JPH06174752A - Current sensor - Google Patents

Current sensor

Info

Publication number
JPH06174752A
JPH06174752A JP4330811A JP33081192A JPH06174752A JP H06174752 A JPH06174752 A JP H06174752A JP 4330811 A JP4330811 A JP 4330811A JP 33081192 A JP33081192 A JP 33081192A JP H06174752 A JPH06174752 A JP H06174752A
Authority
JP
Japan
Prior art keywords
magnetic field
iron core
current sensor
coil
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4330811A
Other languages
Japanese (ja)
Inventor
Shigemi Kurashima
茂美 倉島
Shinkichi Shimizu
信吉 清水
Mieko Kawamoto
美詠子 川元
Shigeo Tanji
成生 丹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4330811A priority Critical patent/JPH06174752A/en
Publication of JPH06174752A publication Critical patent/JPH06174752A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates

Abstract

PURPOSE:To enhance accuracy in current detection by improving the linearity of a curve representative of relationship between the value of current to be detected within a measuring range and sensor output. CONSTITUTION:The current sensor comprises a coil 11, a core 12 having a magnetism collecting end part wounded by the coil, and a magnetoresistive element 13 arranged between the magnetism collecting end parts of the core 12 while having a bias field perpendicularly intersecting the field produced between the magnetism collecting end parts. The magnetoresistive element 13 or the core 12 itself of the current sensor for detecting a current value based on the strength of field produced between the magnetism collecting end parts upon application of a current to be detected to the coil 11 are arranged to allow inclination so that the directional perpendicularity between the bias field of the magnetoresistive element 13 and the field produced between the magnetism collecting end parts can be modified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はバイアス磁界を持つ磁気
抵抗素子(以下文中ではMR素子とする)を利用した電
流センサの構成に係り、特に測定電流値範囲内における
披検電流値とセンサ出力間の関係グラフの直線性を向上
させて電流検出精度の向上を図った電流センサに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a configuration of a current sensor using a magnetoresistive element having a bias magnetic field (hereinafter referred to as MR element), and particularly to a test current value and a sensor output within a measured current value range. The present invention relates to a current sensor in which the linearity of a relation graph is improved to improve the current detection accuracy.

【0002】MR素子はホール素子や半導体型磁気抵抗
素子に比して微小磁界に対する感度が高く且つその分解
能に優れているため位置センサや角度センサ等各種のセ
ンサに利用されており、電流値によって変動する磁界を
検出して逆に元電流値を検出する電流センサにも使用さ
れている。
MR elements are used in various sensors such as position sensors and angle sensors because they are more sensitive to minute magnetic fields and superior in resolution than Hall elements or semiconductor type magnetoresistive elements, and they are used depending on the current value. It is also used in current sensors that detect fluctuating magnetic fields and conversely detect the original current value.

【0003】なお通常の強磁性薄膜磁気抵抗素子では外
部磁界(検出磁界)に対するリニアな出力が得難いこと
から、最近では出力のリニアリティを確保して検出精度
を向上させるために薄膜磁気抵抗素子の裏面側に磁石板
を添着して該素子にバイアス磁界を付加するタイプのM
R素子が多用されるようになってきている。
Since it is difficult to obtain a linear output with respect to an external magnetic field (detection magnetic field) with an ordinary ferromagnetic thin film magnetoresistive element, recently, in order to secure output linearity and improve detection accuracy, the back surface of the thin film magnetoresistive element is improved. M of the type that attaches a magnet plate to the side and applies a bias magnetic field to the element
The R element has been widely used.

【0004】[0004]

【従来の技術】図7は従来の電流センサの構成を概略的
に説明する図であり、(7-1) は斜視図,(7-2)は(7-1) を
平面視した図である。
2. Description of the Related Art FIG. 7 is a diagram schematically illustrating the configuration of a conventional current sensor. (7-1) is a perspective view, (7-2) is a plan view of (7-1). is there.

【0005】また図8は従来の電流センサにおける問題
点を説明する図である。図7で電流センサ1はコイル11
が捲回された鉄心12と該鉄心12のスリット12a部分に配
置されたMR素子13とが回路基板14上に固定されて構成
されている。
FIG. 8 is a diagram for explaining a problem in the conventional current sensor. In FIG. 7, the current sensor 1 is a coil 11
An iron core 12 wound around and an MR element 13 arranged in a slit 12a portion of the iron core 12 are fixed on a circuit board 14.

【0006】そしてコイル11はその両端部が回路基板14
の余白部に立てられている外部接続端子111a,111b の基
板側端部に接続されているので、その自由端側端部に電
流値を検知する回路側信号線を接続することで鉄心12の
スリット12a 間に該電流値に対応する強さの外部磁界G
を発生させることができる。
The coil 11 has circuit boards 14 at both ends.
Since it is connected to the board-side ends of the external connection terminals 111a and 111b that are set up in the margins of the iron core 12, it is possible to connect the circuit-side signal line that detects the current value to the free-end side end of the iron core 12. An external magnetic field G having a strength corresponding to the current value is applied between the slits 12a.
Can be generated.

