coil 215B is greater than the effect of the cancellation magnetic field by the feedback coil 215A.
 このため、第一の電流センサ11Aでは、測定可能範囲は狭いが、分解能は高く、第二の電流センサ11Bでは、分解能は低いが、測定可能範囲は広くなる。なお、第一の電流センサ11Aの分解能をより高めるために、フィードバックコイル215Aのターン数(または巻き数)を、フィードバックコイル215Bのターン数(または巻き数)より少なくしても良い。 Therefore, in the first current sensor 11A, the measurable range is narrow but the resolution is high, and in the second current sensor 11B, the resolution is low but the measurable range is wide. The number of turns (or number of turns) of feedback coil 215A may be smaller than the number of turns (or number of turns) of feedback coil 215B in order to further increase the resolution of first current sensor 11A.
 次に、第一の電流センサ11Aの出力と第二の電流センサ11Bの出力とを選択して電流測定を行う電流センサ1の電流測定フローについて説明する。図3は、電流測定アルゴリズムを説明するフローチャートである。 Next, a current measurement flow of the current sensor 1 that performs current measurement by selecting the output of the first current sensor 11A and the output of the second current sensor 11B will be described. FIG. 3 is a flowchart illustrating the current measurement algorithm.
 電流測定が開始されると、第一の電流センサ11Aおよび第二の電流センサ11Bは、被測定電流を測定する(ステップ301)。これにより、第一の電流センサ11Aからは、被測定電流に応じた出力電圧Vが出力され、第二の電流センサ11Aからは、被測定電流に応じた出力電圧Vが出力される。 When the current measurement is started, the first current sensor 11A and the second current sensor 11B measure the current to be measured (step 301). Thus, from the first current sensor 11A, it is output the output voltages V 1 corresponding to the current to be measured, from the second current sensor 11A, the output voltage V 2 corresponding to the current to be measured is output.
 次に、第一の電流センサ11Aと第二の電流センサ11Bのいずれの出力を採用するかを決定する(ステップ302)。 Next, it is determined which output of the first current sensor 11A or the second current sensor 11B is to be adopted (step 302).
 ここで、図4に、第一の電流センサ11Aの出力電圧Vと被測定電流との関係(線A)、および、第二の電流センサ11Bの出力電圧Vと被測定電流との関係(線B)を模式的に示す。図4から分かるように、第一の電流センサ11Aは急峻な出力特性を有しており、僅かな電流を正確に測定することが可能になっている。つまり、測定の分解能が高められている。一方で、第二の電流センサ11Bは緩やかな出力特性を有しており、広い範囲の被測定電流を測定することが可能になっている。つまり、測定可能範囲の上限が高められている。 Here, in FIG. 4, the relationship between the output voltage V1 of the first current sensor 11A and the current to be measured (line A), and the relationship between the output voltage V2 of the second current sensor 11B and the current to be measured (Line B) is schematically shown. As can be seen from FIG. 4, the first current sensor 11A has a steep output characteristic, which makes it possible to measure a small amount of current accurately. That is, the resolution of the measurement is enhanced. On the other hand, the second current sensor 11B has a moderate output characteristic, which makes it possible to measure a wide range of measured current. That is, the upper limit of the measurable range is raised.
 このため、第一の電流センサ11Aと第二の電流センサ11Bのいずれの出力を採用するかの判定は、第一の電流センサ11Aの出力電圧Vと、あらかじめ決められていた閾値Vth1の大きさを比較することにより行えば良い(ステップ302)。閾値Vth1には、例えば、第一の電流センサ11Aの測定可能範囲の上限に相当する電圧を採用することができる(図4参照)。VがVth1より大きい場合、つまり、被測定電流が、第一の電流センサ11Aの測定可能範囲の上限を超えている場合には、ステップ303を実行する。それ以外の場合には、ステップ304を実行する。 For this reason, the determination as to which output of the first current sensor 11A or the second current sensor 11B is adopted depends on the output voltage V1 of the first current sensor 11A and the threshold value V th1 determined in advance. This may be done by comparing the sizes (step 302). For the threshold value V th1 , for example, a voltage corresponding to the upper limit of the measurable range of the first current sensor 11A can be adopted (see FIG. 4). If V 1 is greater than V th1, that is, the measured current, if it exceeds the upper limit of the measurement range of the first current sensor 11A executes step 303. Otherwise, step 304 is performed.
