JPS6280572A - Magnetic detector - Google Patents

Magnetic detector

Info

Publication number
JPS6280572A
JPS6280572A JP60219174A JP21917485A JPS6280572A JP S6280572 A JPS6280572 A JP S6280572A JP 60219174 A JP60219174 A JP 60219174A JP 21917485 A JP21917485 A JP 21917485A JP S6280572 A JPS6280572 A JP S6280572A
Authority
JP
Japan
Prior art keywords
magnetic field
soft magnetic
magnetic
magnetoresistive element
soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60219174A
Other languages
Japanese (ja)
Inventor
Akira Hirano
明 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60219174A priority Critical patent/JPS6280572A/en
Publication of JPS6280572A publication Critical patent/JPS6280572A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To detect a weak magnetic field and its direction by arranging a soft magnetic body which is split by >=1 slit on both or one sides of a magneto- resistance element so that the long axes of the element and soft magnetic body cross each other at right angles. CONSTITUTION:A magnetic detector is so formed that a barber pole type magneto-resistance element 11 is formed on a substrate and the soft magnetic body 13 which is split by >=1 slit 12 is formed on both or one side of the element while having its long axis perpendicularly to that of the element 11. When an external magnetic field is applied, the soft magnetic body 13 is magnetized and magnetic flux is produced at its end part and crosses the element 11, so a large output is obtained from the element 1 with the small magnetic field. The magnetism is held as it is, so the direction of the magnetic field is also detected.

Description

【発明の詳細な説明】 〔4既  要〕 磁気検出器であって、婁磁気抵抗素子の近傍に1以上の
スリットを有する軟磁性体を配置することにより微小磁
界により動作可能とする。
DETAILED DESCRIPTION OF THE INVENTION [4] A magnetic detector that can be operated by a minute magnetic field by arranging a soft magnetic material having one or more slits near a magnetic resistance element.

〔産業上の利用分野〕[Industrial application field]

本発明は強磁性磁気抵抗素子を用いた磁気検出器に関す
るもので、さらに詳しく言えば、微小な磁界により動作
することができる磁気検出器に関するものである。
The present invention relates to a magnetic detector using a ferromagnetic magnetoresistive element, and more specifically, to a magnetic detector that can operate with a minute magnetic field.

〔従来の技術〕[Conventional technology]

強磁性磁気抵抗素子は半導体材料を用いたホール素子と
共に広く磁気検出器として使われている。
Ferromagnetic magnetoresistive elements are widely used as magnetic detectors together with Hall elements using semiconductor materials.

従来磁気抵抗素子で磁界検知を行なう方法として次の2
つの方法がある。その第1は第3図に示すようにつづら
折り状の磁性薄帯lの磁化方向Mを反転させて磁界を検
知する方法であり、第2は測定磁界を印加しない状態で
、磁化と電流が略30〜60度を成す磁気抵抗素子、例
えばバーバーポール型の磁気抵抗素子を用いる方法であ
る。バーバーポール型磁気抵抗素子は第4図に示すよう
に一軸磁気異方性を付与されたつづら折りの軟磁性薄帯
2の上に一定の間隔で且つ斜に導電性薄帯3を付着して
いわゆるバーバーポール状としたちので、磁化の方向は
Mで示されるようにつづら折り状のパターンと平行にな
っている。そしてこれと直角方向に外部磁界Hexをか
けると最初パターンと平行になっていた磁化Mが外部磁
界Hexの増大にともなって次第に傾き、強い磁界をか
けると最終的には外部磁界Hexと同じ磁化Hsとなる
。第5図はこのときの磁化の方向Mと磁気抵抗効果との
関係を示す図で(alのようにつづら折り状パターンに
流れる電流iに対し、外部磁界Hexによる磁化の方向
Mの成す角度θが、(b)のように0度からπ/4→π
/2→π3/4−π・・・と増大すると、磁化の方向M
と電流iの成す角度θが0度と180度すなわち平行と
なる状態で磁気抵抗効果は最大となり、90度のところ
すなわち互いに直角を成す状態で最小の磁気抵抗効果と
なる。このようなつづら折り状のパターンの再出力端子
間の電位差を測定することで磁界の大きさ及び極性を検
出することができる。
The following two methods have been used to detect magnetic fields using conventional magnetoresistive elements:
There are two ways. The first method is to detect the magnetic field by reversing the magnetization direction M of the meander-shaped magnetic ribbon l, as shown in Figure 3.The second method is to detect the magnetic field by reversing the magnetization direction M of the meander-shaped magnetic ribbon l. This method uses a magnetoresistive element having an angle of 30 to 60 degrees, for example, a barber pole type magnetoresistive element. As shown in Fig. 4, the barber pole type magnetoresistive element is made by attaching conductive thin strips 3 diagonally at regular intervals on a soft magnetic thin strip 2 which is folded in a zigzag manner and has been given uniaxial magnetic anisotropy. Since it is shaped like a barber pole, the direction of magnetization is parallel to the zigzag pattern as shown by M. When an external magnetic field Hex is applied in a direction perpendicular to this, the magnetization M, which was initially parallel to the pattern, gradually tilts as the external magnetic field Hex increases, and when a strong magnetic field is applied, the magnetization Hs is finally the same as the external magnetic field Hex. becomes. Figure 5 is a diagram showing the relationship between the magnetization direction M and the magnetoresistive effect at this time (the angle θ formed by the magnetization direction M due to the external magnetic field Hex with respect to the current i flowing in a zigzag pattern as shown in al). , π/4 → π from 0 degree as shown in (b)
/2→π3/4−π..., the direction of magnetization M
The magnetoresistive effect is maximum when the angle θ between current i and current i is 0 degrees and 180 degrees, that is, they are parallel, and the magnetoresistive effect is minimum at 90 degrees, that is, when they are perpendicular to each other. By measuring the potential difference between the re-output terminals of such a zigzag pattern, the magnitude and polarity of the magnetic field can be detected.