【0007】一方該スリット12a の間に配置されている
MR素子13は抽出した拡大図(a) に示す如く、片面に強
磁性薄膜からなる4個の抵抗体がブリッジ回路状に接続
されている磁気抵抗パターン131 が形成されまた該パタ
ーン形成域の裏面側には該磁気抵抗パターン131 にバイ
アス磁界G1を付加するための磁石板132 が磁界方向が矢
印A方向を向くように添着された基板133 が樹脂134 で
被覆されて構成されているものであり、該磁気抵抗パタ
ーン131 に繋がる4個の外部接続端子135 で上記回路基
板14に実装固定されている。
On the other hand, the MR element 13 arranged between the slits 12a has four resistors made of a ferromagnetic thin film connected to one surface in a bridge circuit shape as shown in the enlarged view (a) extracted. A substrate on which a magnetoresistive pattern 131 is formed, and a magnet plate 132 for applying a bias magnetic field G 1 to the magnetoresistive pattern 131 is attached to the back surface side of the pattern formation region so that the magnetic field direction is the direction of arrow A. 133 is covered with resin 134, and is fixedly mounted on the circuit board 14 by four external connection terminals 135 connected to the magnetoresistive pattern 131.

【0008】なお回路基板14上には上記MR素子13に繋
がる信号処理用IC15が搭載されており、該MR素子13
で検知された外部磁界G2を演算して電流値Iに変換しそ
の信号を外部接続電極15a,15b から取り出せるようにな
っている。
On the circuit board 14, a signal processing IC 15 connected to the MR element 13 is mounted.
The external magnetic field G 2 detected by is calculated and converted into a current value I, and the signal can be taken out from the external connection electrodes 15a and 15b.

【0009】従って、コイル11に印加される披検電流値
に比例して鉄心12のスリット12a 間に発生する外部磁界
G2に対応する電流値Iの信号を外部接続電極15a,15b か
ら取り出すことができる。
Therefore, an external magnetic field generated between the slits 12a of the iron core 12 in proportion to the value of the verification current applied to the coil 11
The signal of the current value I corresponding to G 2 can be taken out from the external connection electrodes 15a and 15b.

【0010】かかる構成になる電流センサ1では、外部
接続端子111a〜111b間に披検電流値回路を接続すること
で所要電流値信号が外部接続電極15a,15b から取り出せ
るので効率的に電流値が検出できるメリットがある。
In the current sensor 1 having such a structure, the required current value signal can be taken out from the external connection electrodes 15a and 15b by connecting the test current value circuit between the external connection terminals 111a to 111b, so that the current value can be efficiently obtained. There is a merit that can be detected.

【0011】[0011]

【発明が解決しようとする課題】しかし磁気抵抗素子に
はそれ本来の特性として、外部磁界がリニアにすなわち
直線的に変化したときでも磁気抵抗素子としての出力が
それに追従せず、結果的に磁界検出精度の低下を避ける
ことができないと言う弱点がある。
However, the inherent characteristic of the magnetoresistive element is that the output of the magnetoresistive element does not follow it even when the external magnetic field changes linearly, that is, linearly. There is a weakness that the decrease in detection accuracy cannot be avoided.

【0012】そこでかかる弱点を改善するために上記M
R素子13の如く磁気抵抗素子自体にバイアス磁界G1をか
けて外部磁界G2に対する出力としての追従性を向上させ
るようにしているが、その場合でも完全に両者を合致さ
せることができない。
Therefore, in order to improve such weak points, the above M
Although a bias magnetic field G 1 is applied to the magnetoresistive element itself like the R element 13 to improve the followability as an output to the external magnetic field G 2 , the two cannot be perfectly matched even in that case.

【0013】かかる問題点を図示した図8で、(8-1) は
MR素子としての出力を例示しまた(8-2)は電流センサ
としての出力を例示したものである。横軸Xを外部磁界
G2で採り縦軸YをMR素子としての出力 mV で表わした
図の(8-1) で、直線的な破線(1) はMR素子としての理
想出力を示したものであり、またカーブ(2) は実際の出
力例を示したものである。
In FIG. 8 showing such a problem, (8-1) illustrates the output as the MR element and (8-2) illustrates the output as the current sensor. Horizontal magnetic field X is external magnetic field
In the figure (8-1) in which the vertical axis Y is taken as G 2 and the output mV as the MR element is represented, the linear broken line (1) shows the ideal output as the MR element, and the curve ( 2) shows an actual output example.

【0014】なお図では理解し易くするため破線(1) と
カーブ(2) のY軸方向ずれ(図の斜線域)を部分的に拡
大して表わしているが、バイアス磁界G1が付加された上
記MR素子13では外部磁界G2が“0”の点におけるずれ
量ΔV1が検出電流値範囲での電位差V1に対してほぼ1%
程度であり、このずれは磁気抵抗素子本来のものとして
避けることができない。
In the figure, for easy understanding, the deviation of the broken line (1) and the curve (2) in the Y-axis direction (hatched area in the figure) is partially enlarged, but a bias magnetic field G 1 is added. In the MR element 13, the deviation amount ΔV 1 at the point where the external magnetic field G 2 is “0” is approximately 1% with respect to the potential difference V 1 in the detected current value range.
This is a degree, and this deviation is unavoidable as the original of the magnetoresistive element.