 ステップ303では、第二の電流センサ11Bの出力電圧Vから被測定電流の電流値を算出する。VがVth1より大きい場合、つまり、被測定電流が、第一の電流センサ11Aの測定可能範囲の上限を超えている場合には、測定可能範囲の上限が高い第二の電流センサ11Bの出力を採用して、被測定電流の電流値を算出するのが妥当だからである。 In step 303, the current value of the current to be measured is calculated from the output voltage V2 of the second current sensor 11B. If V 1 is greater than V th1, that is, the measured current, if it exceeds the upper limit of the measurement range of the first current sensor 11A, the upper limit of the measurable range of the high second current sensor 11B This is because it is appropriate to adopt the output and calculate the current value of the current to be measured.
 ステップ304では、第一の電流センサ11Aの出力電圧Vから被測定電流の電流値を算出する。VがVth1以下の場合、つまり、被測定電流が、第一の電流センサ11Aの測定可能範囲の上限を超えていない場合には、分解能が高い第一の電流センサ11Aの出力を採用して、被測定電流の電流値を算出するのが妥当だからである。 In step 304, the current value of the current to be measured is calculated from the output voltage V1 of the first current sensor 11A. When V 1 is equal to or less than V th1 , that is, when the measured current does not exceed the upper limit of the measurable range of the first current sensor 11A, the output of the first current sensor 11A with high resolution is adopted. It is appropriate to calculate the current value of the current to be measured.
 以上、ステップ303またはステップ304によって、被測定電流の電流値が算出されると測定は終了する。 As described above, when the current value of the current to be measured is calculated in step 303 or step 304, the measurement ends.
 なお、ここでは、第一の電流センサ11Aの出力電圧Vと、閾値Vth1の大きさを比較しているが、第二の電流センサ11Bの出力電圧Vと、閾値Vth2の大きさを比較しても良い。この場合、閾値Vth2には、例えば、第一の電流センサ11Aの測定可能範囲の上限に相当する第二の電流センサ11Aの出力電圧を採用することができる(図4参照)。そして、VがVth2より大きい場合には、第二の電流センサ11Aの出力を採用し、それ以外の場合には第一の電流センサ11Bの出力を採用する。つまり、VがVth2より大きい場合(被測定電流が、第二の電流センサ11Bの測定可能範囲の下限を超えている場合)には、ステップ303を実行し、それ以外の場合には、ステップ304を実行する。 Here, although the magnitude of the output voltage V1 of the first current sensor 11A and the threshold V th1 are compared, the magnitude of the output voltage V2 of the second current sensor 11B and the threshold V th2 You may compare In this case, for example, the output voltage of the second current sensor 11A corresponding to the upper limit of the measurable range of the first current sensor 11A can be adopted as the threshold value V th2 (see FIG. 4). Then, V 2 is greater than V th2, the output of the second current sensor 11A employed, in other cases employing the output of the first current sensor 11B. That is, if V 2 is greater than V th2 in the (current to be measured is, if it exceeds the lower limit of the measurable range of the second current sensor 11B), and executes step 303, otherwise, Step 304 is performed.
 以上のように、異なる測定可能範囲および異なる分解能を有する二つの電流センサの出力を選択して用いることにより、大電流を測定しつつ、微細な電流を高精度に測定することができる。 As described above, by selecting and using the outputs of two current sensors having different measurable ranges and different resolutions, it is possible to measure a minute current with high accuracy while measuring a large current.
 なお、本発明は上記実施の形態に限定されず、種々変更して実施することができる。例えば、上記実施の形態における各素子の接続関係、大きさなどは適宜変更して実施することが可能である。また、上記実施の形態に示す構成は、適宜組み合わせて実施することが可能である。その他、本発明は、本発明の範囲を逸脱しないで適宜変更して実施することができる。 The present invention is not limited to the above embodiment, and can be implemented with various modifications. For example, the connection relation, size, and the like of each element in the above-described embodiment can be appropriately changed and implemented. In addition, the structures described in the above embodiments can be implemented in combination as appropriate. In addition, the present invention can be implemented with appropriate modifications without departing from the scope of the present invention.
 本発明の電流センサは、例えば、電気自動車やハイブリッドカーのモータ駆動用の電流の大きさを検知するために用いることが可能である。また、電気自動車等に搭載されるバッテリーの暗電流を測定するために用いることが可能である。 The current sensor of the present invention can be used, for example, to detect the magnitude of the current for driving a motor of an electric car or a hybrid car. Moreover, it is possible to use for measuring the dark current of the battery mounted in an electric vehicle etc.
 本出願は、2010年10月20日出願の特願2010-235047に基づく。この内容は、全てここに含めておく。 This application is based on Japanese Patent Application No. 2010-235047 filed on October 20, 2010. All this content is included here.