〔発明が解決しようとする問題点〕 上記従来の磁気検出方法において、第1の磁気抵抗素子
による方法では磁化の反転が起った時に出力が得られる
°がその状態を保持したり、判別することができないと
いう欠点があり、また第2のバーバーポール型等の磁気
抵抗素子では微弱な磁界では出力が小さいという問題が
あった。
[Problems to be Solved by the Invention] In the conventional magnetic detection method described above, in the method using the first magnetoresistive element, when the reversal of magnetization occurs, the output is obtained and the state is maintained or determined. In addition, the second barber pole type magnetoresistive element has a problem in that the output is small in a weak magnetic field.

本発明はこのような点に鑑みて創作されたもので、微小
な磁界で動作し、しかも履歴及び磁界の方向をも検知で
きる磁気検出器を提供することを目的としている。
The present invention was created in view of these points, and an object of the present invention is to provide a magnetic detector that operates in a minute magnetic field and can also detect the history and direction of the magnetic field.

〔問題点を解決するための手段〕[Means for solving problems]

このため本発明においては、測定磁界を印加しない状態
で磁化と電流が略30〜60度を成す磁気抵抗素子を用
いた磁気検出器であって、前記磁気抵抗素子11の両側
又は片側に1以上のスリット12で分割された軟磁性体
13を素子と軟磁性体の長軸が直交する様に配置したこ
とを特徴としている。
Therefore, the present invention provides a magnetic detector using a magnetoresistive element in which magnetization and current form an angle of about 30 to 60 degrees when no measurement magnetic field is applied, and one or more magnetoresistive elements are provided on both sides or one side of the magnetoresistive element 11. The soft magnetic material 13 divided by the slits 12 is arranged so that the long axes of the element and the soft magnetic material are perpendicular to each other.

〔作 用〕[For production]

測定磁界を印加しない状態で磁化と電流が略45度を成
すバーバーポール型磁気抵抗素子等の素子の両側又は片
側に直交する様に配置した軟磁性体に外部磁界が加わる
と、該軟磁性体は磁化し、その端部より磁束が発生し、
その磁束が素子を横切るため従来に比して大きな検出力
が得られる。
When an external magnetic field is applied to a soft magnetic material arranged perpendicularly to both sides or one side of an element such as a barber-pole magnetoresistive element in which the magnetization and current form an approximately 45 degree angle when no measurement magnetic field is applied, the soft magnetic material becomes magnetized and magnetic flux is generated from its end,
Because the magnetic flux crosses the element, greater detection power can be obtained than in the past.

また磁化状態はそのまま保持されるので外部磁界の方向
も検知することが可能となる。
Furthermore, since the magnetization state is maintained as it is, it becomes possible to detect the direction of the external magnetic field.

〔実施例〕〔Example〕

第1図は本発明の実施例を示す図であり、aは平面図、
bは正面図である。同図において10は基板、11はバ
ーバーポール型磁気抵抗素子、12はスリット、13は
軟磁性体をそれぞれ示している。
FIG. 1 is a diagram showing an embodiment of the present invention, in which a is a plan view;
b is a front view. In the figure, 10 is a substrate, 11 is a barber pole magnetoresistive element, 12 is a slit, and 13 is a soft magnetic material.

本実施例は第1図に示すように、基板10の上にバーバ
ーポール型磁気抵抗素子11(第4図の従来例で説明し
たものと同様のもの)を形成し、その両側又は片側に(
図においては両側)にスリット12で分割された短冊形
の軟磁性体13を配置したものである。但しスリット1
2の方向は磁気抵抗素子11のパターンの長手方向に対
して垂直方向とする。
In this embodiment, as shown in FIG. 1, a barber-pole type magnetoresistive element 11 (similar to that explained in the conventional example in FIG. 4) is formed on a substrate 10, and on both sides or one side thereof (
A rectangular soft magnetic body 13 divided by slits 12 is arranged on both sides (in the figure). However, slit 1
The direction 2 is perpendicular to the longitudinal direction of the pattern of the magnetoresistive element 11.