【0015】一方、横軸Xを披検電流値Iで採り縦軸Y
を上記MR素子の出力を増幅した電圧Vで表わした図の
(8-2) で、直線的な破線(3) は電流センサとしての理想
出力を示しまたカーブ(4) は実際の出力を示したもので
あるが、この場合のカーブ(4) は (8-1)におけるカーブ
(1) とほぼ相似形をなすものである。
On the other hand, the horizontal axis X is taken as the test current value I and the vertical axis Y is taken.
Is a voltage V obtained by amplifying the output of the MR element.
In (8-2), the linear broken line (3) shows the ideal output as a current sensor, and the curve (4) shows the actual output.In this case, the curve (4) shows (8 Curve in -1)
It is almost similar to (1).

【0016】そして、この場合の電流値“0”の位置す
なわち外部磁界G2“0”位置における破線(3) とカーブ
(4) 間のY軸方向のずれ“ΔV2”の検出電流値範囲での
電位差V2に対する割合“ΔV2/V2”を電流センサとして
の直線性L(単位%)として定義すると、電流センサと
しての検出精度を更に向上させるには該直線性Lひいて
はΔV2をできるだけ小さくしなければならない。
In this case, the broken line (3) and the curve at the position of the current value "0", that is, at the position of the external magnetic field G 2 "0"
(4) If the ratio “ΔV 2 / V 2 ” of the deviation “ΔV 2 ” in the Y-axis direction to the potential difference V 2 in the detected current value range is defined as the linearity L (unit:%) as a current sensor, In order to further improve the detection accuracy of the sensor, the linearity L and thus ΔV 2 must be made as small as possible.

【0017】従って、従来の構成になる電流センサでは
MR素子としての本来の特性に起因する検出精度の低下
を避けることができず、更に検出精度の高い電流センサ
の要求に対しては対応させることができないと言う問題
があった。
Therefore, the current sensor having the conventional structure cannot avoid the deterioration of the detection accuracy due to the original characteristics of the MR element, and must meet the demand for the current sensor with higher detection accuracy. There was a problem that I could not do it.

【0018】[0018]

【課題を解決するための手段】上記課題は、コイルと該
コイルが捲回された集磁端部を持つ鉄心および該集磁端
部間に発生する磁界と直交する方向のバイアス磁界を持
って該鉄心の集磁端部間に配置された磁気抵抗素子とを
少なくとも具えて構成され、披検電流を上記コイルに印
加したときに鉄心の上記集磁端部間に発生する該披検電
流値に対応する強さの磁界から該披検電流値を検出する
電流センサであって、鉄心の集磁端部間に配置される磁
気抵抗素子または該鉄心自身が、該鉄心の集磁端部間に
発生する磁界方向と磁気抵抗素子のバイアス磁界方向と
の直交角度が変えられる方向に傾け得る手段を具えて構
成されている電流センサによって解決される。
Means for Solving the Problems The above problem is to provide a coil, an iron core having a magnetism collecting end around which the coil is wound, and a bias magnetic field in a direction orthogonal to a magnetic field generated between the magnetism collecting ends. A magnetic resistance element arranged at least between magnetic flux collecting ends of the iron core, and the test current value generated between the magnetic flux collecting ends of the iron core when a test current is applied to the coil. Is a current sensor for detecting the verification current value from a magnetic field having a strength corresponding to the magnetic resistance element arranged between the magnetic flux collecting ends of the iron core or the iron core itself between the magnetic flux collecting ends of the iron core. And a bias current direction of the magnetoresistive element can be tilted in a direction in which the orthogonal angle can be changed.

【0019】[0019]

【作用】MR素子に印加するバイアス磁界G1の強さを適
当に設定するとMR素子としての上述した直線性Lを向
上させることができる。
When the strength of the bias magnetic field G 1 applied to the MR element is set appropriately, the above-mentioned linearity L of the MR element can be improved.

【0020】一方、鉄心のスリット間に位置するMR素
子を該スリット内の外部磁界G2と平行する方向に角度θ
だけ回転させると、該MR素子にはそのバイアス磁界G1
と同一方向に外部磁界G2の sinθ分の磁界を重畳させる
ことができる。
On the other hand, the MR element located between the slits of the iron core is angled θ in a direction parallel to the external magnetic field G 2 in the slits.
When it is rotated only by the bias magnetic field G 1
A magnetic field corresponding to sin θ of the external magnetic field G 2 can be superimposed in the same direction as.