Claims (8)

  1.  第一の磁気センサを具備し、第一の測定可能範囲を有する第一の電流センサと、
     第二の磁気センサを具備し、前記第一の測定可能範囲より上限値が高い第二の測定可能範囲を有する第二の電流センサと、
     電流線を通流する被測定電流の大きさに応じて、前記第一の電流センサの出力または前記第二の電流センサの出力を選択するセンサ選択手段と、を備えたことを特徴とする電流センサ。
    A first current sensor comprising a first magnetic sensor and having a first measurable range;
    A second current sensor having a second magnetic sensor and having a second measurable range whose upper limit is higher than the first measurable range;
    A sensor selection means for selecting an output of the first current sensor or an output of the second current sensor in accordance with the magnitude of the measured current flowing through the current line. Sensor.
  2.  前記第一の電流センサは第一の分解能を有し、
     前記第二の電流センサは前記第一の分解能より低い第二の分解能を有することを特徴とする請求項1に記載の電流センサ。
    The first current sensor has a first resolution,
    The current sensor according to claim 1, wherein the second current sensor has a second resolution lower than the first resolution.
  3.  前記第一の分解能は、前記第二の分解能の10倍以上であることを特徴とする請求項2に記載の電流センサ。 The current sensor according to claim 2, wherein the first resolution is ten times or more of the second resolution.
  4.  前記第二の測定可能範囲の上限値は、前記第一の測定可能範囲の上限値の10倍以上であることを特徴とする請求項1から請求項3のいずれか一に記載の電流センサ。 The current sensor according to any one of claims 1 to 3, wherein an upper limit value of the second measurable range is ten times or more of an upper limit value of the first measurable range.
  5.  前記第二の磁気センサは、磁気センサ素子を覆う素子シールドを備えたことを特徴とする請求項1から請求項4のいずれか一に記載の電流センサ。 The current sensor according to any one of claims 1 to 4, wherein the second magnetic sensor includes an element shield that covers a magnetic sensor element.
  6.  前記第一の電流センサと、前記第二の電流センサとは、同一チップ内に設けられたことを特徴とする請求項1から請求項5のいずれか一に記載の電流センサ。 The current sensor according to any one of claims 1 to 5, wherein the first current sensor and the second current sensor are provided in the same chip.
  7.  前記第一の磁気センサおよび前記第二の磁気センサは、いずれも、フィードバックコイルを用いた磁気平衡式のセンサであることを特徴とする請求項1から請求項6のいずれか一に記載の電流センサ。 The current according to any one of claims 1 to 6, wherein each of the first magnetic sensor and the second magnetic sensor is a magnetic balance type sensor using a feedback coil. Sensor.
  8.  前記第一の電流センサは一対の前記第一の磁気センサを具備し、
     前記一対の第一の磁気センサに接続され、その出力信号を差動演算する演算装置と、を備えたことを特徴とする請求項1から請求項7のいずれか一に記載の電流センサ。
    The first current sensor comprises a pair of the first magnetic sensors,
    The current sensor according to any one of claims 1 to 7, further comprising: an arithmetic device connected to the pair of first magnetic sensors and performing a differential operation on the output signals thereof.
PCT/JP2011/070886 2010-10-20 2011-09-13 Current sensor WO2012053296A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012539640A JPWO2012053296A1 (en) 2010-10-20 2011-09-13 Current sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010235047 2010-10-20
JP2010-235047 2010-10-20

Publications (1)

Publication Number Publication Date
WO2012053296A1 true WO2012053296A1 (en) 2012-04-26

Family

ID=45975018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070886 WO2012053296A1 (en) 2010-10-20 2011-09-13 Current sensor

Country Status (2)