なお本実施例は次のようにして作製することができる。Note that this example can be manufactured as follows.

先ず表面を酸化させたシリコン基板10上にパーマロイ
からなる厚さ約500人のつづら折り状の薄帯をリソグ
ラフィ技術を用いて形成し、この薄帯の上に密着層のT
iやCrを介し30〜60度(主に45度)傾いたAu
パターンを等間隔に形成し、その上にSing 、 5
i3Nn等の保護膜を付着させてバーバーポール型磁気
抵抗素子11を作製する。次にこの素子11の両側又は
片側に軟磁性体13としてパーマロイやCo−Zr等の
軟磁性材料を厚さ数μmに蒸着又はスパッタして形成す
るのである。なお軟磁性体13は薄膜に限らず、Mn 
−Znフェライト材等のブロックでも良い。
First, a zigzag thin strip made of permalloy with a thickness of about 500 layers is formed on a silicon substrate 10 whose surface has been oxidized, using lithography technology, and an adhesive layer T is formed on this thin strip.
Au tilted by 30 to 60 degrees (mainly 45 degrees) through i and Cr
Form a pattern at equal intervals, and then add Sing, 5
A protective film of i3Nn or the like is deposited to fabricate a barber pole type magnetoresistive element 11. Next, a soft magnetic material 13 such as permalloy or Co--Zr is formed on both sides or one side of this element 11 by vapor deposition or sputtering to a thickness of several micrometers. Note that the soft magnetic material 13 is not limited to a thin film;
- A block of Zn ferrite material or the like may be used.

このように構成された本実施例は、外部磁界が加わると
、軟磁性体13が磁化し、その端部より磁束が発生し、
この磁束がバーバーポール型磁気抵抗素子11を横切る
ため、小さな動作磁界でバーバーポール型磁気抵抗素子
11からは大きな出力が得られる。
In this embodiment configured in this way, when an external magnetic field is applied, the soft magnetic body 13 is magnetized, and a magnetic flux is generated from its end.
Since this magnetic flux crosses the barber-pole magnetoresistive element 11, a large output can be obtained from the barber-pole magnetoresistive element 11 with a small operating magnetic field.

第2図はその出力特性を示す図である。同図において、
横軸には外部磁界を、縦軸には出力をとり、実線Aで本
実施例の、点線Bで軟磁性体がない場合のそれぞれ特性
を示した。図より、外部磁界がHのとき、軟磁性体がな
い場合の出力はa′であるが、本実施例の場合はa′よ
り大きいaが得られる。また本実施例の場合磁化状はそ
のまま保持されるので、外部磁界の方向も検知すること
が可能となる。また逆向きの磁界−Hが加われば第2図
において、b点の出力が得られる。
FIG. 2 is a diagram showing its output characteristics. In the same figure,
The horizontal axis represents the external magnetic field, and the vertical axis represents the output. The solid line A represents the characteristics of this example, and the dotted line B represents the characteristics when there is no soft magnetic material. As shown in the figure, when the external magnetic field is H, the output without the soft magnetic material is a', but in the case of this embodiment, a larger than a' is obtained. Further, in this embodiment, since the magnetization state is maintained as it is, it becomes possible to detect the direction of the external magnetic field as well. If a magnetic field -H in the opposite direction is applied, an output at point b in FIG. 2 is obtained.

この際、軟磁性体13に設けたスリンl−12は軟磁性
体13の反磁界を小さくするため、より微弱な磁界で磁
化し大きな出力が得られる。(反磁界はその幅にほぼ逆
比例して小さくなる)同時に軟磁性体材料の長さを短縮
できるので小型化することができる。
At this time, the sulin l-12 provided in the soft magnetic body 13 reduces the demagnetizing field of the soft magnetic body 13, so that it is magnetized with a weaker magnetic field and a large output can be obtained. (The demagnetizing field decreases in almost inverse proportion to its width.) At the same time, the length of the soft magnetic material can be shortened, allowing for miniaturization.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、本発明によれば、掻めて簡易な
構成で、微小な磁界及びその方向を検知することができ
、実用的には極めて有用である。
As described above, according to the present invention, it is possible to detect a minute magnetic field and its direction with a very simple configuration, and it is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す図、 第2図は本発明の実施例の出力特性を示す図、第3図は
従来の磁気抵抗素子を示す図、第4図は従来のバーバー
ポール型磁気抵抗素子を示す図、 第5図はバーバーポール型磁気抵抗素子の磁気検出作用
を示す図である。 第1図において、 10は基板、 11はバーバーポール型磁気抵抗素子、12はスリット
、 13は軟磁性体である。 →外部磁界 本発明の実施例を示す図 第1国 本発明の実施例の出力特性を示す図 第2図 従来の磁気抵抗素子を示す図 ネ73図 1・・・つづら折り状磁性薄帯
Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing output characteristics of an embodiment of the present invention, Fig. 3 is a diagram showing a conventional magnetoresistive element, and Fig. 4 is a diagram showing a conventional barber pole. Fig. 5 is a diagram showing the magnetic detection action of the barber pole type magnetoresistive element. In FIG. 1, 10 is a substrate, 11 is a barber pole magnetoresistive element, 12 is a slit, and 13 is a soft magnetic material. → External magnetic field Diagram showing an embodiment of the present invention First country Diagram showing the output characteristics of an embodiment of the present invention FIG. 2 Diagram showing a conventional magnetoresistive element