【0021】そこで本発明では、鉄心のスリット間に位
置するMR素子を外部磁界G2と平行する方向に回転し得
るようにして電流センサを構成している。このことは、
予め実験的に入手したMR素子の回転角度と電流センサ
としての出力カーブとの間の相関関係図から得られた
“直線性Lが最小になる角度”だけ上記MR素子を回転
させることで、直線性Lが最小になる電流センサが実現
し得ることを意味する。
Therefore, in the present invention, the current sensor is constructed so that the MR element located between the slits of the iron core can be rotated in the direction parallel to the external magnetic field G 2 . This is
By rotating the MR element by the “angle at which the linearity L is minimized” obtained from the correlation diagram between the rotation angle of the MR element and the output curve of the current sensor, which is experimentally obtained in advance, a straight line is obtained. This means that it is possible to realize a current sensor that minimizes the property L.

【0022】従って、従来よりも直線性を向上させるこ
とができて検出精度のよい電流センサを容易に構成する
ことができる。
Therefore, the linearity can be improved more than in the prior art, and the current sensor with high detection accuracy can be easily constructed.

【0023】[0023]

【実施例】図1は本発明になる電流センサの構成原理を
示す図であり、図2はMR素子回転角度と電流センサ出
力との関係を説明する図,図3はMR素子回転角度とセ
ンサ出力直線性との関係を説明する図,図4は本発明に
なる電流センサの構成例を示す図,図5は他の実施例を
示す図,図6は第3の実施例を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing the principle of construction of a current sensor according to the present invention, FIG. 2 is a diagram for explaining the relationship between the MR element rotation angle and the current sensor output, and FIG. 3 is an MR element rotation angle and sensor. FIG. 4 is a diagram for explaining the relationship with the output linearity, FIG. 4 is a diagram showing a configuration example of a current sensor according to the present invention, FIG. 5 is a diagram showing another embodiment, and FIG. 6 is a diagram showing a third embodiment. is there.

【0024】なお図ではいずれも図7で説明した電流セ
ンサをベースとした場合を例としているので、図7と同
じ対象部材・部位には同一の記号を付して表わすと共に
重複する説明についてはそれを省略する。
In each of the figures, the case where the current sensor described in FIG. 7 is used as an example is shown. Therefore, the same reference numerals and symbols are given to the same target members and parts as in FIG. Omit it.

【0025】電流センサとしての主要部のみを抽出した
図1で、コイル11が捲回されている鉄心12のスリット12
a には図7で説明したMR素子13が配置されているが、
特にこの場合の該MR素子13は例えばその磁気抵抗パタ
ーン形成域を中心として紙面左右両方向に回動し得るよ
うになっている。
In FIG. 1 in which only the main part as the current sensor is extracted, the slit 12 of the iron core 12 around which the coil 11 is wound.
Although the MR element 13 described in FIG. 7 is arranged in a,
In particular, the MR element 13 in this case can rotate in the left and right directions of the paper with the magnetoresistive pattern forming region as the center.

【0026】そこで、当初破線Bで示す位置にあるMR
素子13を紙面右回りに角度θだけ回転させると図示実線
の状態にすることができる。このとき該MR素子13に
は、図7で説明したバイアス磁界G1にスリット12a 間に
発生している外部磁界G2の sinθ分すなわち“G2・ sin
θ”が重畳されるので、MR素子13のバイアス磁界G1
“G1+G2・ sinθ”とすることができる。
Therefore, the MR initially located at the position indicated by the broken line B
When the element 13 is rotated clockwise by an angle θ, the state shown by the solid line in the drawing can be obtained. The said MR element 13 at this time, sin [theta content i.e. of the external magnetic field G 2 are generated between the slits 12a to the bias magnetic field G 1 described in FIG. 7 "G 2 · sin
Since θ ”is superimposed, the bias magnetic field G 1 of the MR element 13 can be set to“ G 1 + G 2 · sin θ ”.

【0027】従って、上記回転角度θを±方向で自由に
変えることで結果的に該MR素子13にかかるバイアス磁
界を自在に変えることができる。横軸Xを披検電流値I
とし縦軸YをMR素子の出力Vとした図2は上記角度θ
を変えたときの披検電流値と電流センサ出力との関係を
示したものである。
Therefore, by freely changing the rotation angle θ in the ± directions, the bias magnetic field applied to the MR element 13 can be freely changed as a result. Horizontal axis X shows current value I
2 where the vertical axis Y is the output V of the MR element and FIG.
It shows the relationship between the verification current value and the output of the current sensor when is changed.

【0028】一部を拡大した図で、一点鎖線は角度θ
を−7°,点線は角度θを0°,実線は角度θを+
7°,破線は角度θを+20°としたときのそれぞれの
出力V2を表わしている。
In a partially enlarged view, the alternate long and short dash line indicates the angle θ.
Is −7 °, the dotted line is the angle θ of 0 °, and the solid line is the angle θ +
7 °, the broken line represents each output V 2 when the angle θ is + 20 °.

【0029】この場合図から明らかなようにMR素子13
の回転角度θを変えることで電流センサとしての出力V
が変えられるが、このことは図8で説明した直線性Lが
該回転角度θによって変えられることを意味する。
In this case, as is clear from the figure, the MR element 13
Output V as a current sensor by changing the rotation angle θ of
Can be changed, which means that the linearity L described in FIG. 8 can be changed by the rotation angle θ.