Country Link
JP (1) JPWO2012053296A1 (en)
WO (1) WO2012053296A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2889631A1 (en) * 2013-12-25 2015-07-01 Kabushiki Kaisha Toshiba Current sensor, current measuring module, and smart meter
JP2015125019A (en) * 2013-12-25 2015-07-06 株式会社東芝 Current sensor, current measuring module, and smart meter
JP2015152422A (en) * 2014-02-14 2015-08-24 アルプス・グリーンデバイス株式会社 current sensor
WO2016021500A1 (en) * 2014-08-05 2016-02-11 アルプス・グリーンデバイス株式会社 Electric current sensor
JP2016038219A (en) * 2014-08-05 2016-03-22 アルプス・グリーンデバイス株式会社 Current sensor
JP2016200522A (en) * 2015-04-13 2016-12-01 三菱電機株式会社 Current detection device and magnetic field detection device using the same
WO2017199519A1 (en) * 2016-05-17 2017-11-23 アルプス電気株式会社 Equilibrium type magnetic detecting device
EP3346238A1 (en) 2017-01-10 2018-07-11 Melexis Technologies SA Sensor with multiple sensing elements
JP2019039928A (en) * 2018-10-25 2019-03-14 株式会社東芝 Current sensor, current measuring module, and smart meter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943327A (en) * 1995-08-03 1997-02-14 Nec Corp Magneto-resistive current sensor
JP2002243766A (en) * 2001-02-16 2002-08-28 Fuji Electric Co Ltd Electric current sensor
JP2003315376A (en) * 2002-04-18 2003-11-06 Aichi Micro Intelligent Corp Current sensor
JP2004132790A (en) * 2002-10-09 2004-04-30 Fuji Electric Holdings Co Ltd Current sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943327A (en) * 1995-08-03 1997-02-14 Nec Corp Magneto-resistive current sensor
JP2002243766A (en) * 2001-02-16 2002-08-28 Fuji Electric Co Ltd Electric current sensor
JP2003315376A (en) * 2002-04-18 2003-11-06 Aichi Micro Intelligent Corp Current sensor
JP2004132790A (en) * 2002-10-09 2004-04-30 Fuji Electric Holdings Co Ltd Current sensor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125019A (en) * 2013-12-25 2015-07-06 株式会社東芝 Current sensor, current measuring module, and smart meter
JP2015125020A (en) * 2013-12-25 2015-07-06 株式会社東芝 Current sensor, current measuring module, and smart meter
EP2889631A1 (en) * 2013-12-25 2015-07-01 Kabushiki Kaisha Toshiba Current sensor, current measuring module, and smart meter
US10254315B2 (en) 2013-12-25 2019-04-09 Kabushiki Kaisha Toshiba Current sensor, current measuring module, and smart meter
JP2015152422A (en) * 2014-02-14 2015-08-24 アルプス・グリーンデバイス株式会社 current sensor
US10156589B2 (en) 2014-08-05 2018-12-18 Alps Electric Co., Ltd. Sensor module that switches plural sensors capable of measuring different ranges to extend dynamic range
WO2016021500A1 (en) * 2014-08-05 2016-02-11 アルプス・グリーンデバイス株式会社 Electric current sensor
JP2016038219A (en) * 2014-08-05 2016-03-22 アルプス・グリーンデバイス株式会社 Current sensor
JPWO2016021500A1 (en) * 2014-08-05 2017-04-27 アルプス電気株式会社 Current sensor
JP2016200522A (en) * 2015-04-13 2016-12-01 三菱電機株式会社 Current detection device and magnetic field detection device using the same
WO2017199519A1 (en) * 2016-05-17 2017-11-23 アルプス電気株式会社 Equilibrium type magnetic detecting device
EP3346238A1 (en) 2017-01-10 2018-07-11 Melexis Technologies SA Sensor with multiple sensing elements
US10712143B2 (en) 2017-01-10 2020-07-14 Melexis Technologies Sa Sensor with multiple sensing elements
JP2019039928A (en) * 2018-10-25 2019-03-14 株式会社東芝 Current sensor, current measuring module, and smart meter

Also Published As

Publication number Publication date
JPWO2012053296A1 (en) 2014-02-24

Similar Documents

Publication Publication Date Title
WO2012053296A1 (en) Current sensor
US8593134B2 (en) Current sensor
US8487612B2 (en) Current sensor
US8519704B2 (en) Magnetic-balance-system current sensor
JP5411285B2 (en) Magnetic balanced current sensor
JP5584918B2 (en) Current sensor
WO2013001789A1 (en) Current sensor
JP5888402B2 (en) Magnetic sensor element
US20130057273A1 (en) Current sensor
JP5906488B2 (en) Current sensor
JP5487402B2 (en) Magnetic balanced current sensor
WO2012011306A1 (en) Current sensor
US20130300404A1 (en) Current sensor
WO2012005042A1 (en) Current sensor
US9146260B2 (en) Magnetic balance type current sensor
JP5487403B2 (en) Current sensor
JP2010286415A (en) Current sensor unit
JP2012052912A (en) Current sensor
JP2010286270A (en) Current sensor
WO2012063584A1 (en) Current sensor
CN113495183B (en) Current sensor, method for manufacturing the same, electric control device, and method for designing current sensor
JP2015194389A (en) Magnetic field detection device and multi piece substrate
WO2012093556A1 (en) Magnetic-balance current sensor and method for manufacturing a magnetic-balance current sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834138

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012539640

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834138

Country of ref document: EP

Kind code of ref document: A1