Claims (1)

【特許請求の範囲】 1、測定磁界が印加されない状態で、磁化と電流が略3
0〜60度の角度を成す磁気抵抗素子を用いた磁気検出
器であって、 上記磁気抵抗素子(11)の両側又は片側に1以上のス
リット(12)で分割された軟磁性体(13)を素子と
軟磁性体の長軸が直交する様に配置したことを特徴とす
る磁気検出器。 2、磁気抵抗素子としてバーバーポール型素子を用いた
ことを特徴とする特許請求の範囲第1項記載の磁気検出
器。
[Claims] 1. When no measurement magnetic field is applied, the magnetization and current are approximately 3
A magnetic detector using a magnetoresistive element forming an angle of 0 to 60 degrees, the soft magnetic body (13) being divided by one or more slits (12) on both sides or one side of the magnetoresistive element (11). A magnetic detector characterized in that the elements are arranged so that the long axes of the element and the soft magnetic material are perpendicular to each other. 2. The magnetic detector according to claim 1, characterized in that a barber pole type element is used as the magnetoresistive element.
JP60219174A 1985-10-03 1985-10-03 Magnetic detector Pending JPS6280572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60219174A JPS6280572A (en) 1985-10-03 1985-10-03 Magnetic detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60219174A JPS6280572A (en) 1985-10-03 1985-10-03 Magnetic detector

Publications (1)

Publication Number Publication Date
JPS6280572A true JPS6280572A (en) 1987-04-14

Family

ID=16731360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60219174A Pending JPS6280572A (en) 1985-10-03 1985-10-03 Magnetic detector

Country Status (1)

Country Link
JP (1) JPS6280572A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197882A (en) * 1987-10-09 1989-04-17 Nippon Denso Co Ltd Magnetic azimuth sensor
JP2006300540A (en) * 2005-04-15 2006-11-02 Daido Steel Co Ltd Thin-film magnetometric sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197882A (en) * 1987-10-09 1989-04-17 Nippon Denso Co Ltd Magnetic azimuth sensor
JP2006300540A (en) * 2005-04-15 2006-11-02 Daido Steel Co Ltd Thin-film magnetometric sensor
JP4520353B2 (en) * 2005-04-15 2010-08-04 大同特殊鋼株式会社 Thin film magnetic sensor

Similar Documents

Publication Publication Date Title
US6640652B2 (en) Rotation angle sensor capable of accurately detecting rotation angle
EP2040089B1 (en) A magnetic tunnel junction (MTJ) based magnetic field angle sensor
US6191581B1 (en) Planar thin-film magnetic field sensor for determining directional magnetic fields
JP2002532894A (en) Magnetic field sensor with giant magnetoresistance effect
JPH0870149A (en) Magnetoresistance element
JPH05281319A (en) Magnetic sensor
JPH0870148A (en) Magnetoresistance element
US7450353B2 (en) Zig-zag shape biased anisotropic magnetoresistive sensor
JPS6280572A (en) Magnetic detector
JP3035836B2 (en) Magnetoresistive element
JP3282444B2 (en) Magnetoresistive element
JPH0563254A (en) Magnetoresistance composite element
JPS6266413A (en) Magnetoresistance effect type magnetic sensor
JPH0217476A (en) Differential type magnetoresistance effect element
JPH0141226B2 (en)
JPH11298063A (en) Magnetoresistive effect element
KR960004100B1 (en) Magnetic resistor device
JPH0473087B2 (en)
JPH0414735B2 (en)
JP3067484B2 (en) Magnetic position and rotation detection element
JP2002333320A (en) Bearing indicator
JPH0225777A (en) Magneto-sensitive element
JP3729116B2 (en) Compass
JPH08297814A (en) Magneto-resistance effect element
JPS60233561A (en) Measuring device for speed of revolution