【0030】従って該回転角度θを適当に設定すること
で、MR素子13からの出力Vに対して追従性のよい換言
すれば直線性のよい出力が得られる電流センサを構成す
ることができる。
Therefore, by appropriately setting the rotation angle θ, it is possible to construct a current sensor which has a good followability with respect to the output V from the MR element 13, in other words, a linear output.

【0031】横軸Xを披検電流値Iで採り縦軸Yに上記
直線性Lを%で採った図3で、斜線域は図2に対応し
てMR素子13の回転角度θを−7°としたときの場合を
示し,以下は該角度θ=0°のとき,は角度θ=+
7°,は該角度θ=+20°のときをそれぞれ表わして
いる。
In FIG. 3 in which the horizontal axis X is taken as the test current value I and the vertical axis Y is taken as the linearity L in%, the shaded area corresponds to FIG. 2 and the rotation angle θ of the MR element 13 is -7. When the angle θ is 0 °, the following shows the angle θ = +
7 ° represents the case where the angle θ = + 20 °, respectively.

【0032】この場合直線性Lをよくするにはできるだ
けY軸の“0”線に近い領域の角度を設定することが望
ましく、例えば直線性を±0.5 %以内に設定するには上
記MR素子13の回転角度θを7〜20°の範囲内に設定す
ればよいことが分かる。
In this case, in order to improve the linearity L, it is desirable to set the angle of the region as close to the "0" line of the Y axis as possible. For example, in order to set the linearity within ± 0.5%, the MR element 13 described above is used. It can be seen that the rotation angle θ of is set within the range of 7 to 20 °.

【0033】本発明になる電流センサの構成を示す図4
で、(4-1) は全体斜視図,(4-2)は側断面図である。図で
電流センサ2は、コイル11が捲回された状態で回路基板
14に固定されたU字形鉄心21と該鉄心21の両端を結ぶ線
上中央領域に配置されたMR素子22とで構成されてい
る。
FIG. 4 showing the configuration of the current sensor according to the present invention.
Here, (4-1) is an overall perspective view, and (4-2) is a side sectional view. In the figure, the current sensor 2 is a circuit board with the coil 11 wound.
It is composed of a U-shaped iron core 21 fixed to 14 and an MR element 22 arranged in a central region on a line connecting both ends of the iron core 21.

【0034】なお該コイル11は図7同様にその両端部が
回路基板14の余白部に立てられている外部接続端子111
a,111b に接続されているので、該各外部接続端子111a,
111bに電流値を検知する回路側信号線を接続することで
鉄心21の両端部間に該電流値に対応する強さの外部磁界
G2が発生させられることは図7と同様である。
The coil 11 has external connection terminals 111 whose both ends are erected in the margin of the circuit board 14 as in FIG.
a, 111b, the external connection terminals 111a,
By connecting the signal line on the circuit side for detecting the current value to 111b, an external magnetic field having a strength corresponding to the current value is provided between both ends of the iron core 21.
Generation of G 2 is the same as in FIG. 7.

【0035】そして特にこの場合のMR素子22は図7の
MR素子13と等しいものであるが、回路基板14に対する
実装がその外部接続端子135 の領域で撓み得るように該
接続端子135 の自由端側先端のみで該基板14に実装され
ている。
In particular, the MR element 22 in this case is the same as the MR element 13 of FIG. 7, but the free end of the connection terminal 135 is so arranged that the mounting on the circuit board 14 can bend in the region of the external connection terminal 135. It is mounted on the substrate 14 only at the side tip.

【0036】また該基板14上の15は図7で説明した信号
処理用ICである。従って、例えば矢印Cのように該M
R素子22をそのサイドから押圧することで該MR素子22
を図1におけるMR素子13のようにU字形鉄心21に対し
て傾けることができる。
Reference numeral 15 on the substrate 14 is the signal processing IC described in FIG. Therefore, for example, as shown by arrow C, the M
By pressing the R element 22 from its side, the MR element 22
Can be tilted with respect to the U-shaped iron core 21 like the MR element 13 in FIG.

【0037】そこで該MR素子22をその磁気抵抗パター
ン形成面内で且つ図3で得られた適切な角度範囲内で回
動させると、該MR素子22にはバイアス磁界G1と外部磁
界G2に関与する前記磁界“G2・sin θ" とが重畳される
ので、結果的に該MR素子22からの出力V1に追従して直
線性のよい出力V2が得られる電流センサ2を実現させる
ことができる。
Therefore, when the MR element 22 is rotated within its magnetoresistive pattern forming surface and within the appropriate angular range obtained in FIG. 3, the MR element 22 is biased by a bias magnetic field G 1 and an external magnetic field G 2. Since the magnetic field “G 2 · sin θ” related to the magnetic field is superposed, as a result, the current sensor 2 which can obtain the output V 2 with good linearity by following the output V 1 from the MR element 22 is realized. Can be made.

【0038】なおこの場合の該MR素子22のU字形鉄心
21に対する回動は必ずしもMR素子22の磁気抵抗パター
ン形成域を中心として行わせる必要はなく、図示の如く
外部接続端子領域で撓ませてU字形鉄心21に対して相対
的に傾けても同等の効果を得ることができる。
In this case, the U-shaped iron core of the MR element 22 in this case
The rotation with respect to 21 does not necessarily have to be performed centering on the magnetoresistive pattern forming region of the MR element 22, and even if it is bent in the external connection terminal region and inclined relative to the U-shaped iron core 21 as shown in FIG. The effect can be obtained.

【0039】他の実施構成例を示す図5はMR素子の回
転容易化を図ったものであり、(5-1) は全体斜視図,(5-
2)はその側断面図である。図で電流センサ3は、図4同
様に外部接続端子111a,111b に繋がるコイル11が捲回さ
れた状態で回路基板31に固定されたU字形鉄心21と、そ
の両端を結ぶ線上中央領域に該回路基板31に対して回転
し得るように装着されている円形回路基板32に固定して
実装されている図7で説明したMR素子13とで構成され
ている。
FIG. 5 showing another example of the configuration is intended to facilitate rotation of the MR element. (5-1) is an overall perspective view, (5-)
2) is a side sectional view thereof. As shown in FIG. 4, the current sensor 3 includes a U-shaped iron core 21 fixed to a circuit board 31 in a state in which a coil 11 connected to the external connection terminals 111a and 111b is wound, and a central area on a line connecting both ends of the U-shaped iron core 21. The MR element 13 described in FIG. 7 is fixedly mounted on the circular circuit board 32 that is rotatably mounted on the circuit board 31.

【0040】そして特にこの場合のMR素子13が固定し
て実装されている円形回路基板32は例えば樹脂等からな
る円形ブッシュ33を介して回路基板31に搭載されている
ものであり、MR素子13の各外部接続端子135 に繋がる
該円形回路基板32上の各導体パターンは該円形回路基板
32が基準位置を中心として左右方向にそれぞれ45°程度
回転するに足る充分な余長を持つ配線材34を介して上記
回路基板31の所定の接続電極に接続されている。
In particular, the circular circuit board 32 on which the MR element 13 in this case is fixedly mounted is mounted on the circuit board 31 via a circular bush 33 made of, for example, resin or the like. The conductor patterns on the circular circuit board 32 connected to the external connection terminals 135 of
A reference numeral 32 is connected to a predetermined connection electrode of the circuit board 31 via a wiring member 34 having a sufficient extra length to rotate about the reference position in the horizontal direction by about 45 °.

【0041】従って、該配線材34の余長分が消化し得る
範囲内すなわち基準位置を中心として左右45°程度の範
囲で円形回路基板32ひいてはMR素子13をU字形鉄心21
に対して回転させることができる。
Therefore, the circular circuit board 32 and thus the MR element 13 is arranged in the U-shaped iron core 21 within a range in which the extra length of the wiring member 34 can be consumed, that is, in the range of about 45 ° to the left and right around the reference position.
Can be rotated against.

【0042】そこで、該MR素子13を円形回路基板32と
共に回転させることで図1と同様の状態にすることがで
きて該MR素子13からの出力V1に追従して直線性のよい
出力V2が得られる電流センサ3を実現させることができ
る。
Therefore, by rotating the MR element 13 together with the circular circuit board 32, a state similar to that shown in FIG. 1 can be obtained, and the output V 1 from the MR element 13 can be followed to obtain an output V with good linearity. The current sensor 3 that obtains 2 can be realized.

【0043】なお図では鉄心21とMR素子13とを同一の
回路基板31に搭載しているため該素子13を回路基板31と
平行する方向に回動させているが、該素子13をその磁気
抵抗パターン形成面にほぼ沿わせて回転させる条件が満
たせれば該回路基板31と平行する方向でなくても同等の
効果を得ることができる。
In the figure, since the iron core 21 and the MR element 13 are mounted on the same circuit board 31, the element 13 is rotated in a direction parallel to the circuit board 31, but the element 13 is rotated by its magnetic field. If the condition of rotating along the resistance pattern forming surface is satisfied, the same effect can be obtained even if it is not parallel to the circuit board 31.

【0044】第3の実施例を示す図6はMR素子の代わ
りに鉄心を回転させる場合を例示したものであり、(6-
1) は斜視全体図,(6-2)は(6-1)を平面視したものであ
る。すなわち図で電流センサ4は、図4同様に外部接続
端子111a,111b に充分な余長を持つ配線材112a,112b で
繋がるコイル11が捲回された状態で回路基板41に対して
回転し得る回転板42に固定されたU字形鉄心21と、その
両端を結ぶ線上中央領域に該回路基板31に対して固定し
て実装されている図7で説明したMR素子13とで構成さ
れている。
FIG. 6 showing the third embodiment illustrates the case where an iron core is rotated instead of the MR element.
1) is an overall perspective view, and (6-2) is a plan view of (6-1). That is, in the figure, the current sensor 4 can rotate with respect to the circuit board 41 in a state in which the coil 11 connected to the external connection terminals 111a and 111b by the wiring members 112a and 112b having a sufficient extra length is wound, as in FIG. The U-shaped iron core 21 fixed to the rotating plate 42 and the MR element 13 fixedly mounted on the circuit board 31 in the central region on the line connecting the both ends of the MR element 13 described with reference to FIG.

【0045】そして特にこの場合のU字形鉄心21が固定
されている回転板42は図5同様に例えば樹脂等からなる
円形ブッシュを介して回路基板41に搭載されているもの
であり、基準位置を中心として左右45°程度の範囲にお
けるU字形鉄心21の回転は上記配線材112a,112b の余長
域の消化で確保し得るようになっている。
In particular, the rotary plate 42 to which the U-shaped iron core 21 in this case is fixed is mounted on the circuit board 41 via a circular bush made of, for example, resin as in FIG. The rotation of the U-shaped iron core 21 in the range of about 45 ° to the left and right with respect to the center can be ensured by consuming the extra length region of the wiring members 112a and 112b.

【0046】そこで、該U字形鉄心21を回転板42と共に
回転させることで図1と同様の状態にすることができて
該MR素子13からの出力V1に追従して直線性のよい出力
V2が得られる電流センサ4を構成することができる。
Therefore, by rotating the U-shaped iron core 21 together with the rotary plate 42, the same state as that shown in FIG. 1 can be obtained, and the output V 1 from the MR element 13 can be followed to obtain an output with good linearity.
The current sensor 4 that can obtain V 2 can be configured.

【0047】なお、図4〜図6で説明した各電流センサ
の周囲を例えばパーマロイの如き磁性体でカバーするこ
とにより外乱磁界が抑制し得る電流センサが得られるこ
とは明らかである。
It is obvious that a current sensor capable of suppressing the disturbance magnetic field can be obtained by covering the circumference of each current sensor described in FIGS. 4 to 6 with a magnetic material such as permalloy.

【0048】[0048]

【発明の効果】上述の如く本発明により、測定電流値範
囲内における披検電流値とセンサ出力間の関係グラフの
直線性を向上させて電流検出精度の向上を図った電流セ
ンサを提供することができる。
As described above, according to the present invention, it is possible to provide a current sensor in which the linearity of the relationship graph between the test current value and the sensor output within the measured current value range is improved to improve the current detection accuracy. You can

【0049】なお本発明の説明ではU字形鉄心を使用し
た場合を例としているが、必ずしもU字形に限定される
ものでなく外部磁界発生域すなわち集磁端部域にMR素
子が回動し得るスペースが確保し得るものであれば例え
ば“コ”の字形等の如き他形状の鉄心でも同等の効果が
得られることは明らかである。
In the description of the present invention, the case where the U-shaped iron core is used is taken as an example, but the present invention is not necessarily limited to the U-shaped iron core, and the MR element can rotate in the external magnetic field generating region, that is, the magnetic flux collecting end region. It is obvious that the same effect can be obtained even if the iron core has another shape such as a "U" shape if the space can be secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明になる電流センサの構成原理を示す
図。
FIG. 1 is a diagram showing a configuration principle of a current sensor according to the present invention.

【図2】 MR素子回転角度と電流センサ出力との関係
を説明する図。
FIG. 2 is a diagram illustrating a relationship between an MR element rotation angle and a current sensor output.

【図3】 MR素子回転角度とセンサ出力直線性との関
係を説明する図。
FIG. 3 is a diagram illustrating a relationship between an MR element rotation angle and sensor output linearity.

【図4】 本発明になる電流センサの構成例を示す図。FIG. 4 is a diagram showing a configuration example of a current sensor according to the present invention.

【図5】 他の実施例を示す図。FIG. 5 is a diagram showing another embodiment.

【図6】 第3の実施例を示す図。FIG. 6 is a diagram showing a third embodiment.

【図7】 従来の電流センサの構成を概略的に説明する
図。
FIG. 7 is a diagram schematically illustrating a configuration of a conventional current sensor.

【図8】 従来の電流センサにおける問題点を説明する
図。
FIG. 8 is a diagram illustrating a problem in a conventional current sensor.

【符号の説明】[Explanation of symbols]

2,3,4 電流センサ 11 コイル 12,21 鉄心 12a スリット 13,22 磁気抵抗素子 14,31,41 回路基板 15 信号処理用IC 15a,15b 外部接
続電極 32 円形回路基板 33 円形ブッシュ 34,112a,112b 配線材 42 回転板 111a,111b,135 外部接続端子
2,3,4 Current sensor 11 Coil 12,21 Iron core 12a Slit 13,22 Magnetoresistive element 14,31,41 Circuit board 15 Signal processing IC 15a, 15b External connection electrode 32 Circular circuit board 33 Circular bush 34,112a, 112b Wiring material 42 Rotating plate 111a, 111b, 135 External connection terminal

フロントページの続き (72)発明者 丹治 成生 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内Continued Front Page (72) Inventor Narisei Tanji 1015 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Fujitsu Limited

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コイルと該コイルが捲回された集磁端部
を持つ鉄心および該集磁端部間に発生する磁界と直交す
る方向のバイアス磁界を持って該鉄心の集磁端部間に配
置された磁気抵抗素子とを少なくとも具えて構成され、
披検電流を上記コイルに印加したときに鉄心の上記集磁
端部間に発生する該披検電流値に対応する強さの磁界か
ら該披検電流値を検出する電流センサであって、 鉄心(12)の集磁端部間に配置される磁気抵抗素子(13)ま
たは該鉄心(12)自身が、該鉄心(12)の集磁端部間に発生
する磁界方向と磁気抵抗素子(13)のバイアス磁界方向と
の直交角度が変えられる方向に傾け得る手段を具えて構
成されていることを特徴とした電流センサ。
1. An iron core having a coil and a magnetic flux collecting end portion around which the coil is wound, and a magnetic field generated between the magnetic flux collecting end portions and having a bias magnetic field perpendicular to the magnetic field between the magnetic flux collecting end portions of the iron core. And at least a magnetoresistive element arranged in
A current sensor for detecting a test current value from a magnetic field having a strength corresponding to the test current value generated between the magnetic flux collecting ends of the iron core when a test current is applied to the coil, The magnetoresistive element (13) or the iron core (12) arranged between the magnetism collecting ends of (12) has a magnetic field direction generated between the magnetism collecting ends of the iron core (12) and the magnetoresistive element (13). (3) A current sensor characterized by comprising means capable of tilting in a direction in which the angle orthogonal to the bias magnetic field direction of (1) can be changed.
【請求項2】 請求項1記載の磁気抵抗素子または鉄心
を傾け得る角度範囲が、直交位置を中心とする左右振り
分けでほぼ 90 度であることを特徴とした電流センサ。
2. A current sensor characterized in that an angle range in which the magnetoresistive element or the iron core according to claim 1 can be tilted is approximately 90 degrees when left and right are distributed around an orthogonal position.
JP4330811A 1992-12-11 1992-12-11 Current sensor Withdrawn JPH06174752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4330811A JPH06174752A (en) 1992-12-11 1992-12-11 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4330811A JPH06174752A (en) 1992-12-11 1992-12-11 Current sensor

Publications (1)

Publication Number Publication Date
JPH06174752A true JPH06174752A (en) 1994-06-24

Family

ID=18236817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4330811A Withdrawn JPH06174752A (en) 1992-12-11 1992-12-11 Current sensor

Country Status (1)

Country Link
JP (1) JPH06174752A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198905A (en) * 2006-01-26 2007-08-09 Denso Corp Current sensor
US7839605B2 (en) 2005-11-13 2010-11-23 Hitachi Global Storage Technologies Netherlands B.V. Electrical signal-processing device integrating a flux sensor with a flux generator in a magnetic circuit
JP2012078362A (en) * 2011-11-22 2012-04-19 Fdk Corp Magnetic field strength sensor, dc current sensor, and method for measuring magnetic field strength

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839605B2 (en) 2005-11-13 2010-11-23 Hitachi Global Storage Technologies Netherlands B.V. Electrical signal-processing device integrating a flux sensor with a flux generator in a magnetic circuit
JP2007198905A (en) * 2006-01-26 2007-08-09 Denso Corp Current sensor
JP2012078362A (en) * 2011-11-22 2012-04-19 Fdk Corp Magnetic field strength sensor, dc current sensor, and method for measuring magnetic field strength

Similar Documents

Publication Publication Date Title
US6949927B2 (en) Magnetoresistive magnetic field sensors and motor control devices using same
JP3848670B1 (en) Rotation angle detector
US6831456B2 (en) Angle sensor and method of increasing the anisotropic field strength of a sensor unit of an angle sensor
US7598736B2 (en) Integrated circuit including magneto-resistive structures
US4506220A (en) Temperature compensated magnetoresistive effect thin film magnetic sensor
US6522132B1 (en) Linear angular sensor with magnetoresistors
JPH06148301A (en) Magnetic sensor
JPH08178937A (en) Magnetism detecting device
JPH07190804A (en) Magnetic-field measuring device having magnetoresistance type sensor
ES2024419B3 (en) ANGLE DETECTOR TRANSDUCER.
JPH06174752A (en) Current sensor
JPH0720218A (en) Magnetic sensor
US6070333A (en) Electronic compass
JP2576763B2 (en) Ferromagnetic magnetoresistive element
JP3047567B2 (en) Orientation sensor
JP2923959B2 (en) Magnetic bearing detector
JP2576136B2 (en) Magnetic direction measurement device
JP2579824Y2 (en) Magnetoresistive element
JPH06147816A (en) Angle sensor
JP3009274B2 (en) Angle detector
JPH05126513A (en) Angle detector
TWI723412B (en) Magnetic field sensing apparatus
JPH06177454A (en) Ferromagnetic thin film magnetoresistance element and magnetic sensor using it
JP4773066B2 (en) Gear sensor
JPH03226625A (en) Rotation positioner

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307